A LIMITATION THEOREM FOR CESARO SUMMABLE SERIES

BY
S. MukHOTI
1. Introduction

We consider the Cesdro summability, for integral orders of the series
> e oa,dy,. In this paper we establish a limitation theorem for this series.

Results of this character, but not overlapping with those in this paper, were
given by Hardy and Littlewood [7] and by Andersen [1]. Andersen’s re-
sult was extended by Bosanquet and Chow [5], and further extended by
Bosanquet [4].

Notation. We write
Ay =Adn=a+a+ - Fa, AL =AT+ AT+ o0 + 4T
and we get the identities [6]
AL =20 (T 4, AL =20 (T M) e, EL = Al
when ay = 1, a, = 0, forn > 0i.e. when 4, = 1, foralln. So
k
By = (Y ~3.

> ay is said to be summable (C, k) to 4 if A%/E% — A asn — o, or
equivalently if k! A% /n* — A.

We write Ad, = d, — du-1, following L. 8. Bosanquet [3]. We will use
the following identity (see L. S. Bosanquet [3]):

(1.1) A (UL Va) = 2hs Q)N Un A"V .
2. Statement of the theorem and two lemmas.
TureoreEM 1. Suppose that d, > 0, for n > 0, and
(i) diyi=o01)asn— =,

G %30 = o),

nk dyir1

(i) [A'(1/dv + &k + 1)| < K|A7@/d, + &+ 1),
i=12 ---,k+ 1;k > 0, k an inieger; A operating on v.

Then A%, = 0(n*/d,1) whenever D y—oa, d, is summable (C, k).
We require the following lemmas.
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LeEMMA A. In order that tw = D CmaSn —0 (m — ) (m = 1,2, -++)
whenever S, — 0 (n — ), 1t 18 necessary and sufficient that
() 2| Cmal < H, where H is independent of m and
@) Cupn— 0 for each n, when m — o,

Lemma A is given by Hardy [6, Theorem 4], which follows from a theorem
given by Toeplitz [9]. Toeplitz considers only “triangular” transformations
in which Cn,» = 0 for n > m. Steinhaus [8] made extension for general
transformations.

Lemma B. If d. satisfies conditions of Theorem 1 then

dupt <= & | \wtt { 1 e }l
A —_— = 0(1).
nk 1= dv+k+1( * S
We have
idls_-llc_-{ i Vk Ak+l { (n—v—l )}
n* vy=0 Ay

(n—z+k)

dn+1 B+ ( 1 )
Z A dv+k+1

+ ad1;+l Z Vk IA(n—v;:-k—l) [ Ak (d 1 )
v+k+1

o+ e [a (1)

o1
aduy1 <~ &
+ nk ng

(2.1)

n—y— 1
Ak'H( k 1) R

using identity (1.1), where the o’s are various constants.
By (2.1) it will be enough to prove that

(e
(Y
But we have

| A7) | < BCTTRET) 4 (VTR 4 o+ B(TTE)

(22) dwz | A7) || A =0(1),j=0,1,---,k+ L

(23) -
< KT
where j = 0, 1, ---, k£ + 1 and the 8’s are various positive constants; and
(24) AT (1 dyaa) < K ATV dpa) | G =0, K,
by hypothesis (iii).
Then since
(2.5) dn+lz k(n-—v+k) — 0(1)
y=0 v+ k41

by hypothesis (ii), (2.2) follows immediately from (2.3), (2.4) and (2.5).
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3. Proof of the theorem

We can assume that > o a, d, is summable (C, k) to 0. Then C%/n* — 0
asn — o, Let Cn = D s=a,d,; then

(3.1) ACy = Z;;Oav d, — Z:‘:ol a,dy = Qndy.
Now
A’:, E (n—v+k)a’y - ZO (n—v+k) Ade
. (by (3.1))
= 3 (-1 "*‘{d—-—- 3 }
y=0 k41
So
Aot A duyr YL E C_’: k41 { | QT — }
nk ——n"_;( 1) Y l'kA dy+h+1( k
n Ck
= = '”_k Ynv s
where
(=" ke { 1 n—v—l}

(3.3) Yoy = T vA m( k .
Then, by Lemma B,

(3.4) go 70s | = B2 358

Next from (3.5),
_ 01 kg n—vHy AR
e ("aa (du-k+)

adny1 gy n—vti—1y 1k [ 1
+ nk vA(TTA (dv-l-k-id)

adn+1 kak(n—v 1
+ +-———n,c vA(b)A(dmm)

n—y— 1
+ a;i:.;-l kpRH(nrLy

Yn,v

Aot

(using identity (1.1) where the a’s are various constants)
- ‘_i;%l FO(n*) = o(1) (by hypothesis (i)).

S0 Ya,y — 0 agn — oo, for each ». It follows that conditions (i) and (ii) of
Lemma A are satisfied and hence dn. A%/n* = o(1).
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Added in proof. Condition (ii) of the theorem could be replaced by (3.4),
and this would then widen the class d, covered by the theorem.
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