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Introduction

A homotopy S S will be a smoothing of the piecewise linear S X S.
If >_ 3, it follows from de Sapio 13 that a homotopy S S is stably paral-
lelizable. We will be interested only in the case even, _> 8, and 2 2 for
all j. Then by a standard argument a homotopy S St, since it is stably
parallelizable, is of the form S S 2: where 2 is a suitable homotopy 1-
sphere.
An involution ofS S will be a fixed point free, orientation preserving,

S Sdiffeomorphism p X S 2; --* S 2 of order two. An involution
p is weakly equivalent to p’ if there is an orientation preserving diffeomorphism
carrying the domain of p onto that of p’ such that p’ o o p. If is clear

that weak equivalence classes of involutions are in bujective correspondence
with the oriented diffeomorphism classes of the manifoldsM S X S Zip.
To classify the involutions up to weak equivalence, we attempt to classify
the manifolds M up to oriented diffeomorphism.

It will turn out that, given M, there is a unique even integer ]c mod 2()

such that f* (v (M)) is stably equivalent to kff for any map f P --* M such
that rl (f) is an isomorphism, where z is the canonical line bundle over P.
This integer will be called the type of M.

Let , be the unique /-plane bundle over P stably equivalent to
(2(z) 1 ])z, with Euler class a generator or zero, depending on which
is possible. (Exactly one of these cases will be possible.)

Suppose now that M is of type ]. Then its normal bundle is stably equiva-
lent to k -t- , where f pulls back from a unique element a (M) e K(T()
by means of a canonical mapM -- T (-). The oriented diffeomorphism classes
of manifolds of type ]c form a group 1 (,)/G, and

F (7)/G KO(T ())

turns out to be a homomorphism in Section 4.
The next problem is to describe the kernel K/G of a.

J-homomorphism

K(- (S (,)) J
+ T(E[)

For this we need a

where S () is the sphere bundle of , above and is the canonical line bundle
over RP. The homomorphism J is defined using the Thom construction,
exactly as the standard J homomorphism is defined. Then there is a homo-
morphism K/G -- A where h is the cokernel of J. It follows from the
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theorem of Section 2 that is an epimorphism, and from the theorem of
Section 5 that the kernel of is an image of Z. And it follows from Sec-
tion 6 that there is a fixed map Z - KO (T(,)) such that a factors uniquely
through this map. Thus we may take a r (,)/G ---. Z.
Thus r (,)/G is described by the eact sequences:

Z

KO-(S()) J

1

Seegion 1 eongNns preliminaries. In Seegion 2 we sgudy a speeiN ease of
he problem of kiting middle homogopy groups of manifolds, and arrNe ag ghe

heorem gha will make an epimorphism. In Seegion 8 we sgudy mappings
and embeddings P M, go obgain (1) ghe gype of M is well-defined, (2) a
useN1 deeomposigion of M. In Seegion , we use gha deeomposigion o prove
ha if gype (M) k, ghen v (M) differs from k by a sgable bundle of index 0.
his faeg enables us go show ghag Im () 0 or Z. In Seegion , we define a
group r () of which r ()/G is a quogien. inNly in Seegion g, we define J
and . hag is an epimorphism follows Nready from heorem 2, and ghag

has kernel ag mosg of order 2 follows from heorem of ghag seegion.

As a by-produeg, in Seegion 6, we obgNn ghe .fNlowing gheorem.

THEOREM 6. If 4, 6 (8) andM is the quotient ofS X S by an invoNtion,
then v (M) is stably an even multiple of the canical line bundle.

For a counterexample in the case 0 (8) see [10].
Wall’s theorems on non-simply connected surgery [8] are crucial to the argu-

ment, and some theorems, especially Theorem 2, resemble special cases of
Theorem 6.5 of [8]. To derive Theorem 2 from Wall’s theorem, one would have
to factor the natural mapM RP of Section 2 throughS ( P RP
If this could be done, a much stronger theorem than Theorem 2 would result.
A special case of this problem, factoring the natural map M RP for certain
M through P RP occurs in Section 5. In that case there is a solution, and
Wall’s theorem applies to conclude M S( W ).

I. Preimincries
In this section we notation.
P will always denote infinite-dimensional projective space, andP will always

denote j-dimensional projective space. The canonical line bundle over P will
be , except in Section 2, where it will be . The canonical line bundle over
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P will be .. The order of the reduced stable class of . in K( (P) will we
2(). If , is any vector bundle, E () will be its associated cell bundle and
S (,) its associated sphere bundle. The Stiefel-Whitney class of , will be
w(,) and the Pontryagin class of , will be P (,). Two bundles , and
will be isomorphic if there is a bundle map /-- , covering a homeomorphism
of the base spaces. If A is a submanifold of B, then v (A’B) will be the nor-
mal bundle of A in B, and r (A) will be the tangent bundle of A; v (A)m is the
(stable) normal bundle of A in Euclidean space of codimension m. The trivial
bundle of dimension i is denoted by e.

Modules over the group ring of Z will be called Z-molecules. Special ones
will be 2, on which Z operates by changing signs; Z’ WZ and . -" Z., on
whichZ operates by changing signs; Z - Z andZ -t- Z, on whichZ operates
by changing components. If X is a space with rl (X) Z, then Z, Z Z,
Z -t- Z. will also denote the bundles of coefficients over X associated with these
modules. Then H, (X; A and H* (X; A will denote as usual the homology
and cohomology of X with coefficients in the bundle of coefficients associated
with the Z-module A.

Suppose A c X and B c Y are subspaces such that

A cXcXuCA and B Y YuCB

are confibrations (this assumption holds for all inclusions throughout). Then
if f A -- B is a map, X 0 u] Y X I will denote, by abuse of language, the
space X X 0 u Y X 1 modulo the identification (x, 0) (f (x), 1 for x e A.
If CA is the cone over A, then X X 0 ul CA X I will be written X u CA, by
abuse of notation. Then the suspension of X will be

SX CX u CX CX X O ul CX X 1.

If f is a homeomorphism of A onto B, we have the transposition homeo-
morphism

T" X 0uY 1--Y 0u-X 1

defined by T (x, 0) (x, 1 and T (y, 1) (y, 0) on the representative level.
Denote the ith stable homotopy group of X by r (X). Then

T, r (SX -- r (SX
is sign reversal.

II. /-cobordism
Let be the canonical line bundle on infinite real projective space. Let

k be the k-fold Whitney sum of with itself, and let T (k) be the Thorn space
of k. Then the elements of+(T (k)) may be interpreted as -cobordism
classes, where a/-manifold is u pair (M, fi;) with

v (M ), ff ,-

an isotopy class of bundle maps, and m is large.
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.8 (T (k)) where and/c are even. We seek a ’canonical’Consider
representative of a. To begin with, let --, P be the (l q- 1)-dimensional
reduction of (2() 1 k), where is the canonical line bundle over
Pc. Let E (7) be its associated cell bundle and S (7) its associated sphere
bundle. Then there is an isotopy class fi;0 of bundle maps v(E (7))’ -->

k - e-. We denote its restriction to v(S ()) also by $0. Then let
(M, ) be a representative of a. Since P is connected, we may carry out 0-
modifications of (M, fi) in order to assume M is connected. If the maps
M -- P covered by Y does not pull back non-trivially the generator of
H (P Z.), we may replace (M, fi) by (M, .if) - (S (7), fi;0) before the 0-
modifications, without changing a. Now a series of 1-modifications kill off
the kernel of (M) --+ r (P) Z, so we may assume that map to be an iso-
morphism. Then since r (P) 0 for p > 1, we may perform p-modifications
to insure that v(M) r (P) for all i < l.

Finally, we arrive at a representative (M, if) of a such that (M) - r(P)
for i 1. If

is the double cover of M, we have H0 (3r) H. (_71) Z and H, (21) free and
H(3r) 0 otherwise. Let p --, be the transposition. Then p,
turns H,() into a graded Z-mode, and the intersection pairing
H() X H() Z is a totally orthogonal, symmetric pairing invariant
under p,.

LEMMA 1 (Wall). If x H() is such that x. x 0 and x.px O, then
h-there is an l-modificati of (M, if) killing . (x), where h is the Hurewicz

isomorphism.

LEMMX 2. Suppose x as in Lemma 1, and there is z H() such that
x.z 1, z.pz O. Let (M, if’) be the result of an l-modification killing
.h- (x). Then (M’) (P) for i < and H() is isomorphic to
er x n ker px)/(Zx Zpx).

Proof. There will be two disjoint spheres S, S interchanged by p,
and two disjoint spheres S-, S- ’ interchanged by p so that

Si S and S- S- are deomohic as Z spaces. More-
over, the following sequences are exact sequences of Z-modules

O H (- H ( x px U ( - O

0 H+(’, ’-) x ,, H(’-) Ht(YI’) O,

which proves the lemma.

THEOREM 2. Suppose k and are even and (M, is a closed k-manifold of
dimensi 2l such that r (M (P for i < l. Then if rank (M) > 2,
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there is a k-cobordism from (M, to (M’, ’ such that r (M’ (P and
rank (M’) < rank r (M).

Proof. Let

be the double cover of M. Then r, (M) H(3) which is free of finite rank.
Let p 2 --. 2k be the covering transformation. Let

F+ [x.H(3l) px x} and F_ [x.H(U) px -x].

ThenH,(_7) (R) Q (r+ @ Q) (F_ (R) Q) and
with respect to the intersection pairing. Thus 0 -- 1+
fin grp -- 0 is exact.

Notice that the Lefschetz trace formula requires tr p H,(2t) -2, so
rank I+ r and rank r_ r + 2 for some r. Since 1+ and r_ are each
divisible, they are each a direct summand of H, (2h). We will need some of
H, (M’B) where B is any of the bundles of coefficients Z, Z, Z, Z + Z.

Z We use the exact sequence 0 --, Z -o Z + Z -- Z --* 0 to obtain

-- H, (M; Z.) -- H (21/; Z) H, (M; Z) --, H_x (M; Z,) ....
Thus H(M; Z.) Z. for i < nd H, (M; Z) (r + 2)Z.

Z" We use the exact sequence

2
O---* Z- Z--- Z--- O

as above to obtain

2---, H,(M) H,(M) ---) H,(M; Z) ---, H,_(M) ---,

SO

Ht (M) Ha (M) H,_t (M) Z.,

H(M) H4(M) H_(M) O,

0 (There is no odd torsion.)

" From

we obtain

H(M rZ + Z

2
0--- Z- Z Z--- O,

H,(M; 2) 2 H,(M; 2) -- H,(M; Z) --, H,_x (M; Z) -+

so

H(M;2) 0 for i odd < l, H(M;2) Z for i even < l.

Then use 0 -- 2 -, Z + Z --, Z -, 0 to obtain

-- H(M; 2) -- Hi(-) H,(M) --, H_x(M; 2) --
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from which follows

H+(M) --. H(M; Z) --, H()_r. H,(M) -- H_,(M; 2)
11 11

H-1 (M) 0 0

Since p -1 on C.(M; 2), we have p -1 on Ht(M; 2), so

2) -,

" U
r_

Let F be an abelian group such that 1"_ $ F H(//). Then

O --, H(M 2 ) r_ F --, rZ + Z O.

It follows that 0 -, H(M;2) r_ --, Z2 0 and Ht (M;2) (r + 2)Z.
Finally, using 0 --+ Z -- Z A- Z --. 2 -- 0, we obtain

0 -. Ht+I(M; 2) --, H(M) --, H() --+ H(M; 2) -- Ht_I(M) -- 0

H- (M;2) Z

Z

Since C, (M) --* C+, (21), we have Ht (M) --* 1"+, and finally 0 --,Z
r+ --, 0.

Besides the groups and maps above, we will need some information on the
intersection pairing in H(). The intersection of chains in regular position
in C, (_71/) defines the intersection of chains in regular position in C, (M) and
C, (M; ) C, (/) (R) z . Since the maps

t+" H(M) --, H:() and t_ H (M; 2) --, H (21/)
are induced on the chain level by x -* x -4- p x and x --* x p x, where
x e C, (l), we find that t+ x. t+ y 2x.y and t_ x. t_ y 2x.y for x, y e Ht(M)
or H(M ).

Since the rational Pontrjagin classes of k are zero, it follows that the index
of M is zero, so there is a basis (x, y) for a free part of H(M) such that
x.x y.y O, x.y . It follows that r is even, say r 2s, and
i 1, ..., s. For each pair we have that t+ of one member is indivisible--
let it always be x. Then t+ x, t+ y, i 1, ..., s, supplies a basis for I’+
with intersection matrix

0 2
2 0

0’ 2
2 0
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Over the rationals, the index of I’+ is then zero, and therefore, so is that of
r_, consequently also that of H (M; ). Let X, be a symplectic basis for
H(M; ). Then

_ , e_ is a family of elements in r_ with intersection
matrix

0
2

0 2
2 0

and such that their span has just two cosets in r_. Let z be in the nontrivial
coset. Then 2z e span t_ , _

so 2z a -4- b (where we ab-
breviate t_ and t_ by , ). We may assume each a, b is 0 or I (by
changing z), and that b+ (the last b) is 1. Then , , ..., ,, , +, z
is a basis for 1"_. Then 2z.,+ +.+ 2, so z.+ 1. Replacing z
with z ( (z, z)/z),+ we obtain a new basis for r_, with intersection matrix

"0 2 al"
0 2 bl

_ax b as

2 as
0 b,

0 1
b, 1 0

Then, replacing with (. z),+l and with (. z);+i, we finally
obtain a basis x, y with intersection matrix

2

0 1

LetA= (x,+,y,+) Thendet(. IA)= 1,index(. [A) 0, tr,(p I,A) 0
and x, yl, ..., x,, y, span A+ r+ while x, y,... x,, y,, span
A_ (= y e A py --y} ). Together these span A+ A_, and have inter-
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section matrix

To determine A/A+ A_, we consider the coefficient sequence

0-z
It leads to

0 -o H,+I(M; Z) -- H,(M) H,(M; 2) + - H(M)
--. H, (M; Z.) --* H,_I (M) H,_I (M; 2

0
that is

0 Z Z -t- 2sZ T (2s - 2)Z --* (4s -t- 2)Z --* (2s + 2)Z --. Z. -- 0

so, since the image of + e_ is A+ A_ (s8+1, y,+l),

0-- A+ A_-- A-- 2sZ- 0
is exact.
The next step is to make surgeries allowing us to assume that U, the maxi-

mal singular submodule of A containing (xl, ..., xs, xl, ..., x,) is actually
spanned by these elements. First notice that z e U if and only if
2z a x -t- b x because in general 2z e A+ A_, and y, y cannot be
in U, nor can any minimal linear combination involving them be in U. Then
U is invariant under p. Next, suppose that there is some z not in
span (xl, ..., x,). We may assume z to be indivisible. Let A be the smallest
divisible module containing z and pz. Then A {a mo az bpz} so A
is invariant under p, and, since z is indivisible, A has a basis z, u. Let the
matrix with respect to this basis of p A be

Then

[a+ bc (a +d)b] [10 01](a-t-- d)c d + bc

so ifa-d0thenb=c=0, anda=d= +/-1. Consequently, AcA+nU
or A c A_ n U and then z e A span (xl, ..., x), which is a contradiction.
Thusd -aandas+bc 1. Then
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has an eigenvalue 1, and A has another basis (v, w) with respect to which the
matrix of p lA is

That is, pv -v andpw by w. Say.biseven, =2e. Then replace
(v, w) by (v, w Zr- ev). That is a new basis with respect to which p A has
matrix

odd, 2e + 1. Then the basis (v, w + ev) realizes the matrix of p A as

Thus there is some basis (v, w) with respect to which p A has matrix

Since A is a direct summand of A, there exists A such that . v 1, . w 0.
Thenw.w O,w.pw 0, w. 0, pw. (w-4-v). 1, andLemma2
allows us to surger w, lowering the rank of H(/) by four. Eventually, this
reduction will be impossible, so we may assume U span (x, ..., x,).

If U, the maximal singular submodule containing span (x, ..., x,) is
span (x, ..., x,) itself, then we may complete the argument. Since U is a
direct summand of h, we may find , ..., ,, , ..., such that. . . .; .x .x 0 for all i, j and .x .x ,..
Then x, x’, , ’ form a basis for A since the intersection matrix for this set is

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

Then

so xj.v O. On the other hand, pv -v so 2v aj.x + , b y.
Then x.v 0 implies 2v e span (x, x,) span (xl, x,), so v e U.
We have then v c. x and similarly v d x. The basis , may
be altered to another basis by adding linear combinations of x, x to each of its
elements. The specific alteration we make is

,----> A- E [c/2]x; and ; ; E [c/2]x.

This particular change of basis has the property that the intersection matrix
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with respect to the new basis is still

0 0 1 0

0 0
1 0

Defining v, v in terms of the new basis, we find that v c] xi where each
ci is 0 or 1. Thus v itself is 0 or indivisible. Suppose that some v, say
is 0. Then A/A+ A_ has at most 2s 1 generators, so it cannot be 2sZ2.
Thus each v, in particular vl, is non-.ero and indivisible.
Now, we wish to surger . That 1" 1 0 is given, and from that follow

0 1" 1 PI" PI (1 -- Vl)" (1 "- Vl) 2 (I’Vl) -" (VI’Vl).

But v ci# x# so v.v O, and so (1" v) 0. But l.p .1 -t- " v
so . pl 0 too. The fact that Vl is indivisible means that there is some
such that ’.Vl 1. Since v.vl O, we may assume ’.f 0. Let

" f (" 1)Xl. Then ". 1 0and f’.v 1 since Vl.Xl O. In con-
clusion, we have 1. 1 0, 1"p 1, 1" " 0, pl"" ’"v 1 and we may
surger 1, reducing the rank of H(3) by 4.

COROLLARY. Each k-cobordism class a e r+ (T() ), for and even, is
represented by a k-manifold (M, ) such that ri(M) r(P) for i < and
H(3vl) Z + Z.

Ill. Projective spaces in M

Suppose r is a 2/-dimensional closed, simply-c0nnected manifold, even,
such that H0 (21) H(]1/) Z, H (_7/) 0 and H, () 0 otherwise.
Let p ] --* be an orientation-preserving free action of Z2 on/T, and let M
be the quotient of by that action, and r

_
--+ M the projection. Using

obstruction theory and Haefliger’s theorem, we may obtain an embedding
P c M such that r (P) r (M). This supplies an embedding S ] of
an invariant sphere, on which p is the antipodal action. Let a e H(3) be the
class represented by Sl.
LEMMA 3. A class e H (3) is represented by an invariant sphere on which

p is the antipodal action if and only if a e (1 p.)Hz().

Proof. Let f S c

_
be the embedding representing a, and g S

that representing . By obstruction theory on the associated embeddings
Pz c M, we may assume that f[ S- g S-. Let E+ and E_ be simplicial
chains representing the fundamental classes of the upper and lower hemi-
spheres, and S- a suitable simplicial chain representing the fundamental
class of Sl-. Then we may assume (by suitably choosing the simplicial sub-
division of Sz) that OE+ S- -OE_ and (-1) E+ -E_. Then
a q- is represented by

(f -t- g)(E+ -I- E_) (f E+ -i- g E_) -[- (]a E_ -[-- E+) x p x,
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where x is the cycle] E+ - E_. Thusa + e (1 p.)H(). Butif
is represented as above, so is -, and so a e (1 p.)H(). For the
converse, let f S M be an invariant embedding.

Choose basepoints in , M, S, P, S- andP so that this commutative
diagram preserves basepoints"

P_ P M

Choose y e H() and let e () be such that the HureMcz image of
is y. Using classical obstruction theory techniques, we may find g P M
such that g ]P_ f P_, and such that e (M) v() is represented

by the (basepoint-preseing) map S M,defined by f p on E+, the upper
hemisphere of S, and g p on E_, the lower hemisphere of S. Once again,
let E+ and E_ also denote the appropriate simplicial chains,] and the covering
maps for f and g. Then (] + ) (E+ + E_) x p x as before, where x
is the cochain] E+ W E_. But the (basepoint-preserng) map

S .
defined by ] on E+ and on E_ covers h and so represents . Also, its Hure-
wicz image is clearly the class x, so if is the Hurewicz image of the class of
,wehave a - [ y- py. Sincefl P_I glP_l,wehaveg. vI(P)-
r (M), so by Haefliger’s theorem we may homotope (preserving the basepoint
g to an embedding g’, Then the covering map ’ of g’ embeds S as a sphere
on which p is antipodal, and which represents /. Then replacing with

o (-1) we obtain a class ’, represented by an invariant sphere, such that- ’ y- py,Q.E.D.
Now we further restrict H(_) to be Z W Z and _r to be s-parallelizable.

In that case there is a base for H (r), say u and v such that u.u v.v 0
and u.v v.u 1. Since p. has order 2 and preserves intersection numbers,
the matrix of p. with respect to this basis must have the form

01+/-1
or

0 +/-1

The Lefschetz trace theorem imposes the condition that the trace is -2, so
p. is 1. Thus, in this case Lemma 1 states that is represented by an anti-
podal embedded sphere if and only if a e 2H().

Recall the fact (from the proof of Theorem 1) that H (M; Z2) Z2 for
0 _< i _< 21 and i l, and H (M; Z) Z W Z. Let x be the generator of

H (M; Z) be suchHI(M;Z2) Then it is easy to see thatx 0 Letye
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that x, y span H (M; Z). If xTM O, then xZ 0 by duality so

Sq H-1 (M; Z.) --. H (M; Z)

is non-trivial, and M is non-orientable. But M is orientable, so x+ O.
Then

H*(M" Z) Z[x" xTM 0] (R) E(y),

which enables us to obtain

LEMMA 4. Let ] S be an equivariant embedding of a sphere with re-
spect to --1 on S and p on i. Then/. H(S; Z) H(/; Z) isnon-zero.

Proof. Since Z is a field, it suffices to show that

]* H (/]/, Z) --, H (S; Z)
is non-zero. Let f P M be the map covered by ]. Then we have the
following commutative diagram (obtained by using the short exact sequence
of coefficient bundles over M and P 0 -- Z ]’ ’ Z -- Z -- 0) in which
Z coefficients are assumed"

0 H+(M)

’(P) f* -H(M)

H(s) ... -HI(1V) Z.-Z,

I-I (P)

Since p* // (P) -- H (S) is ero, we have H (Sl) H (P). On the other
hand, in the right-hand sequence is multiplication by x, so (x) 0, and

H . f*there is z e () carried into But 0 so/*z O.
Thus we have

POPOSTION 1. There is an embedding f S equivariant with respect
to the antipodal action on S and p on Jl ,such that ] represents a generator of
H (/I with Z coecients.
Now consider M f(PI). It is covered by _7 ](S). Since ](S)

represents a generator of H (_), the Z-cohomology of/] ](S) is that of
an/-sphere. As before, obstruction theory techniques and Haefliger’s theorem
combine to supply an embedding g P M f(P) such that S
2tr ] (S) represents a generator. It is easy to check that g is a homo-
topy equivalence. Since the Whitehead group of Z is zero, it follows that



172 R. ELLS

there is a diffeomorphism E(’) ---. M f(P;), where is the normal bundle of
g (P t) in M and E (3’) its total space. Then the Thom space of 7 is homeo-
morphic to M/f(P).

IV. The normal bundle of M

We continue to assume, as above, that H0 (_71/) Ht (_79/) Z, H, (/)
Z -t- Z, H(/) 0 otherwise, and that is s-parallelizable. We will say
such manifolds M are reduced. Then f, g P c M will be the embeddings
constructed in Section III, and will be the canonical line bundle over M.
There is a unique (mod 2 even integer k such that f*v (M) g*v (M) is
stably equivalent to k, where t is the canonical line bundle over P we will
say that k is the type of M. That such a k is well-defined is a consequence of
the following lemma:

LEMMA 5. Suppose M is reduced.
(i) If f, h P--- M are such that

h, (M)

then f*v(M) h*v(M), where v(M) e KO(M) is the class of the stable normal
bundle.

(ii) M is diffeomorphic to E (’ u E (’ where " is an 1-dimensional reduc-
tion of (2() 1 k)l and b is a diffeomorphism S (.) S (.). If
o (. 0 then the twisted Euler class of " is a generator. If to (. 0 then
the bundle S (’ P admits a cross section.

Proof. Let P -* Pt X/S be obtained by collapsing the boundary of an
/-cell in Pt. Then if f, h are maps as in i), there is a map/ S --+ M such
that (f /) o 5 is homotopic to h. Thus

h*(v(M)) *(f*(v(M)) f*v(M)).
But fetors through .71, nd v() O, so/*v (M) O, nd

h* (v(M) ) o, (f* (v(M) ) O) (v(M) ).

(ii) It follows immediately from (i) that the type k of M is well-defined
mod 2(). Let f and g be the disjoint embeddings P c M. Let

"’ f*v (f(P ) M) and -" g*v (g (P ) M )

Then since k is well-defined, ,’ and ," are /-dimensional reductions of
(2 1 k)t. Let ], 0 S - be the coverings of f, g and let
r S -* Pt be the projection. Then if x () is the (twisted) Euler class of the
bundle , we have

r*(x(y’)) X(v(/(P,) :ii)) -4-](S’)’](S) =t=2 or 0

r* (x (") x (v (0 (Pt) ) ) -4-] (St) .] (S’) d= 2 or 0,
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with both zero or both non-zero: Also, v* H (P,:Z) - H (S*:Z) carries
the generator of HZ(Pc:Z) into twice that of H*(S:Z). Thus x(%") and
x(%’") both generate H (Pc:Z) or are both zero. Since the Euler class clas-
sifie stably equivalent/-dimensional bundles over Pz, we have that E (%").
and E (%’") are isomorphic to E (%’) where %, is a fixed/-dimensional reduction of
(2() 1 k)c with Euler class a generator or zero. Since is the
mod 2 reduction of the Euler class, we have the first case if

and the second case otherwise. Now (ii) follows immediately, using the fact
that there are no non-trivial h-cobordisms when the fundamental group is
Z.
Now we try to determine v(M). Let q M -- M/g(P) be the collapsing

map. From the remarks above it follows that there is a vector bundle A
over M/g (Pc) such that/ q*a is stably equivalent to the normal bundle of
M. That a is stably unique follows from

LEMMA 6.

is exact.

$

KO-1 (M ) :-:g KO-1 (P ) -- 0

Since Pc --* P factors via g through M, it is enough to prove that

g(-1 (P) --* K0- (Pc) --* 0

is exact for large r. This fact is an immediate corollary of Adams’ computa-
tion of K( (P).

In what follows, we will need L,, the multiplicative series determining the
index. Thus if M is a closed oriented manifold of dimension 4r and v (M) is
its stable normal bundle, then index (M) L,(p (v(M)))[M]. If a is any
bundle over M, define index (a) L(p(a))[M]. Notice that if p(/) 1,
then index (a A- f) index (a).
Now we recall a suggestive theorem"

TrEORE 3 (Wall). Let M be a reduced manifold of type k, with
v (M)’ k -4- "- for some n > 21 -4- k -4- 3. Let be an (n k)-bundle
over M such that index () 0 and such that is fiber-homotopically trivial.
Then there is a reduced manifold M’ and a homotopy equivalence h M’ --, M
such that v (M h* (k A- ).

Proof. Since is fiber-homotopically trivial, the Thorn space T (k + ) is
reducible. Let S"+t -- T (k ) be a reducing map. By taking it trans-
verse regular along M, we obtain a closed manifold M’ together with a map
h M’ -- M of degree I such that v (M’) h* (k$ + ) k’ -4- h*. Since
v (M) k A- .-, we have index (M) 0. On the other hand,

index (M’) index (k’ -4- h*f) index h* index (/) 0.
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It follows then from Wall [8] that we may assume h to be a homotopy equiva-
ence. Naturally, we would like the converse to Theorem 3 to be true.
Since we have

0 index M index (k W ) index

we will always have index (/) 0. However, there is an involution of a
homotopy S S such that the quotient manifold M has not fiber homo-
topically trivial [10]. Then we may ask the weaker question, whether any
q a with index q a 0 may appear. We do not know the answer to this
question. In connection with this question, it may be shown that if/ q*
is fiber homotopicaily trivial, then so is .

V. The group
In this section we generalize the h-cobordism groups Fz. We need a closed

manifold P of dimensional l’ and an/-plane bundle over P such that
is orientable. Pick an orientation of I’ I.

Define a class i(,) by specifying that its members are the objects
A (M (A), + (A),

_
(A) ) consisting of

(1) an oriented manifold M (A)
(2) an orientation-preserving embedding e+ (A) Y -- M (A)
(3) an orientation-reversing embedding e_ (A) Y "-+ M (A)

such that
e+(A)(I ’ I) M(A) e_(A)(P) and e-(A)(I y I) M(A) +(A)(P).

If A, B e (,), define A o B e i (,) as follows. M (A o B) is obtained from

M (A) + (A) (P) u M (B)
_
(B) (P)

by identifying + (A)(tx) with
_

(B)(x/t), where x e S () and > 0. The
orientation of M (A o B) is that it inherits from M (A) t+ (A)(P). The
embedding

_
(A o B) is the composition

I1 _(A); M(A) e+(A)(P) --+ M(A o B).
The embedding e+ (A o B) is the composition

I’l +(.B)) M(B) _(B)(P) ---+ M(A o B).
Then it is easy to check that there is an orientation-preserving diffeomorphism

, M(A o B) o C) o M(A o (B o C))
such thatCe_(AoB) oC) _(Ao (BoC))ando +((Ao B) oC)
+(A o (B o C)).
We reserve the symbol 1 for the element of 1 (,) given byM (1) S( X )

las a manifold,
1 t/4(1)(tx)

1 -t-" t*/4
x, --1 -t- t/4

for x e S(), > 0

1 t*/4
1 -t- t/4 X’l -b t/4"
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(These are stereographic projections.) Requiring +(1) to be orientation-
preserving determines the orientation of M (1). Then it is easy to check that
there is an orientation-preserving diffeomorphism
such that

_
(A o 1

_
(A) and o + (A o 1 ) e+ (A). There also is an

orientation-preserving diffeomorphism M (1 o A -. M (A) such that the
corresponding formulas hold. Define A- e (/) by

A- (-i (A), + (A-),
_
(A-with + (A-)

_
(A) and e_ (A-) + (A).

In order to have an easy proof that A o A- is somehow equivalent to 1, we
add one condition to the objects of ()"

(4) There is an orientation-preserving diffeomorphism
S () such that

_
(A) (tx) + (A) ( (1/t)b (A) (x)) for > 0 and x e S (/).

Now it is immediate that there is an orientation-preserving diffeomorphism

" M (A o A- --. M (1) such that o
_
(A o A- _

(1) and + (A o A-+ (1). Without condition (4), we would need a suitable kind of h-co-
bordism in place of an orientation preserving diffeomorphism . For our
purpose however, we may settle for i () whose objects satisfy (1), (2), (3),
and (4). Now introduce an equivalence relation in I (,) by setting A B
if and only if there is an orientation-preserving diffeomorphism
M (B) such that o

_
(A) + (B) and o + (A) + (B). Then the equiva-

lence classes form a set 1 () (by abuse of language) which inherits a group
structure from the operation o on ().

If P P and , is the bundle of Section 3, we wish to determine the structure
of r (,) more precisely. We begin with the group ]0 (T (,)) K( (T (/) )
consisting of all reduced bundles with index zero. Then we define a map. () _. ]0 (T (,)) by observing that the map + (A) induces a unique
homotopy class of homotopy equivalences

M(A)/_(P) q T(’).
]c (T (/) such that ] @ q*Then we have seen that there is a unique

represents the reduced stable normal bundle ofM (A). Set (A) a. Then
we have seen that a is onto, and it is easy to see that it factors through 1 (,)
to define a I (,) -+ ]c (T () ).

LEMMA 7. a is a homomorphism.

Proof. It is enough to show that (AB r (A ) - r (B ).
A e (,), we have maps

T (’ ) : M (A /: (E (’ ) ) --> M (A ).

For any

Since the maps +,
_

induced by e+ and
_

are homotopy equivalences, we may
compose their homotopy inverses with M (A) -. M(A)/ (E (,) to obtain
q M(A) --+ T (). Notice that q q+ above.

Writing M (A) E () (J () E (,), we may assume (A) (*) *. Let p
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be an arc in E (,) from P to e S (,). Then we may apply Theorem 1 to
A P u p (I), X E (,), Y S () and f (A) to obtain an exact se-
quence (noting j q+ and j’ q_)

KO (M (A ,q+ + q- KO T( + KO T( gO (S (S ( ).

Since each of q and q- are monomohisms, and the image of the right hand,
map is in the diagonal, it follows that q -q-.
Now consider M (AB). A straightforward geometric construction supplies

a map
p M(AB) M(A) ae M(B)

(where the identifying map is
_
(B)+ (A)-l + (A)(P)) such that, up to

homotopy, q_ (A B) q_ (A) o p, and such that

v (M (AB)) k + p* (q+ (A)*. (A) + q+ (B)*a (B))
k, + p* (q+ (A)*. (A) q_ (B)*a (B))
k + q+(AB)*a(A) q_(AB)*.(B)

kt + q+AB)*a(A) + q+(AB)a(B)

k + q+(AB)* ((A) + a(B)),

so a(AB) a(A) + a(B).
Thus we have an exact sequence

1--KF(/) a; k0

of nonabelian groups, and a description of k in terms of known invariants.
Next, we seek a description of K. For this description we need a J-homo-
morphism

J K0-1 (S (/+e)) -- r+k (T (k)).

To define J as a map, recall that the elements of K6-1 (S (, + s)) cor-
responds to homotopy classes of maps S( + e) ----> SO (n) for n large. Select
a fixed isotopy class of bundle maps $0 v (S ( + e) ) -- k + e-k, which ex-
tends to v (E ( + e)). Since there is a map E( + e) --* S ( + e) such
that E (, + e) --. S (, + e) c E (, + e) is homotopic to the identity, we
have

gO- (Pz) KO- (E (.), + e) c KO- (S (, + e) ),

so there will be exactly two classes--select one and stick to it. Then if

a e K6- (S (’ + e))

corresponds to S (, + e) SO (n ), let J (a) be the class of
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represented by

It is straightforward to check that J is then a homomorphism.
Now let r+ T(k) --* A --* 0 be the cokemel of J. Define a map

K

by sending A ), (class of (M (A), ) where is any bundle isotopy class of
bundle maps v (M (A)) --,/ + e- for n large--such an fl; exists because
A e K ker a. It is straightforward to check that a is well-defined, but we
still have to check that is a homomorphism.
Let X (Pz) c M (A). Then there are two bundle homotopy classes of maps

n--kv(M)’ t(Pz) -, k 4" e
covering

Pl t2 M(A) ---. P

because K0-1 (Pz) Z2. But KO-I(P) KO- (Pz) 0 is exact, and it
factors through K0- (M (A) ), so both bundle homotopy classes are restrictions
of bundle homotopy classes v (M (A)) --. k + e-. Consequently, if
"v(M (B)) --* k + e- is a bundle homotopy class, then there exist

" v(M(A))-k+e- and " v(M(A.B))-k+e-
so that (M (A. B), ) is k-cobordant to (M (A), if) (M (B), 9). Thus
,(A.B) q,(A ) +

For the next step, set G {A M (A) S( + e)}. Then G is a normal
subgroup of I’ (,), and in fact, a subgroup of K since a (A) 0 for A e G.
Even more is true" G is a subgroup of ker . It will turn out that G is very
nearly the same group as ker 9.

THEOREM 4. If is even, but not of the form 2 2 and >_ 8, then
[ker 9" G] _< 2.

Proof. Suppose 9(A) 0. Then, setting M M (A), there exists a
manifold E, together with v (E) --* k + e- such that 2E M. After
a sequence of surgeries, we may assume r(E) r(P) for i < 1.

We wish to factor E -- P through P. It factors through Pa. by
Poincar6 duality

H(E) Ht_(:, M),
and

H2z+t_ (M) H+_t(E) -* H+t_- (E, M) --* Hv_. (M) Hv_i (E)

for2l+l-j<l,i.e.,l+ 1 <j. ThusH(E;Z,) =Oforj>l+ landp
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any prime (even or odd). Thus also Hj(E;B) 0 for j > -t- 1 and B any
finite Z-module over Z. The fiber F of P+I -- P+I is /-connected,
+1 (F) Z, and i(F) is finite for W 1 < i < 21. The pullback H -- Eof the fibration P+ --. P.+ under E --* P+ has fiber F. The bundle of
coefficients (+1 (F))- is Z with the trivial Z2 action because Z2 acts trivially
on rz+ (Pz+). Consequently, the various obstructions to lifting E --* P+ to
E -P+ are zero, and we may factor E --. P through P+I.

Let g E -- P+ be the map found in that way. Assume g is regular at
x e P+ and consider the framed submanifold g-(x) E. Since
rl (g-1 (x)) -- 0, we know that v (E) g-1 (x) is trivial and index g- (x) 0
if - 0 mod 4. For --- 2 mod 4, W. Browder [11] has shown that
Arf(g-1 (x)) 0 provided _> 8 and 2 2 for all j. Consequently, we
may kill the lower and middle homotopy groups of g- (x) by a sequence of
ambient framed modifications in E.
We would like to realize these modifications through homotopies of g.

We do so by regarding 1 X g and 1 X as two embeddings of E in E P.
Then since i (E) 0 for 1 < i < and (g-1 (x)) -- r (E) is the zero map,
and since the modifications called for have degree _< 1/2 W 1, the method of
[9] applies to supply a global isotopy modulo boundaries 9 E P -- E X Pso that 9 o (1 g) is transverse to E ., and the intersection of
ol (1 X g) (E) n (E is 2, the homotopy/-sphere obtained from g- (x)
by applying the foregoing modifications. Then if p E X P --* P is the
natural projection, p o (1 g) is a homotopy from g to g’, also regular at x,
with (g’)-I (x) a homotopy/-sphere. Thus we may as well assume g-1 (x)
a homotopy/-sphere. Let V be a tubular neighborhood of 2 in E. Then the
framing provides a diffeomorphism V 2 X D+. But 2 X D+1 S D+1.
To perform surgery on S X 0, embed (E, M) (R+1++, R++) where r is
large. We have

where 9 is some pullback of 9 v (E) -- k X . Let D+ Rt+++ be a
disc embedded so that is meets E only along Sz, with outward normal el,
where e is the field defined by (e) last vector of r. Then 9 supplies a
bundle map

9’ v(E1) [S-- k+ + (r 1)lx R+-.
If 9’ is regarded as a field of frames over S in v (D+) D+1 X R++, it is a
map S -- V+_,++, which is /-connected. Thus it extends over D+1.
That is, the field 9’ extends to a field 9’ of (/ W r 1)-frames in v (D+1).
Then thickening 9n and rounding corners in the usual way provides an ambient
kz+l-cobordism from (E, 9) to (E, 9) such that E1 --+ P+ misses x.

Thus, we may assume that E --. P factors through P. The surgery above
may have introduced a non-trivial H_ (/), but since v_ (P) 0, that may
be surgered out.
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Recapitulating, if ff v (M) -- k -t- - represents zero, then there is

v (E) --, + -such that

(1) OE=M
(2) 9 v (M) is curried into ff under k W e- ]c -t- e-
(3) r(E) r(Pt) for i < l.

Now there are two cases (we wish to assume rank r, (E) is odd).

(I) Either rank rt (E) is odd, or there exists a closed k$,-manifold (X, C)
of dimension 21 -t- 1 such that r(X) ri(P,) for i < and rank rt(X) is
even.

(II) Case (I) is false.

Assume Case (I). If r, (E) has even rank, replace E by the connected sum
E g X. The pullback/i % X of the double cover of Pt has HI(E : X) Z.
A suitable 1-modification of E X will kill this Z and introduce one in H2.
After a number of such modifications, we arrive at E1 satisfying (1), (2), (3)
with rank r, (E) odd.
We are now ready to apply Wall’s theorem. For the Poincar manifold in

his hypothesis, we use the pair (ffr, M) where 9 is the mapping cylinder of
[M M--P,

Claim. (9, M) is an orientable Poincar manifold.
Proof of Claim. Let be the non-zero class of H (P). Then

/(P, pt.) Z:[y]/y(/)+ 0

where the overbar indicates the positive degree part.

is exact.
Hl (M).

Also,

H*0 -- H* (P) (M)

Let i" be the non-zero class in H+ (M) and let be a generator of
Let 6 H* (M) -- H*+ (, M). Then we have

Hi(,M) 0fori_< landforiodd < 21-t- 1,

6t generates H+ (ffr, M) Z,

() generates H++ (ffr, M) Z.

Let v generate H+(ffr, M) so that/tt.v 1.
and v (y) 0 (v ’) generator of

Then Ov generates H2 (M)

Hu--(M) -,,> H__(P).

Thus, (ffr, M) is Poincar manifold. Let c M I --, I be a collar
neighborhood with c (x, 0) x, let E’ E c (M (0, 1 ), and let /" E’ --* E
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be a diffeomorphism such that (c (x, 1) x. Define t E --. by

t(x) =((x))ePcforxE’ and (c(x,t)) [t,(x)]e.

Then (E, M) (, M) is the identity on M and it is a map of degree 1 of
Poincar4 spaces. Since P is a homotopy equivalence, we may take
k to be a bundle over , which pulls back to the stable normal bundle of
E. Stating Theorem 6.5 of [8] in the above notation, we have

THEOREM (Wall). If ra kernel (H(, ) H(,) is even, th
there exist g-surgeries of 1-spheres in int (E modifying to a homotopy equiva-
lence.

Sce -surgeries may be taken to be k-surgeries, this theory tells us that
we may assume that is a homotopy equivalence provided the rank of the
kernel in question is even, and this is what happens in Case I.
On the covering space level we have

0 H+() H+(, ) H() H() H(,) 0

Z+Z
from which we may conclude that rank H(,) raH() 1 so that
it is even. On the other hand, the same exact sequence holds with ’ in
place of , so raH(,) rank H() 1 1 1 0. Thus, the
ra of the kernel in question is that of H(, ), which is even.

Thus, we may assume that P E is a homotopy equivalence. A tubular
neighborhood ofPinE may be ten to beE( + e). ThenE- intE( + )
is an h-cobordism from S( + ) to M. Since the Whitehead group of Z is
zero, that h-cobordism is trivial. In Case II, we have that ra v(E) is
even.

(1) Suppose that is a monomorphism. Then the manifold M must be
S( + e). Suppose extends to

v(E,) g’

where vi(E’) (P) for i < and rank (E’) is odd. Then we may glue
(, 9) and (E’, 9’) Mong (M, if) to obtain a k-manifold X. On the covering
space level,

0 H,+,() H+,(’) H,+,(2) H(S X S) H,() $

H,(2) O.
As in Case 1,

rank H+I (2) rank H(),
rank Hz+l (J) rank H (/) 1,

rank H+I (E’) rank H (E’) 1,
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and H(S X St) (R) Q---+ H() (R) Q, H(’) (R) Q have the same kernel, of
rank 1, so rank H(.) is even, which contradicts the assumption that we are
in Case II. Thus $ does not extend to E’ as above, so $ does not extend to
E (yk X e), and so ker J # 0.

(2) Suppose(A) (B) 0whereA # landB 1.
Let (E (A), (A) ) and (E (B), 9 (G)) be k-manifolds with

r,(E(A)) ’(P) and r(E(B)) ,- r(P)
for i < and both ranks r, (E (A) and r, (E (B)) even, and OE (A) M (A)
and OE (B M (B ).
We have P, M (B) --+ E (B)+ P, homotopic to the identity so that

r(P,) ri(P,) for i < l, so K(-1 (P,) ’ KO(P,) and thus KO-1 (E (B) .--+

KO- (P,) --+ 0 is exact. Thus, 9 (B) may be altered so that we may take the
"connected sum" of E (A) and E (B) along P, c M (A), P c M (B), and so
obtain (E (A. B), aC) so that OE (A. B) M (A. B). On the covering space
level we have,

0---+ H,(S) --+ H,(E(A) ) H,(E(B)) --+ H,(E(A"B) ---+ 0

so rank r,(E (A.B)) is odd and consequently, by an application of Wall’s
theorem as in Case I, we have M(A.B) S (’tk -[- e ).
Thus in Case II there is at most one non-trivial coset of G in ker , so

[ker o:G] _< 2.

VI. (:omplction of KO T(,),))
The purpose of this section is to indicate how K0 (T ()) may be computed.

Recall that , is an/-plane bundle overP such that + k is stably equivalent
to v (P,). Let 2(*) 21 1 k where 2(*) is the order of the generator
of (P). Then

-[-t (2()- l-- 1-- k
SO

and so
S’T(y) T(2(’) l- k- 1)

KO (T (’r) KO (P,+=,/P,+,-I).

Thus we need the groups K0* (P,), and the exact sequence

0 "- I+_.- "-+ KO-X(P+_) -’+ KO*(Pt+./P+-.) "-+ KO*(P+) --’, I+-+0
which holds for > 6 and I,* Im (KO*(P) -+ KO* (P,.)). The groups
KO* (P,.) and I* are known. See for example M. Fujii [11]. The ones we
will need are"

K0-(P,) Z q- Z., r--= 3,7 (8), K0-(P,) Z=, r--- 2,4 (8),

KO-=(P,) Z, r--0,6 (8), K0-a(P’) Z, r-= 1,5 (8),

K(-* (P,) Z (r q- 4) 3, all r,
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K(-(P) Z, r 3,7 (8), KO-o(P) 0, r--- 0,6 (8),
K_-(P,) Z, r-- 2,4 (8), K(-(P,) Z, r---- 1,5 (8),

0, z (r), 7 z (r + 4) 3,

I7= z., I7= O, I7= z,, I7= O, i7= O, I7= o.
Now, inserting these values into the exact sequence above, we obtain

K0 (T ()), which we tabulate as follows:

21 -t- / -- 0 (8):

KO(T(,)) ZWZ, 1-=- 0,2 (8), KO(T(/)) Z, l-- 4,6 (8).

2 + 2 (8):
KO(T(’)) Z.

21+/--- 4 (8):

KO(T(,)) Z+Z, l 0,2 (8), KO(T(,)) Z, l--=4,6 (8).

21+/---- 6 (8):
KO(T(,)) Z.

Returning to the situation of section 4, let M be the quotient of a homotopy
S X S by an involution, and let q M --* T (,) be the collapse. Then it
turned out that there is a unique a KO (T (’)) such that v (M) is stably
k + q*a where/ is the type of the involution. It also turned out that index
(q’a) 0, so index (a) 0. But on T (y), index (a) is simply cP/. (a)[T (y)]
where c 0 and [T (y)] is the generator of H(T (,)). Thus

index KO (T (’ ---+ Z

is a homomorphism in this case. Moreover index is non-zero the free cyclic
summand of KO (T (.)), so a e ker (index) 0 or Z. Thus we obtain two
theorems by computation"

THEOREM 5. The homomorphism a r (’ )/G KO (T (’ of Section 5
may befactored through Z. whereZ KO (T (’ is the unique epimorphism onto
kernel (index).

Notation. From now on we write a I’ (’)/G Z. In the case that
kernel (index) 0, we take a 0.

THEOREM 6. If 4, 6 (8) and M is the quotient of a homotopy S X S by
an involution, then v (M is stably an even multiple of the canonical line bundle.

Remark. This theorem is false for 0 (8).

VII. The classification
Let be even, >_ 8 and not 2 2 for any j.
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Let p S X S 2 -- S X S 2 be n involution nd let M S X S
Zip. Then M is reduced mnifold of some type k, 0 k < 2), k even.
Let be the/-plne bundle overP stably equiwlent to (2) 1 k),
with Euler class generator or ero s the cse my be. Let F (), K, G, , a

nd A hve the sme meaning s in Section 4. Then the elements of the group
r ()/G H re in 1 1 correspondence with the oriented diffeomorphism
classes of reduced mnifolds of type k. Thus, p determines a unique member
of H, which turn determines p up to wek equivalence. Thus the wek
equiwlence classes of volutions of homotopy S X S’s with s bove re
1 1 coespondence with the elements of the graded group {H0, H,
H(_}.

Thus, the object is to compute H in terms of known invrints. Our
’computation’ consists of the following exact sequences

Z

1 K/G r()/G Z,

KO-(S()) J (T()) x
1

1.

Here and denoge ghe homomohisms induced by f and above. hen
ghe faeg hag maps ingo Z follows from heorem of Seegion 6. he faeg
ghag is an epimorphism follows immediagely from heorem 2, and ghe faeg
ghag ghe kernel of is an image of Z follows from heorem 6.
Remark. here appears go be no way ag ghis level of degeegg he elements

of r ()/ which corresponds go involugions of S N S. Nowever, ghe eo-
fibragio T (k 1) Tk( S induces a map

Let A+ (S) be the image of the ordinary J-homomorphism. Then it is
not hrd to see that the elements of K/G corresponding to involutions of
S X S re the elements of - (h (g) ) ).
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