ASYMPTOTIC DISTRIBUTION OF EIGENVALUES AND EIGEN-
FUNCTIONS OF A GENERAL CLASS OF ELLIPTIC
PSEUDO-DIFFERENTIAL OPERATORS'

BY
Bur Ax Ton

The asymptotic distribution of eigenvalues and eigenfunctions of a class of
elliptic pseudo-differential operators considered recently by Eskin and Visik
[2], was studied by the writerin [6]. The purpose of this paper is to extend
those results to the more general class of elliptic pseudo-differential operators
A of positive order « on a bounded open set 2 of R”.

More specifically, let A be an elliptic operator of positive order o on ©
with symbol A (z, £) and let 4; (2, £) be the symbol of the principal part of A
in a local coordinates system. Suppose that

A; 8) = A7 @7, )A7 (2%, &) forah =0

where A7 is homogeneous of order k in £, k > 0 and independent of 2’, analytic
in Im £, > 0; A7 is homogeneous of order o — % in ¢ with an analytic continua-
tion in Im ¢, < 0.

Let A, be the realization of A as an operator in L*(2) under null “regular”
boundary conditions. If A, is self-adjoint, it is shown that

(i) N@) = 2 1= (21r)'"t“’°‘f f dg dz + o(4"'%)
St 2 JA(=E)<1

~

A (z,8)

(ii) e(z,z,t) = (21r)_"t”/°‘f ldg + o(®); z in Q.
<

@, 1) = Tayi0:@ @) = o™™); z = v.

\j, o; are respectively the eigenvalues and eigenfunctions of 4, .

We shall use the method of Garding [3] as extended by Browder in [1].
The notations and the definitions are essentially those of Eskin and Visik
[2], they are given in Section 1. The asymptotic behavior of the kernel of
(A + tI)™ where m is the smallest positive integer such that ma > n/2.
is studied in Section 2. The results are obtained by an application of the
Hardy-Littlewood Tauberian theorem.

Section 1

Let @ be a bounded open set of R” with a smooth boundary Q. H**(Q),
s > 0, which shall be written as H*(2) for short, denotes the usual Sobolev
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space and H3 () is the space of generalized functions f defined on all of R",
equal to 0 on R"/cl © and coinciding with functions in H* (2) on cl Q.

DeriNition 1. A, (§) is in CY iff:
(1) A4 (¢) is homogeneous of order k in &, continuous for £ % 0 and has an
analytic continuation in Im £, > 0 for each fixed & = (&1, +--, En).
(i) AL () # 0for & % 0 and for any positive integer p, there is an expansion
Ai()) = 2ZP0ca@)E" + Ropraa(€); 4 = £u + 4 ]
where all the terms are homogeneous of orders k in £ with analytic continuation in
Im ¢, > 0and
| Reprae @) | < ClE P8 ] + &)
DeriniTioN 2. A (x, £) 4s in Db 1 iff:
Q) A (z, £) is infinitely differentiable in X and in £ for £ % 0.
(i) A (x, £) s homogeneous of order « in &.
(i) |DZA@, &) < Co(+ DS 0 < [p| = 2Zaps < .
(iv) For any x in R" and for any s > —a, there is a decomposition
G — )A@ ) = A (08 + R@, £); £ =& — ],

A_(z, t) and R (z, £) are infinitely differentiable with respect to x. Moreover
A_(x, £) has an analytic continuation in Img, < 0 and

|D?A_(z, £)] < Co(1L + [£])™, |DZD¢A_(z, £)| < (1 + [£[)™7
|DZR(@ &) < G+ ¢ + [
|DZD:R(x, )| < (L + €™+ [E)7N

Let A (¢£) be homogeneous of positive order « in £ and AE) # 0fort #0.
Letw e H (R:) withw(z) = 0forz, < 0. Then Au = F{A (£)ii(¢)} where
the inverse Fourier transform F " is taken in the sense of the theory of distri-
butions is well-defined. Here % (¢) denotes the Fourier transform of u (z).

Suppose A (z, ¢) for  in cl Q is infinitely differentiable with respect to z and
£, homogeneous of order oin £ and A (z, £) = 0 for # 0. We extend 4 (z, £)

with respect to x to all of R” with preservation of homogeneity with respect to
£ A (z, £) may be expanded in Fourier series

A(@, §) = 2o ¥ (@) exp (—imka/p)Li (§), ko= (b, -+, k)

and
L.(¢) = (2p)™" f_,, exp (—irka/p)A(z, £) dw,

V(@) eCT(R");¢ () = Lfor|z| < p—e;¢(x) = Ofor x| > p.
Let P™ be the restriction operator of functions from R" to Q. Forw e H$ (2),
define

PTAu = PT(Q e ¥ () exp (—imka/p)Li u).
Let {¢;} be a finite partition of unity corresponding to a finite open covering
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{N;} of ¢l @ and let {y;} be the infinitely differentiable functions with compact
supports in N; and such that ¢; ¥; = ¢;.

Throughout the paper, we consider elliptic pseudo-differential operators
PtAu = 2 PYoj AY; + 22 PYo; A(L — ¥y)
of positive order o on @ with the following properties:

(i) If ¢;j A; ¢; is the principal part of ¢; A¢; in a local coordinates system
then 4; (¢’, £) is homogeneous of order « in ¢ and for @ = 0, admits a factoriza-
tion

A6 8) = A7 @ 60)A7 @ £)

where A7 ¢ C¥, A7 is homogeneous of order a — % in ¢ and has an analytic con-
tinuation in Im ¢, < 0.

(i) AT (@’ &) eDhiforzeNjnaQ = 0.
If & > 0, we consider

P+B Z)P¢1BT¢1+23P Br(l“"‘¢j), 7‘=1’-..’k.

B, are pseudo-differential operators of orders a, with 0 < o, < a. Let
@; Br; ¥; be the principal part of ¢; B, ¢; in a local coordinates system; then
B,; (@', £) are assumed to be in

Set

Q= E;.a @i Ao,

where the summation is taken over all j, s with supp ¢; n supp ¢, # 0
Define the operator 4, on L*(2) as follows:

D(A;) = {u:ueHQ);¥P'Byu=0;0 =1, -+, k}

and A; u = PTQuif u e D(4s). ~ denotes the passage to the boundary.
If & = 0, no boundary conditions are required.

AssumpTioNn (I). We assume throughout the paper that for t > t, > 0,

(A + tI) 18 a 1-1 mapping of D (Az) onto L*(Q). Moreover there exist positive
constants Cy, Cs independent of t such that

| wllsa + ¢ [lull < Cill (A2 + 8)ull < Cofl|©llsa + ¢ |||}
foralluin D (A, + t)';8 = 1.

Concrete hypotheses on 4; (27, £); By (¢’, £) may be given so that Assump-
tion (I) is verified (cf. [5]).
Section 2

In this section, we shall first study the asymptotic behavior of the kernel

G(x,y,t) of (A + tI)™" ast— + o where m is the smallest integer such that
2ma > n. Then we show that

i3+ P tzm_"/a{g(x; Y, t) — G(x’ Y, t)} =0
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where G (z, y, t) is the kernel of (4, + I + T)™. T is such that 77 is A}-
bounded with zero A3-bound; 1 < j < m.

TarEoREM 1: Let A, be as in Sectton 1. Suppose further that
1) Assumption (1) is satisfied,
(i) C7@) < D(4y),
(i) A, s self-adjoint.
Then for t > & > 0,

(ds + t7*"1(2) = [ §a 3, OTD dy

for fin L*(Q). m s the smallest positive integer such that 2ma: > n. Moreover

lg@, y,t)| < cEomie
for all z, y in Q;
| (A2 + tD)"g(, -, t) || < CE™2

Let L be an extension of §(x, -+ , t) from Q to R" such that

| LG @, - , t) |lama@m < C[|G(@, -, ¢) |lamacay -
Then LG (x, - ,t) e D(As + tI)". The different constants C are all independent
of z, t.

Proof. The proof is essentially the same as that of Lemma 1.7 of Browder
[1]. Cf. also [6]. We shall not reproduce it.

ProrosiTioN 1. Let ¢ € C5 (Q); then Gp € C5 (Q).

Proof. Since ¢ e Cy (@) and 4; (27, £) e D 1, it follows from a result of Eskin
and Visik [2] that @e € C* (). It is trivial to check that supp (Ge) C Q.

ProrosiTion 2. Q'u = A" + T, u for all w in H** (R™) where s is a positive
integer and T, is a bounded linear mapping of H**** (R™) into H*'* (R"); k > 0.

Proof. By hypothesis, we have
Qu = 2;3 0;j Aps u,
@u = G(Qu) = Xrnor Apr (i 0s Apeu) = 2ok 2ijeor A (on 0 Apu u)
By Lemma 3.D.1 of [2, p. 144], one may write
or Alpn o Ags u) = Alpr or 05 Apou) + TV (o1 05 Ags u)

where T® is a “smoothing” operator with respect to 4 in the sense of Eskin-
Visik; i.e. || T ||lm < C || 9 ||agms for any positive integer m. So

@u = i Alpi Apyu) + T (X 05 Ay ).
Applying the same lemma again, one gets
@u = A% + T® (Au) + TP (], ¢ Agw u)
= A%+ T%

where || T || < C || % ||20me1 »
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We prove by induction. Suppose that
@ 'u = A"+ Toyu with || Tosg ullm < C || % || -tatmet-
We show that it is true for s.
Qu = @@ ) = Djre Al @ u)
= Xirei Al A+ o Tos w)
Applying the same lemma again, we obtain
Qu = A+ T (A7) + X rei Al Toru) = A% + T, u.
By a trivial computation, we get || Ts % ||m < C || % ||satm—t -

ProposiTioN 3. Let A be as in Section 1 and A,, be the pseudo differential
operator A with symbol evaluated at xy. Then

I (42 4 — A4 ulle < C || lsatasis Jor all u e HV*H (R)
where k is any positive integer.
Proof. By definition, we have
Ap = X ome o ¥(y) exp (—imym/1)Ln e

with |Ln(£)| < CWN) |£[a(1 + [m|)_N. N is a large positive number.
Consider

A2, Ap = A% (Xm—w ¥ (y) exp (—iym/1)Ln ¢)
= A2y (mm dm L) With ¢ = ¥ (y) exp (—imym/1).
Let g € C2 (R"). By the Parseval formula, we have
(A% A0, 9) = (Az{2neo b Ln e}, ¢) = (F{2ec ém L ¢}, F (4L, 9)).
From Lemma 1.D.1 of [2, p. 140], we get
¢nLme = Landme + Tme
with
[ Tmells < C|m|"™ ol + |m )™ ||o|lara.

C is independent of m.
Let T = Y me—w Tm. Taking N large enough, we obtain

| Tollx < C |l @ |lkta1-
So

(A;o Agp, g) = (F{ Zzu—w Lm(¢m (0)}, F(A::o g)) + (A:o Te, g)'
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It is easy to check that
(A2, Ag, 9) = 2omew (FLn(dn o), F (42, 9)) + (42, To, ¢)
= Do (A2 Ln($m 9), 9) + (42, To, 9)
= 2 Im(A5 @n 0)), 9) + (42, To, 9).
Again by applying Lemma 1.D.1 of [2], we get

. A;o(¢m¢) = ¢mA;o¢+Sm¢

wit

- |Smell < C l m |n+3+k+s ” @ ”8u+k—1 .
ence

(A:o A, g) = Z::n—eo (Lm m ;o ®9) + (£¢, g) + (A;o Yo, 9)
with
€= meoLnSn.
Moreover

Lo llr < € 2omew | m ™A + [m D)™ | [evati-1 < C || @ |letvati-t

by taking N large enough.
Again by the same lemma, we have

Ly ¢m A;o ¢ = ¢n Lm(A;o e) + Rm(A;o ®)
where

| B (A2 @) e < € [m]™¥4* (1 + [ m )™ | 42 0 ltract
and C is independent of m. Therefore
(4z, Ao, 9)
= 2w On Lu(4%0), 9) + @e, 9) with [|Te[le < C |l¢ lasnass
By an easy argument, we obtain
(A2, Ao, 9) = (442, 0,9) + (B¢, g) forall gin CT(R").
Hence (4z, A — AAz)e = 3o, Q.E.D.
ProrosiTioN 4. Suppose the hypotheses of Theorem 1 are satisfied. Then
¢@) = (@+)"LG(, -, 1), (@ +1)"¢) forall ¢ CT(R").
Proof. From Theorem 1, we have
o) = ((A: + t)"LGg(x, -, 1), (A2 +1)"¢) forall ¢ ¢ D(4s + t)™.
Let f e D (42 + t)™"; then since A, is self-adjoint,
f@) = (A2 + DIG (=, - , ), (A2 + 1)™7f)
(@ + LG (@, +, 1), (Ao + 1))
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So
| ((@ + LG, -, 1), (A2 + )" 7f)]
= @) < maxes | /@) | < M [[fllams < C'[| (4o + 67|
by using the Sobolev imbedding theorem and Theorem 1.
Letv = (A + t)™°f; then
(@ + LG, -, ), (s + tw)| < M [[v]

for v in D(4;) n R(4s + t)™ 2. The inequality is true for all » in D (4,).
Indeed, R (A; + t)™ = L*(Q).

Therefore L(v) = ((@ + t)LG(z, - ,t), (A2 + t)v) is a linear functional on
D (4,) and since D (4,) is dense in L (?), we may extend L (v) to all of L? «@).
Using the Riesz representation theorem, we get

L) = (@ + LG, -, 1), (Ao + t)v) = (b, 0)

forallvin D (4;). hisanelement of L*(Q). Hence LG (z, - , ) e D (4.) since
A, + tis self-adjoint.

Repeating the same argument m — 2 times, we get (@ -+ t)’”“’Lg (z, -) in
D (4,). Therefore if ¢ € C7 (2),

@) = ((As + O)"LG (&, - , 1), (4s + t)"0)

= ((@+ LG, -, 1), (As + t)"'¢)
(@ + LG (@, -, ), (A2 + 1) ¢)
(@ + )"Lg(x, « , 1), (A2 + t)"¢)
= (@ + )"LG (=, -, 1), (@ + 1)"$)

by taking into account Proposition 1.

THEOREM 2. Suppose the hypotheses of Theorem 1 are satisfied. Then
g(x, x, t) = (21r>—m-2m+n/a j;n (‘Z(x’ s) + 1)—2m d£ + o(t—zm-i-nla)

ast— + o, for x in Q.

Proof. Let Na(x) = {y : |y — x| < d} and d, be such that Ny, (z) < Q.
Na(z) is contained in @ for d < dp.

Let ¢ € C7 (Na(x)), then from Theorem 1 we have
é(x) = ((4: + )"LG(x, + , 1), (A2 + t)"0)
= (@ + ¢)"LG(x, - , 1), (@ + t)"¢)
by taking into account Proposition 4.
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We may write (@ + )™ = D _i=o#*@™*. Taking into account Proposition 2
we get
@+ )"LG(@, -, 8) = (A + O)"LG (=, -, 1) + 20 ‘T LG (x, - , 1)
where T is a “smoothing” operator with respect to 47 i.e.

[ Tiulle < M || %l etk
Hence

¢ (x)

= (A4 "IG (&, - ,), @+ t)"8) + 2= £ (Tmr LG (=, - , 1), (@ + 1)"¢)
Since ¢ ¢ C% (Q), the first expression may be written as

(4 + O"Lg(z, - ,¢), (@ + 1)"¢)

= fR (A +0"LG(z, y, 1) (@ + O)"6(Y) dy-

= ((4 + )"LG(x, - ,8), (G + 1)"¢)zn.
Let A, be the operator A with symbol evaluated at the fixed point . Then
(4 + LG (=, -, 1), (@ + t)"¢)an
= ((4: + O)"LG (@, -, t), (@ + t)"¢)an
+ (A + )" = (A + )G (@, -, t), (@ + 1)"¢)an s
(A +O)"LG(=, -, ), (@ + £)"¢)an
= ((4z + )"LG (=, - , 1), (@ + )"d)zn
+ 200 F (AT = AT, -, 1), (@ + )"B)an.
One can show easily that
A= A= TS A4 — A)A
Hence
(4 + LG (=, + 1 1), (@ + £)"¢)an
= ((A: + )"LG(, -, 1), (@ + )" )an
+ 2000 2 £ (AR(A — A)ATTTIG (s, - L 1), (@ + 1)),
Applying Proposition 2 to the first expression of the equation, one obtains
(4 + )"LG (=, -, 1), @+ t)"d)en
= ((4: + )"LG (=, - , 1), (Ao + £)"¢)n
+ 2000 2 (ANA = A)ATTTTTIG (@, -, ), (@ 4 £)")an
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+ 2050 25T (Ae 4+ )" LG (=, -, 1), AL(A — ADA™ )
=+ "I::OI tk((Ax + t)ng (x’ ) t)’ T ¢’)R" .

Denote by R;, R., R; the second, third, and fourth expressions on the right
hand side of the equation respectively, then

|6 @) — ((Aa + O"LG(x, - , 1), (As =+ 1)"$)an| < |Ri| + | Ro| + | Rs| + | R4
where

R4 = 7::01 tk (Tm—k Lg(x’ ‘ t); (@ + t)m¢)
We have

| Rs| < 20050 £ || (Ao + 0)"LG (@, -, 8) [lascem || Tt ¢ || z2cam
..<_ Z;cn:ol tk_m+n/2a ” ] ”H(m—k)a—l (R™) »

by applying Theorem 1.
Using a well-known inequality of the theory of Sobolev spaces, we get

|Rs| < 23050 e || ¢ lmwra + K ()" 0}
S e | (e )" || 4+ K (&) || (A + £)"0 |1}
S EmPe 4 K@) || (Ae + )"0 ||

by taking into account Assumption (I).
Consider a typical term in B,. We have

(A3(A — ADA™ TG (=, -, ), (@ + £)"P)an.

From Proposition 4, we know that A} A — AAL = T;1and Ty is a “smooth-
ing” operator with respect to A™. So

(A4 — ADA" LG @, -, t), (@ + )" )
=1'((4 — A)AL A™TLG @, -, 8), (@ + )" )zn
+ T AVLG (=, -, ), (@ 4 £)"d)an.

Since ¢ € C7 (Na(z)), (@ + t)"¢ ¢ Co (Na(x)). Let ¢ € Cy (Naa(z)) with
¢ = 1 on Ny(z) and 0 outside of Ng4, (z), d < d;. Using Lemma 2.7 of [2,
p. 117], we have

| (434 — 4)A" LG (w, -, 1), (@ + £)7¢)mn|
= | (A — 4)A] A"TLG(x, -, 1), (@ + )¢ )ae
+ (T A"TLG(x, -, 1), (@ + 1)76)mn |
SHCEd)G@, ) lmwa + 1§, +, 1) llnwaa) || @ + 0" |
where C is independent of ¢, d. Taking into account Theorem 1, we get

|R,| < CO™™™ (@ + e+ K(e)) || (@ + )"0 .
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A similar argument gives

|Ri| S G+ %@ + e+ K@) || (@ + t)"s ||
and

|Ri| < CE™™% (e + K(e)™) || (@ + t)"0 .
Hence

l6@) — (A + O"LG (&, - , 1), (A + t)"¢)mn |
S M e + K@) +d) || @+ )"
A simple computation yields
@+ )" < Clll¢llma+ " &1} S Coll (Aa + )"0 ]| < Crt™,
where ¢ ¢ C7 (Na(z)) with d = 7% (cf. [1]).
Therefore
lo@) — ((Ae + )"LG (=, - , ), (Ao + 1)"@)mn| < M (e + K ()t + £7/%)

Now we may take Fourier transform of the expressions on the left hand side of
the inequality. A proof, almost identical (with only trivial changes) to that
of Theorem 3 of [1] gives the wanted result.

TueoreEMm 3. Under the hypotheses of Theorem 1, if x # y, x, y in Q, then
lim, i ™G (2, y, t) = 0.
Proof. Same idea as in the proof of Theorem 2 with ¢ replaced by
¢eC:(Na(y)) and d < [x — yl
We shall not reproduce it.

THEOREM 4. Suppose the hypotheses of Theorem 1 are satisfied. Let T be a
symmetric operator in L*(Q). Suppose further that T’ is Al-bounded with zero
Aj-bound for 1 < j < m, where m is the smallest positive integer such that
ma > n/2. Then

(i) As + tI + T is a self-adjoint operator in L} (Q);
(i) A+t + T)™"f (&) = fa Gz, y, ) (¥) dy, f in L’ (Q);

@) |GG,y 0| < ™™ [ (A + ¢+ TV'G@, -, 1) || < CF™
for z, y in Q, C independent of ¢, x.

Proof. Since A, + tI is self-adjoint and 7' is symametric with zero 4,-bound,
it follows by a well-known result that A, + tI + T is again a self-adjoint
operatorin L’ (2). All the other assertions of the theorem may be proved as in
Theorem 1.

TreEOREM 5. Under the hypotheses of Theorem 4,
M,y "G (2, 4, 1) = liMiaye G (x, y, £); 2, y in Q.

Sz, y,t), Gz, y, t) are defined respectively by Theorems 1, 4.
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Proof. For fin D (A7), we have
f@) = (A: + )"g (=, -, 1), (A2 + 8)"f)
= (A2 +t4+ TG, -, 1), (A + t + T)™).
Since (A + ¢+ T)"u = (s + t)™u + Dpmi (Ag + )"y,
(A2 +t+ TG, -, t), A2+t + T)f)
= (A + )"G(z, - , 1), (A2 + 8)"f)

+ 205 (A + 0)"G (e, -, 1), (4s + £)'T"7F)

+ 2 ((As + )" T Gz, -, 1), (4s + £)™)

+ D0 2005 (A + )G, +, 1), (As + t)°T"F).

Denote by R, R., Rs the last three expressions on the right hand side of the
equation. Then

((4: + )"{G(, -, 1) — G, -, 8)}, (A2 +¢)"f) = Ri+ R: + Rs.
Consider a typical term in the expression B;. We have
| (2 + O"G(x, -, 1), (Aa + )T
< O T e + £ [ TS
by taking into account Theorem 4. Hence
|Bi| < CEm e + K@)} || (Aa + ) |

using the definition of 7' and Assumption (I).
Consider a typical term in the expression R, :

| (42 + O TG @, -, 8), (4 + 8)"f) |
< G e + K (@) || (e + )" |l
where we have used Theorem 4. So
|Rs| < €™ (e + K ()t} || (A2 + ).
We estimate R in a similar fashion. Finally, we get
| (42 + "G @, 9, 1) — G, -, D)}, (A2 + )]
< CEme + K ()67 || (A2 + O |-
Since (4 + )™ is onto L*(Q), we obtain
I (Ae + )™G (&, -, ) — G(w, -, D} | < CE™™(e + K (e)t7}.
But
|§@, v, 1) = G, y, )| < M| (A + )G, -, 8) — G, -, O} |
< M 4 K ()Y
(cf. [1]). Therefore limy, o £™ ™G (z, y, t) — G(z, y, t)} = 0.
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TrEOREM 6. Suppose the hypotheses of Theorem 5 are satisfied. Let \;, ¢; be
respectively the etgenvalues and eigenfunctions of A + T. Then

Nt = > 1= ()™ f f dt dz + o(M'),
NSt QJa

(@E)<1

e(z,z,t) = (21r)'”t"'°’f dt + o(**), zinQ,
A@H<1

6((13, Y, t) = Zh,’ét(’j(x)m = O(tn/a)7 T = Y.

Proof. Applying the Tauberian theorem of Hardy-Littlewood and taking
into account the results of Theorems 4, 5, 3, 2, we get the stated results.
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