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1. Introduction

In a previous paper of the authors’ [4], the problem of classifying rank 2
H-spaces up to homotopy type was considered. The methods used in that
paper led to the study of CW-complexes of the form X Sq u, e u en+q which
are quasifibrations over S in the sense of Dold-Thom [1], i.e. there exists a
map of pairs

p (X, Sq) (S’, point)

inducing isomorphisms p. r (X, S) --* r (S") for all i.
In [4], our major interest was in the cases q 3 and n 5 or 7; as a by-

product of our main results, the following theorem was obtained.

THEOREM 1.1. If X S u,, e’* uo e’+ quasifibres over S’ with q 3 and
n 5 or 7, then X has the homotopy type of an orthogonal S%bundle over S’.

This theorem does not generalize to other values of q and n; in fact, a specific
counterexample has been given by Sutherland [11] with q 3, n 8. Our
purpose here is to provide a whole family of examples of Sq-quasifibrations over
S which are not homotopy equivalent to orthogonal Sq-bundles over S.
In all of our examples, we will have q 2 and the first attaching map a 0;
the latter implies the existence of a "cross-section" for the quasifibration.

Sutherland constructs his example so that the total space has the homotopy
type of a closed, smooth manifold. He then shows that his example does not
even have the homotopy type of a differentiable S-bundle over S8, i.e. a fibre
bundle over S with fiber S and structural group Diff (S), the group of dif-
feomorphisms of S. In fact, Sutherland observes that results from Cerf’s
thesis can be used to show that any differentiable Sq-bundle over S" must be
fibre homotopy equivalent to an orthogonal Sq-bundle over
Many of the examples we construct also turn out to be homotopy equivalent

to dosed, smooth manifolds so that the above remark applies to these examples.
However, we can even go one step further and assert that none of our examples
has the homotopy type of an S%fibre bundle over Sn, with structural group the
full group of homeomorphisms of the fibre. This is due to the classical fact
that the full group of homeomorphisms of S has the homotopy type of the 3-
dimensional orthogonal group.
One might enquire whether the manifolds we construct here have a reason-

able "geometric" description. We do not attempt to give such a description
for all our examples, but we do succeed in doing this for our lowest dimensional
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example yielding a smooth manifold, a certain S2-quasifibration over S*. To
carry this out, we base ourselves on Wall’s work on 6-manifolds [12].
The rest of the paper is organized as follows. In 2, we construct our ex-

amples and show that they have the purported properties. We also discuss
the relevance of these examples to the phenomena discussed in [3]. Finally,
in 3, we discuss in detail our 6-dimensional example.

2. Construction of the examples
We begin by establishing notation and recalling some needed results. Let

X X Squ.e’ue’+q C.ue"+q, 2

_
q <_ n- 2"

Let a e r. (C., Sq) be the generator which satisfies 0 (a) a, let q e rq (Sq) be
the generator, and let i Sq --> C. and j C. (C. Sq) be the respective in-
clusions. We shall later only be concerned with elements e r.+q_ (C.) for
which j. [a, q], the relative Whitehead product of a and q (see [4]).
Under these circumstances, we have the following result, which is a special
case of a theorem of Sasao [8].

TffEOREM 2.1. If j. [a, eq], the natural collapsing map C --+ S extends
to a map p (X, Sq) -- (S, point) and p is a quasifibration.

As to the homotopy type of X., we have the following elementary result.

THEOREM 2,2. If X, --- X,,, then +/-a’ (+/- 1) o a.

Proof. Let h" X, ---X,,,. Since 2 _< q _< n- 2, it follows by cellular
approximation that we may suppose

h" C,--.C,,, h" SqSq.

It then follows by applying Corollary 7.4 of [2] that there is a homotopy-
commutative diagram

from which the result follows.

Now, if E is the total space of an Sq-bundle over S, then certainly E X,
for some a,/. Moreover, a e rn-1 (Sq) is the characteristic class of the bundle,
that is, the obstruction to a cross-section. Thus the bundle admits a cross-
section if and onlyif a 0. We thus have the following corollary to Theorem
2.2.

COROLLARY 2.3. If X X. with a 0 and if X has the homotopy type of
the total space of an Sq-bundle over S’, then that bundle has a cross-section.
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We wish to apply Theorem 2.1 in the case q 2, a 0. For a 0,
C, Sq /S" and we note that the conditionj,/ [a, q] is equivalent to hav-
ing/ of the form

(2.4) [n, q] + 0, 0 e rn+q-1 (Sq);

we have here identified rn+q-1 (Sq) with its isomorphic image

i, (+_() +_( V ).

We may now state our key technical lemma.

LEMMA 2.5. Let Xo (S k S’) t e’+ with as in (2.4), n >_ 3. Then
Xo is homotopy equivalent to X, iff 0 4-0p. In particular, Xo is homotopy
equivalent to S X S’ iff 0 O.

As a corollary of Lemma 2.5, we have the main theorem.

THEOREM 2.6. If 0 O, n >_ 4, then Xo is an S-quasifibration over S but is
not homotopy equivalent to an S-bundle over S with structural group Top (S),
the group of all self-homeomorphisms of S.
Proof of Theorem 2.6. The first clause of the theorem follows from Theorem

2.1, since n _> 4. We next show that X0 cannot be homotopy equivalent to
(the total space of) an orthogonal S%bundle over S. For let E be such a
space. Then, since E has a cross-section, by Corollary 2.3, it follows that the
structural group of E can be reduced from 03 to 0., 0 being the/-dimensional

orthogonal group. But, since n >_ 3, r_ (0) 0, so that E must be trivial,
i.e. E S X S. It follows that X --_ S S and this contradicts Lemma
2.5, 0 being nonzero. Finally, we recall that, by a classical theorem of H.
Kneser [6], the natural inclusion 03 -- Top (S) is a homotopy equivalence.
This clearly completes the proof of the theorem.

We turn now to Lemmu 2.5.

Proof of Lemma 2.5. We prove that if X0 X,, then 0 +/-0p, the proof
of the converse being quite elementary. Let h Xo ----- Xo,. By cellular ap-
proximation, we may suppose h S /S --- S /S and, as in the proof of
Theorem 2.2, we apply Corollary 7.4 of [2] to infer a homotopy-commutative
diagram

(2.7) "q-l{ {h ’ [’,,, ’2]-t- 0.
S+1 ’) S2V S

Now h must belong to the homotopy class +/- ., +/- -b /where is an arbi-
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trary element of rn (S). Assume first that h {, n + l. Then,

h. {, , + } o ([,, ,,.1 + 0) [,. + , ,] + 0

+ D, d ,
since we hve n 3 so that [, =] 0 by a result of Hilton-Whitehead [5].
We re now forced to tke e + 1 in (2.7) nd obtain 5’ , ’ .

Similarly, if h =, + }, we find h. 5 [- , ] + , so we must
tkee -lndobtin-’ =8. Ifh {-,+},wefind

h, -[,, ] + (-) o 0.

However, (-) o 0 0 since (-=) o y for the Hopf rasp y e m (S).
Thus agsin we must tke e -1 8nd obtsin -0’ O. Finally, with

0’ 0, and the lemmah {-e=, +}wefindh.=[,,=]+0, e +1,
is proved.

We remark before proceeding that this argument is very special to the case
q 2. It would apply with minor modifications to the cases q 3, q 7,
but wod fail entirely for q 4.
We now discuss circumstances in which the spaces Xo are homotopy equiva-

lent to closed, smooth manifolds. Obously, the Xo are Poincar6 Duality
spaces, and are 1-connected. In order to put a manifold structure on Xo,
by the Browder-Novikov Theorem, we must study the Spivak normal spherical
fibration (Xo) of Xo (cf. [10] and determine whether v can be lifted to a
vector bundle over Xo. Now the easiest sufficient condition for v to come from
a vector bundle is simply that v be (fibre homotopy) trivial. This condition,
in turn, is equivalent to having Xo stably reducible, i.e. ([, ,] + 0) e ker Z,

(S+ S+z +(S V ) ++ V
the N-fold iterated suspension, N lrge. As ([e=, e.]) 0, we see that the
stable reducibility of X is equivalent to the stable triviality of . We thus
hve

ToM 2.8. Let 0 e ker +(S) ++ ), n 3, and
supposefurther tha n 4k, k 1, 3. Then Xo has the homoopy type of a closed,
smooh v-manifold 4 dimension n + 2.

Proof. The above discussion shows that the Thorn complex of the trivial
N-dimensional vector bundle over Xo is reducible so that we may apply the
Browder-NovNov procedure. The restrictions on n insure that there are no
middle-dimensional obstructions to surgery. In particular, since the signa-
ture of Xo is always 0, the ease n 4k + 2 presents no difficulty.

Examples where the hypotheses of Theorem 2.8 are satisfied are, of course,
numerous. The lowest dimensional example where Theorem 2.8 applies oc-
curs for n 5, 0 any nonero element of m (S) Z it is well known that
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2 (r (S) 0. There is one S-quasifibration over S (the smallest possible
dimension to which Theorem 2.6 applies) with 0 0, to which Theorem 2.8
does not apply, but which nevertheless has the homotopy type of a closed,
smooth manifold. We state this as

THEOREM 2.9. Let X X, (S / S) uE,.,+ e6, the generator of
(S) Z. Then X has the homotopy type of a closed, smooth 6-manifold.
Of course, such a manifold cannot be stably parallelizable since tt stably

suspends to a nonzero element of the 3-stem. More precise information con-
cerning manifolds realizing X will be given in the next section.

Proof of Theorem 2.9. It suffices, as above, to lift the Spivak fibration (X)
to a vector bundle. More generally, one can show, using known facts about
the homotopy structure of F/O in low dimensions, that such a lifting exists for
any 1-connected, 6-dimensional Poincar! Duality space Y with H (Y; Z.) 0.
For details, see [12].

To conclude this section, we show that the quasifibrations S --. Xe --. S"
furnish further examples of the phenomena discussed in [3].

THEOREM 2.10. Xe and S X S have isomorphic homotopy groups and inte-
gral cohomology rings, but are of different homotopy types if O.

Proof. For the homotopy groups, we look at the exact sequence of the
quasifibration S --. X --. S and use the existence of a cross-section to split
the sequence. For the cohomology structure, we simply compare the cellular
structures of X and S X S.
Of course, a similar statement holds for sphere bundles over spheres with

cross-section. The smallest dimension for which such an example exists is 5;
namely, take the nontrivial SS-bundle over S. Note that the nontrivial S-bundle over S has a different cohomology ring from S X S although its co-
homology groups (as well as its homotopy groups) are isomorphic to those of
S X S. (Recall that for 1-connected 4-manifolds, the homotopy type is com-
pletely determined by the integral cohomology ring structure;see Milnor [7].)

Remarks. (1) Observe that the nontrivial Sq-bundle over S (q _> 2), in
particular, the 5-dimensional example above, fails to be a spin manifold--this
is simply because the nonzero element of r (BOq+) is detected by the second
Stiefel-Whitney class w. For 1-connected, 5-dimensional spin manifolds, it
is known that the diffeomorphism class is completely determined by the second
homology group; cf. Smale [9].

(2) We shall show in 3 that our 6-dimensional examples (see Theorem 2.9)
are all spin manifolds;hence 6 is the minimal dimension for examples exhibiting
the phenomena of Theorem 2.10 in the class of 1-connected spin manifolds.

(3) The 5-dimensional complex Xx (S /S) t,.,+x e5, h the generator
of m (S) Z, is of the type appearing in Theorem 2.1 except that the condi-
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tion n q >_ 2 is not met. It is true, nevertheless, that, the conclusion of
Theorem 2.1 holds for this space, i.e. that X is an S-quasifibration over $3.
It should be noted that Xx cannot be realized by a smooth manifold. Indeed,
the same reasoning as in Lemma 3.1 below would show that any such manifold
would have to be a spin manifold and it would then follow, again using Smale’s
classification [9], that Xx S X S3, violating Lemma 2.5.

3. Geometric description of the complex X.
In [12], Wall gives a classification of closed, 1-connected, torsion-free, 6-

dimensional spin manifolds. If M M is a closed manifold of the homotopy
type of the complex X X of Theorem 2.9, then M is certainly 1-connected
and torsion-free. As we shall now show, M must also be a spin manifold, so
that we may apply Wall’s results in studying M.

LEMM 3.1. The second Stiefel-Whitney class w2 (X) vanishes. Hence, any
manifold M having the homotopy type ofX is a spin manifold.

Proof. We recall that the ith Wu class of X, v v (X), is defined by the
formula

viuu Sq(u), ueH6-(X;Z).
Since Sq H4(X; Z) -- H (X; Z.) is obviously the zero map, it follows that
w. 0. The lemma now follows from the fact that w (X) v (X).

In order to state the main result of this section, we must first recall a few
facts; see [12]. Let C be the group of isotopy classes of Haefliger knots, i.e.
embeddings of S in S, and let FC be the group of isotopy classes of framed
Haefliger knots, i.e. embeddings of S X D in S. There is an obvious exact
sequence

0 ---> (SOs) -* FC --. C 0;

since, by Haefliger’s work, C Z, the sequence splits. Moreover, there is a
preferred splitting, induced by a geometrically defined mapFC -+ r3 (SOa) Z.
Hence, by means of this splitting FC (SOa) C, a framed Haefliger
knot is characterized by a pair (m, n) of integers. We now have

THEOREM 3.2. IfM is a closed manifold having the homotopy type of X, then
M can be obtained from S by performing surgery on a framed Haefliger ]cnot; the

-The proof follows the lines of Sasao’s proof of Theorem 2.1, utilizing the Wang
sequence to show that the "fibre" F of the evident map p Xx -- S is homotopy equiva-
lent to S. The fact that 0 is used essentially. Indeed, this argument provides an
elementary proof of Theorem 2.1, with 2 <_ q _< n 1, without appeal to Sasao’s more
general theorem in the case 0.

This example is due originally to Gitler-Stasheff (The first exotic class of BF, To-
pology, vol. 4 (1965), pp. 257-266). The proof given by Gitler-Stasheff that Xx does not
admit a manifold structure is quite different from ours, and consists of showing that
the first exotic rood 2 class of the Spivak fibration of Xx is non-zero.



NOTE ON QUASIFIBRATIONS AND FIBRE BUNDLES

pair (m, n) characterizing the tnot satisfies" (1) n is odd, (2) m -- 6n 0.
Conversely, any manifold N obtained by surgering out such a knot is homotopy
equivalent to X.
Remark. If we replace the condition "n is odd" by "n is even", we obtain

all closed manifolds realizing S X S4.

Proof of Theorem 3.2. The fact that M comes from surgering out a framed
Haefliger knot follows from Theorem 2 of [12]. The equation m -[- 6n 0
follows from Theorem 4 of [12]. (We use here the fact that the

H(X) (R) H(X) (R) H(X)Z
given by cup product is trivial.) The condition that n is odd will be a conse-
quence of the fact that t(M), the stable tangent bundle of M, is not fibre
homotopy trivial. (See the first sentence following Theorem 2.9). This re-
quires a closer examination of (M). By looking at the K0-exact sequence
associated to the cofibration

S /S --. M --* S6,
we see that IO(M) is isomorphic to [O(S) $ IO(S4). But the RO(S)
component of (M) e/0 (M) is 0 by Lemma 3.1 so that we may identify
t (M) with some multiple, l, of the (Bott) generator t e/0 (S4). Now, by
Theorem 4 of [12], we have

pl (M) 4m,

H (M) Z being the first (integral) Pontryagin class. Hence, sincepl (M) e

p (lt) 2/, we conclude that

2m -12n.

If now n is even, then would be divisible by 24 and this would imply that
t (M) l is fibre homotopy trivial (r Z24).

The converse follows frora Theorem 7 of [12].
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