ON THE FIRST MAIN THEOREM ON BLOCKS OF CHARACTERS OF FINITE GROUPS

BY RICHARD BRAUER

1. Introduction¹

Let G be a finite group and let p be a fixed prime number. The first main theorem on blocks establishes a one-to-one correspondence between the p-blocks B of G with the defect groups D and the p-blocks b of the normalizer $N_G(D)$ of D with the defect group D, cf. [2], [3]. It is the purpose of this note to show that this theorem can be derived easily from the results of [4]. We shall need only the results (2A), (2B), (3A), (3B) and (4A) of [4]. In particular, we shall not need any results dealing with fields of characteristic 0. A proof of the main theorem on blocks operating completely within a fixed field Ω of characteristic p has already been given by A. Rosenberg [5].

We use the same notation as in [4]. In particular, Ω will denote an algebraically closed field of characteristic p, $\Omega[G]$ will denote the group algebra of G over Ω , and Z = Z(G) will be the class algebra of G over Ω (i.e., Z(G) is the center of $\Omega[G]$). As remarked in [4], the results (3A), (3B), and (4A) of [4] remain valid, if instead of the decomposition of Z(G) into block ideals we consider more generally any decomposition

$$(1) Z = A_1 \oplus A_2 \oplus \cdots \oplus A_r$$

as a direct sum of ideals A_i . Each A_i is a direct sum of block ideals of Z. Let \hat{Z} denote the dual space consisting of all linear functions defined on Z with values in Ω .

An ideal $A \neq (0)$ occurs as a summand in a decomposition (1), if and only if A has the form $\eta_A Z$ where η_A is an idempotent of Z. We may consider the dual space \hat{A} of A as a subspace of Z by extending each $f \in \hat{A}$ linearly so that it vanishes on the complement $(1 - \eta_A)A$. (In [4], the notation F_A was used for this subspace of Z.) If Q is a p-subgroup of G, the multiplicity $m_A(Q)$ of Q as a lower defect group of A is defined as follows. Consider subspaces V of \hat{A} with the following two properties.

- (i) For each $f \neq 0$ in V, there exists a conjugate class K of G with the defect group Q such that $f(SK) \neq 0$. (Here SK is the class sum of K.)
- (ii) For $f \in V$, we have f(SK) = 0 for all conjugate classes K of G whose defect group has lower order than Q.

Then $m_A(Q)$ is the maximal dimension of such Ω -spaces V.

Received November 24, 1969.

¹ The note was written while the author was a Visiting Professor at the University of Chicago. Conversations with John G. Thompson and Richard G. Swan have been helpful.

- If $\mathcal{O} = \mathcal{O}(G)$ is a system of representatives for the classes of conjugate p-subgroups of G, the system $\mathfrak{D}(A)$ of lower defect groups of A consists of the members Q of \mathcal{O} , each Q taken with the multiplicity $m_A(Q) \geq 0$. As already indicated, the results (3A), (3B), (4A) of [4] remain valid for arbitrary decompositions (1). This implies that the number of elements of $\mathfrak{D}(A)$ is equal to $\dim_{\Omega} A$. Another consequence is the following proposition.
- (1A) Let A be an ideal of Z which is a direct summand of Z. If A is a direct sum of two ideals $A_1 \oplus A_2$ then

$$\mathfrak{D}(A) = \mathfrak{D}(A_1) \cup \mathfrak{D}(A_2).$$

Here, the union is meant as the union of *systems* of elements: The multiplicity of Q as member of $\mathfrak{D}(A_1) \cup \mathfrak{D}(A_2)$ is the sum of the multiplicities of Q in $\mathfrak{D}(A_1)$ and $\mathfrak{D}(A_2)$.

2. Proof of the first main theorem on blocks

Consider a block ideal B of Z. Then \hat{B} contains a unique algebra homomorphism ω_B of Z onto Ω .

DEFINITION. A p-subgroup D of G is an (ordinary) defect group of the block B, if there exist conjugate classes K_0 of G with the defect group D for which $\omega_B(\$K_0) \neq 0$ while $\omega_B(\$K) = 0$ for all conjugate classes K whose defect group has smaller order than D.

It is clear that every defect group D of B is a lower defect group of B; $D \in \mathfrak{D}(B)$.

If $Q \in \mathfrak{D}(B)$, it follows from [4], (3A) and (4A) that there exist blocks b of $N_{G}(Q)$ such that $B = b^{G}$. Then for each conjugate class K of G, we have

(2)
$$\omega_B(\$K) = \sum_L \omega_b(\$L)$$

where L ranges over all conjugacy classes L of $N_{\sigma}(Q)$ with $L \subseteq K \cap C_{\sigma}(Q)$. In particular, this holds when Q = D is a defect group of B. If $\omega_B(\$K) \neq 0$, then (2) shows that $K \cap C_{\sigma}(D) \neq \emptyset$. This implies that there exist defect groups of K which contain D. Thus, we have (cf. [3, (8A)]).

(2A) If D is a defect group of the block B of G and if $\omega_B(SK) \neq 0$ for a conjugate class K of G, then D is contained in a defect group of K.

The following proposition is an immediate consequence.

- (2B) The defect groups of a block are determined uniquely up to conjugacy.
- If Q_1 and Q_2 are subgroups of G, as in [4] we define $Q_1 \geq Q_2$ to mean that Q_1 contains a conjugate of Q_2 . In particular, this relation defines a partial order in \mathcal{O} .
- (2C) There exists a unique maximal element D in $\mathfrak{D}(B)$ and D is a defect group of B.

Proof. We have already seen that $\mathfrak{D}(B)$ contains a defect group D of B. If $Q \in \mathfrak{D}(B)$, (2) applies for a block b of $N_{\sigma}(Q)$ with $b^{\sigma} = B$. Take for K the class K_0 in the definition of D. Then $\omega_B(\$K_0) \neq 0$ and, by (2), $K_0 \cap C_{\sigma}(Q) \neq \emptyset$. This implies that Q is contained in a conjugate of the defect group D of K_0 . Hence $D \geq Q$ as we had to show.

(2D) (First main theorem). Let Q be a p-subgroup of G and set $N = N_G(Q)$. The mapping

$$b \rightarrow b^G = B$$

sets up a one-to-one correspondence between the blocks b of N with the defect group Q and the blocks B of G with the defect group Q.

Proof. We may assume that $Q \in \mathcal{O}(G)$. We have $Q \in \mathcal{O}(N)$. A simple group theoretical argument [3, (10A)] shows that if L is a conjugate class of N with the defect group Q, the conjugate class $K = L^{\sigma}$ of G containing L has also the defect group Q. Conversely, if K is a conjugate class of G with the defect group G, then G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G with the defect group G and G is a conjugate class of G is a conjugate class of G with the defect group G and G is a conjugate class of G is a conjugate G

If b is a block of N with the defect group Q, there exist conjugate classes L_0 of N with the defect group Q such that $\omega_b(\$L_0) \neq 0$. If $B = b^g$ and $K = L_0^g$, then (2) reads

(3)
$$\omega_B(\$K) = \omega_b(\$L_0) \neq 0.$$

On account of (2A), the defect group Q of K contains a conjugate of the defect group D of B. Thus $Q \geq D$.

On the other hand, choose K_0 as in the definition of the defect group of a block. Then (2) with $K = K_0$ shows that there exist conjugate classes $L \subseteq K_0 \cap C_G(Q)$ of N with $\omega_b(\$L) \neq 0$. On account of (2A) applied to N and b, a defect group of L in N contains the defect group Q of D. Then a defect group of D0 in D1 in D2. Hence D2 in D3 is conjugate to D4, and D5 has the defect group D6.

Suppose now that b_1 and b_2 are two distinct blocks of $N_G(Q)$ with the defect group Q. Then $A = b_1 \oplus b_2$ is a direct summand of the class algebra Z(N). By (1A) and (2C) we see that $\mathfrak{D}(A)$ has the unique maximal element Q.

On the other hand, $f = \omega_{b_1} - \omega_{b_2}$ is an element of $\widehat{A} \subseteq \widehat{Z}(N)$. Let L be a conjugate class of N of minimal defect for which $f(\$L) \neq 0$. Then a defect group Q_1 of L in N belongs to $\mathfrak{D}(A)$. By $(2\mathbb{C})$, Q_1 is contained in a conjugate of Q in N and hence $Q_1 \subseteq Q$. Since $f(\$L) \neq 0$ implies that $\omega_{b_1}(\$L) \neq 0$ or $\omega_{b_2}(\$L) \neq 0$, the defect group Q_1 of L in N contains a conjugate of the defect group Q of D_1 and D_2 , cf. D_2 in D_3 i.e., D_4 has the defect group D_4 in D_4 .

Suppose now that $b_1^{\sigma} = b_2^{\sigma} = B$. For $K = L^{\sigma}$, as in (3) we have

$$\omega_B(\$K) = \omega_{b_i}(\$L)$$

for i = 1 and 2. However, this is impossible as

$$\omega_{b_1}(\$L) - \omega_{b_2}(\$L) = f(\$L) \neq 0.$$

Thus, $b_1^G \neq b_2^G$.

Our proof will be complete if we can show that if B is a block of G with the defect group Q, there exist blocks b of N with the defect group Q for which $b^{\sigma} = B$. Since $Q \in \mathfrak{D}(B)$, there certainly exist blocks b of N with $b^{\sigma} = B$. If K_0 is chosen as in the definition of the defect group of B, then K_0 has the defect group Q and (3) applies with $L_0 = K_0 \cap C_{\sigma}(Q)$. Hence $\omega_b(\$L_0) \neq 0$. Now (2A) implies that the defect group Q of L_0 in N contains a conjugate of the defect group D^* of b. On the other hand, we have the Lemma [3, (9F)].

Lemma 1. Suppose that a finite group H has a normal p-subgroup Q. Then the defect group of each block of H contains Q.

If this lemma is applied to H = N, we find $D^* \supseteq Q$. Hence $D^* = Q$ and the proof of (2D) is complete.

As to the proof of Lemma 1, we can follow Rosenberg [5]. Rosenberg has given a very simple proof of the following lemma.

LEMMA 2. Let H be as in Lemma 1. If L is a conjugate class of H which does not meet $C_H(Q)$, then SL is a nilpotent element of the class algebra Z(H) of H.

This implies Lemma 1 since if b is a block of H, $\omega_b(z) = 0$ for every nilpotent element z of Z(H). Hence if L is a conjugate class of H and if $\omega_b(\$L) \neq 0$, by Lemma 2, $L \cap C_H(Q) \neq \emptyset$, i.e., the defect group of L contains Q. In particular, the defect group of D contains D.

An an immediate corollary of (2D), we mention

(2E) The theorem (2D) remains valid if we replace N by a subgroup H of G with

$$G \supseteq H \supseteq N_{\mathfrak{G}}(Q)$$
.

Indeed, if the notation is as in (2D), we have to associate the block $B^* = b^H$ of H with the block $(B^*)^G = (b^H)^G = b^G$ of G.

3. Ground fields which are not algebraically closed

Rosenberg in [5] also considers the case of ground fields K of characteristic p which are not algebraically closed. We shall show that this case can be reduced to that of an algebraically closed field Ω .

Let $Z_{\mathbb{K}}(G)$ denote the class algebra of G with regard to an arbitrary field K of characteristic p. Suppose that A is a block ideal of $Z_{\mathbb{K}}(G)$. As is well known, Wedderburn's theorem on finite division algebras implies that the field Λ of |G|-th roots of unity over K is a splitting field of the group algebra K[G], cf. [1]. It follows that Λ is a splitting field of $Z_{\mathbb{K}}(G)$.

If we now work in the class algebra $Z_{\Lambda}(G) \supseteq Z_{K}(G)$, the ideal $AZ_{\Lambda}(G)$ is a direct summand of $Z_{\Lambda}(G)$ and hence $AZ_{\Lambda}(G)$ is a direct sum of block ideals B_{i} $(i = 1, 2, \dots, r)$.

Let τ be an element of the Galois group $G(\Lambda/K)$ of the separable field extension field Λ of K. If $f \in \hat{B}_i$, $(1 \le i \le r)$, let f' denote the linear function on $Z_{\Lambda}(G)$ whose value for a class sum SK is equal to $f(SK)^r$. It is easy to see that there exists a block ideal B_j with $1 \le j \le r$ such that $f' \in \hat{B}_j$. We set $B_j = B_i^r$. Moreover, we see that $G(\Lambda/K)$ acts transitively on the set $\{B_1, B_2, \dots, B_r\}$. Let Ω now denote an algebraic closure of Λ . Then

$$AZ_{\Omega}(G) = \bigoplus \sum_{i=1}^{r} B_{i} Z_{\Omega}(G).$$

Since Λ is a splitting field of $Z_{\Lambda}(G)$, each $B_i Z_{\Omega}(G)$ remains indecomposable, i.e., it is a block ideal of the class algebra $Z_{\Omega}(G)$ of G. It is clear that the r block ideals $B_i Z_{\Omega}(G)$ have the same system of lower defect groups. Hence, by (1A),

$$\mathfrak{D}(AZ_{\Omega}(G)) = r \cdot \mathfrak{D}(B_1 Z_{\Omega}(G)).$$

We may now define the system of lower defect groups $\mathfrak{D}(A)$ of the block ideal A of $Z_{\mathbb{K}}(G)$ as the system (4) and the (ordinary) defect group of A as the ordinary defect group of the $B_i Z_{\Omega}(G)$. It is immediate that (2B), (2C), (2D), (2E) remain valid, if the underlying field is not algebraically closed.

REFERENCES

- R. Brauer, Über Systeme hyperkomplexer Zahlen, Math. Zeitschrift, vol. 30 (1929), pp. 79-107.
- On the arithmetic in a group ring, Proc. Nat. Acad. Sci. U.S.A., vol. 30 (1944), pp. 109-114.
- 3. ———, Zur Darstellungstheorie der Gruppen endlicher Ordnung I, Math. Zeitschrift, vol. 63 (1956), pp. 406-444.
- 4. ——, Defect groups in the theory of representations of finite groups, Illinois J. Math., vol. 13 (1969), pp. 53-73.
- A. ROSENBERG, Blocks and centres of group algebras, Math. Zeitschrift, vol. 76 (1961), pp. 209-216.

HARVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS