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In this note we present a method for determnin the value of a hiher order
operation on a cup product u 5 in terms of operations on cupped wth
operations on . Indeed, up to certain cup products of lower order operations,
we completely determine these formulae.
Prevou attempts in this direction have been limited to secondary opera

tons wth . for coefficients, and the methods have been to use functional
operations [11, [1, [81, (which reatly increase the indeterminacy) or to use
cochan operations [51 which are cumbersomeand often lead to incorrect re-
sults. (L. Krstensen points out that the man theorem and llustratve ex-
ample of [51 are, n fact, incorrect, though it is not too difficult to correct them.)
Our method, on the other hand, seems very direct and elementary.

ard the existence of a Cartan formula as equivalent to the existence of a
special nd of mappn

for certain spaces , , , and the decomposition of an operation on a cup
product is obtained by finding f* ( ()) where ( is the operation in question
and is a fundamental class in H* (Z).
The evaluation of f* is now obtained inductively by considering fiberings

F’-+ E-- X, G ---, E’ ---. Y,

determining the fiber K in the map

E E’--,X Y

and studying the lifting problem

K ?l H

E E ] E"

X y f--.- Z.

H -- E# Z,

If H is a product of Eilenberg-MacLane spaces then the lifting problem is easy
to solve and modulo certain restrictions which are easily stated][* is arbitrary.
Thus ]* is essentially determined and in this way we obtain our main results.
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These results are given in Section 3, as is the precise definition of a Cartan
formula. Section one is devoted to notation and elementary remarks about
the types of spaces and spectra which we need, while section two gives the
results about K and H* (K) which we need. Sections four and five are devoted
to applications. In four we prove sharpened version of a result of O.
Valdivia [8] (which in turn sharpens formula of Adam and Gitler [3] ), which
at present seems to be the most useful Cartan formula for secondary opera-
tions. Section five on the other hand shows how we can obtain Cartan formu-
lae for some third and higher order operations; by means of a specific tower for
which the third order Carton formula is completely determined.

I would like to thank the Mexican government for allowing me to visit the
Centro de Investigacion and participate in the stimulating atmosphere there
during the preparation of this paper.

1. Preliminaries: the universal examples for stable conditions
1.1. h script letter E {X} will always denote an infinite sequence of

spaces X1, X, X3, satisfying the following.
(i) X is j 1-connected and there is a distinguished class e H* (X., Z)

(note that may be a cohomology vector rather than a single class).
(ii) There is a homotopy equivalence,. :X--

and * ( (;+)) ; where o H (X) ----> Hi- (gtX) is the "suspension"
homomorphism,

(iii) ; satisfies a set of stable conditions R (for example Sq () 0 or
(;) 0 where is a vector of stable higher order operations). Moreover,

given any cohomology vector e H* (Y, Z) (Y a CW complex) where a satisfies
R then there is anX-and amap () Y--X so (d)*() a.
We call C a universal example for R, and will sometimes write 9 (R).
For example R might be the condition Sqa -- Sqb O, then (R) is the

fiber in the map

(R) --> g (Z: j) X g (Z j -t- 2)
’q4’l + Sq22

K(Z,j --[- 4)

where K (Z, j) is an Eilenberg-MacLane space.
A map 0 (R) -- t (S) is defined as sequence of maps

o (R) (S)

satisfying the consistency condition that the diagrams

1.1.2

0+ t S +2(R)+:
homotopy commute.
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1.2. The cohomology of 9 is given by

1.2.1 H (9C; Z) limn-, Hn+i (Xn Zp)

(using (adj X) EXn --+ X,+I to define the limit). Note that 1.1 (i), (ii)
imply H (; Z) Hn+i (Xn ;Zp) or n

_
2i -}- 1. There is a unique class

e H* (9C, Zp) (called the fundamental class of E) so that its restriction to
H* (Xn Z) is just n, and there is a unique way for ( (p) (the mod p Steenrod
algebra) to act on H* (9; Z) so the restriction to H* (X, Z) is an a (p)
map. Finally, given a map 0 E -- J there is a well defined a (p) map

0* H* (E; Z) -- H* (t5; Z)

defined as the limit of the 0.

1.3. By a fibering

9C- >4 ;21

we mean maps 0, I, so that each sequence

is a fibering. Passing to cohomology we have

LEMMA 1.3.2. Let

be a fibering, then there is an a (p ) map of degree -+-
H* (9; Z) -- H* (21; Z

and the sequence

H*(Z;Z)

is exact.

0* H* 9"
(aj; z) , . O*H*(E; Z,) --+ H (21; Z) ..,

(In stable dimensions the Leray-Serre spectral sequences reduce to exact
sequences and the consistency condition 1.1.2 assures is well defined on pass-
ing to limits.

1.4. The smash product 9C is defined as the set of pairs X # Y.
(1 _< i, j < ). There are inclusions

1.4.1 I (tX) Y (X Y), I X (Y) U(X Y)
defined by I (f, y )t (f (t ), y ), I (x, g )t (x, g (t und we set

1.4.2 , I(h , I (id X).

These mppings evidently satisfy the iterative condition

1.4.3
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1.5. The cohomology of C qd is given by

1.5.1 H’ (9C Z limr,,(R) Hr+a+’ (Xr Xa Z).

(Using (adj).), (adj .) the limit makes good sense.)

LEMMA 1.5.2.
H++* (X Y,, Z) H (9C J; Z)

for i < min (2r 2r s, 2s + r)

(This is evident.
1.5.2 implies

COROLLARY 1.5.3.

H* (C aJ Z) H* (9C; Z) (R) H* (aJ; Z)

as an ( (p ) module and there is a fundamental class ;xj in H* (C Z,)
which under the isomorphism corresponds to

2. The smash product of two fiberings
2.1. Let

be two fiberings. In this section we convert the map

into a fibering, and evaluate the structure of the exact sequence corresponding
to 1.3.2.

DEFINITION 2.1.1. Let

0 II

be two Serre fiberings; then set

Let

0 II

F(H, II’) E F’ u,F % E’.

p E * F’ -* F (II, II’),

i1" F $ F’E F’,

po. F E’ F (II, II’)

i’F S F’-- F E’
be the evident inclusions. Then we have the Meyer-Victoris sequence

* P P H* F’ H* E’;H (F(H, II’))- (E ) (F
2.1.2 .. ..

-H (F -;

and one obtains

IEMMA 2.1.3. H* (F (II, II’); Z) is additively isomorphic to 6 $ where
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is kernel (i i and is

H* (F F’, Z)/im (i 2

with dimension augmented by one. (Over a (p 6 is a submodule and, using the
projection

$g H*(E g F’) H*(F E’),

$ becomes a quotient a @) module of H* (F (H, ’ ).

2.2. Convert the map H g H’ E g E’ B g B’ into a fibering by regard-
ing B B’ as the mapping cyhnder M of H g H’. H H’ then becomes the
inclusion

I:E gE’ =OXE $E’M.

E E’ is equivalent to E,. (the set of paths in M with initial point in
E $ E’) and I is equivalent to the fibering

p Egg,,M M
given by endpoint projection. There is an inclusion

j’F(H, H’) F,
(whereF, is the fiber of p) given by j (x)t (t, x) and we have

THEORE 2.2.1. Suppose F, E, B all n-connected, F’, E’, B’ all m-connected
(m, n > 2), then j is a weak homotopy equivalence in dimensions less than
k min (2nWm, 2m+n).

Proof. In dimensions less than 2n, B is weakly equivalent to ElF, while in
dimensions less than 2m, B’ is weakly equivalent to E’/F’. Thus

B B’ ElF E’/F’
in dimensions less than k. On the other hand

E E’/F(n, ’)= (E/F) (E’/F’),
so in the range of dimensions less than k we have the homology exact sequence

H* B’ (HgH’)*
(B

2.2.2 ..
H* (E E’) * H* H’(f(, )) :....

Now the theorem follows from the 5 lemma and the fact that the diagram

f(, n’)_1 F

2.2.3 E $ E’ I
’> EEE’,M

J MBB’
homotopy commutes where J B B’ M is the standard inclusion.
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2.3. Actually the proof of 2.2.1 shows more on close examination. Using
the representation of H* (F (II, II’)) given in 2.1.3 we have

LEMMA 2.3.1. In 2.2.2, (r (a (R) (b where r e 5 and r can be written
(a (R) b). Also, the representation of can be chosen so that

t(s) t(a) (R) b’

if s a (R) b H*(F E’) and II’* (b’) b. Similarly

t(s) +/-a’ (R) t(b)

if s H* (E F’ and H*(a’) a.

(Perhaps the easiest proof of this is to prove the dual statement for homology
by seeing how the elements dual to fit are built up, and then using 2.2.3. A
similar argument will prove the statements for 6.)
Remark 2.3.2. Note that is a monomorphism on fit, as well as an a (p)

map. This fact when combined with 2.2.2, 2.3.1 is enough to determine the
a (p) structure of H* (F (II, II’) ).

2.4. We convert the map 8 $ 8’ -- 63 t( 63 into a fibering by converting
each of the maps E t( E. -- B B. into a fibering with fiber F.. by the
process outlined in 2.2. Then 2.2.1 in the limit gives the structure of the
stable fiber (by 1.5.2), and 2.3.1 gives the map in the exact sequence 1.3.2.
Moreover, given a fibering

t! __..__...

and mps z ’ --> 8, u 63’ - 63’ so the diagram

88
z2 8

commutes we have the a (p) map of long exact sequences
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where the bottom row is the limit of 2.2.2. In particular knowledge of u
and u* determine * up to elements in the image of (0 0’)*.
Remark 2.4.3. In order for 2.4.1, 2.4.2 to make good sense we require that

a map

2.4.4 W

satisfy

W, X Y Z+ and W, Wi+l, , Wi,j+l ,
and when talking of maps of type 2.4.4 we shall automatically assume this in
the sequel.

3. Caftan formulae
3.1. A Cartan formula for a higher order operation is a set of operations, 7 (of varying order) such that

3.1.1 (a u b) ’ (a) u " (b

modulo the indeterminacy on both sides. More exactly 3.1.1 means that
whenever both sides are defined the intersection of the two sets (a b) and

’ (a) u ’ (b) is never empty. Of course implicit in 3.1.1 is the fact that the
are deed on a and the ’ on b. Thus a formula of type 3.1.1 makes no

sense unless we first specify the inds of a, b for which we want it to hold. As
a result we redefine the notion of Cartan formula as follows"

DEFINITION 3.1.2. A Cartan formula of type R, S, T is a mapping

(R) (S) (T)

which satisfies the condition

Set R {the are defined on ;R}, S {the 7 are defined on ;s} and
T { is defined on w}- Then 3.1.1 is equivalent to suying there is u map

(R) (s) (W)

with * (W) a @ ;S and*(T) Z ;a @ ;S. On the other hand,
given satisfying 3.1.2, and suppose (;T) 0; then

() (R) (s)

gives u Cartan formula of type 3.1.1. The two definitions are thus equivalent.

3.2. The results of Section 2 can be used to obtain information about
Cartan formulae for fibrations. Suppose

3.2.1

re fiberings with the fiber " generalized Eilenberg-MacLne spectrum, then
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we have

TIEOIEM 3.2.2. Suppose there is a Cartan formula

then a necessary and sucient condition that lift to a Cartan formula
o 8 ’ --+ " is that (O O’)**t (;w O. Moreover, given any element
H* (5: 8’ ’a u 8 Z so (a) *t (,,) there i, a lifting o with q I* (Z,)

(The fiberings F7 -+ E7 --+ B’ are all principal so we can vary any lifting by
a map into the fiber. This gives us the freedom to take a q]* (;v,). On
the other hand the obstruction to lifting is exactly o* (t (;v,,)).

Passing to cohomology we have

COIOLLAIY 3.2.3. Under the assumptions of 3.2.2 let there be given an et (p
map

u H* (W’; Z,) -+ H*( ’ u ’; Z,)

so that tu (,, o*t (,, ), then there is a lifting (o so o I* u. Moreover, u de-
termines o* up to elements in im (0 0’)*.

3.3. To compute a Caftan formula of type 3.1.1 we proceed as follows.
Recall that

H*(Y 8’u8 Y;Z) 6 @

by 2.1.3 and from 2.3.2 the kernel of is contained in $. Hence, if we are in-
terested in * () where xI,* () is nonzero it is enough to determine u*() in
$ regarded as a quotient module of 8. By 3.2.3 this determines * ()
up to something coming from H* ($ % ’; Z).

THEORE 3.3.1. Suppose t H*() H*(), t H(’) H*(’) are
both epimorphic awayfrom , (i.e., imH*( inH* ( isjust imH* (’)
in H (’) is , ); then given a Cartan formula lifting we have

*( ’ @ , + @ "with zero indeterminacy.

Proof. The map H*( ’) H* (8 8’) is zero away from the funda-
mental class so * is determined by ]*. Now note that t() is M1 of
H*( ’) except

hence the only elements which matter ure those of the form f , or s @ g,
and [* () has restriction to the fiber of the form

3.3.2 [@() (f @ , + @() ( @ g)]

for some f, g and dements @(), @() in a (p). However, since O* (,m) es,
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* (,) s, it follows that 5) 0 for ( of positive degree, and similarly
for s,. Hence 3.3.2 can be written

so 3.3.1 follows.

Remark 3.3.3. Theorem 3.3.1 generalizes a result of Adam [1], and is rele-
vant, for example, to the cohomology operations defined by using an Adams
resolution of the stable sphere.

4. The Cartan formula of Ad6m, Gitler and Valdivia

4.1. Corresponding to the relation

4.1.1 SqlSq" + (Sq + SqSql)Sq’- + Sq"Sq
in (1 (2), there is a secondary operation of degree 2n which we denote by
It is defined on any class a which satisfies Sq (a Sq’-a Sq’* (a O,
and its values are taken in

H* (X)/SqH* (X) T (Sq + SqSq)H* (X) + Sq’H* (X).

The universal example for are the fibers in the maps

4.1.2 E --.K (Z2 m)
Sq’ Sq’*-’

K(Z2 ;m + 1,m + 2n- 2,m + 2n)

Thus we have the fibering

4.1.3 K(Z;m,m + 2n 3, m + 2n 1) .-.E--K(Z;m)
and t(tm) SqX, t(,,+,,_a) Sq’-, t(,+,_) Sq’,. This determines
the stable cohomology of

4.2. In general there is no Cartan formula of type

However, there are circumstances in which Caftan formulae ’ $ g" -+ " are
defined.

DEFmTmN 4.2.1. " (k) is the set of fibers

K ;n)

Sq, Sq, Sq+2, Sq,-2, Sq, K(Z2 m T 1, m + 2k, m + 2n).

We have mappings

4.2.2 ,, (k)

for s > k where ., [* ,_ ,_o,_ ., * , ,. .,* (,) will again be
denoted by , in what follows.
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TItEOREII 4.2.3. There is a Cartan formula

and modulo the indeterminacy of 3.2.3 we have
2n--2r--1() @

+ ZSqt+r Sq (n----) + ZSq @ (-) + @ .
Proof. Evidently Sq-( Sqn ( @ Sq ( @ 0 under our

hypothesis nd 3.2.2 guarantees the existence of a Carton formula . Now
note that we can choose ] so that the projection of [* (e) on 8 has the form

Sq-.--t (Sq+( Sq- + Sq + (_+
4.2.4

+ Sq+l-
nd we have a similar formula for * (’n--:). From here on in the proof we
look only at terms of the formSq @ Sq for convenience, since the formulae
are essentially symmetric. We have

Sq- Sq-.+Sq (

(Sq + SqeSq) (e_) (Sqa + Sq2Sq)_e q2n-2sr

Similarly

Sq Sq- Sq,-1 Sq-,+
Adding the terms together we have

2 (Sq, + (Sq + SqSq),_

+ ZSqlt,_ @ (Sq + SqSq1)Sq (Sq--)t
+ Z q q + Sq (Sq + SqSql),_ @ Sq-’+.

Now the second and third sums are contained in , so they can be ignored.
Moreover,

SqSq’-t + Sq (Sq + SqSq),_4
is the restriction of Sq ,_ to the fiber. Similarly

(Sq,,
is the restriction of : to the fiber and by symmetry the proof is complete.

Remark 4.2.5. Theorem 4.2.3 was first proved by 0. Valdivia in his thesis
[9] by use of functional operations. Consequently his indeterminacy is much
greater, and the proof much longer. A formula somewhat more restrictive
than this was given by Ad6m and Gitler in [3], but their indeterminacy, too,
was much larger than that appearing here.
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Remark 4.2.6. We can prove that there are choices of the q).8 so the formula
of 4.2.3 becomes exact by using the fact that 28 can be chosen to wnish identi-
cally on u 2s 1 class on which it is defined (see for example [4] ).

5. A second application
5.1. Le E be the universal example for the stable conditions that

(Sq, Sq) vaNsh on an n-dimensional cohomology class. There are fiberings

5.1.1 K (Z n, n 2) n On>E K(Z2;n)

with (,) Sq ( ), (n+ Sq ( and we have

THEOREM 5.1.2. As a module over a (2) H* ( has four generators , u, , v
with

,*(u) Sqt(o), *() Sqt(r), *(v) Sq() + Sq(o).

Moreover, a basic set of relations over a (2) is

Sq Sq O, Sqlu Sqi Sqv O, Sqv Sq + SqTu.
Proof. represents the first stage in an Adams resolution of

lim,. Bu[2n,2n+2...l

by Stron’s result [7], and 5.1.2 now follows by computing Tor, Tor for a

resolution of (Sq, Sq) {see 2 of [6] for further details on this kind of argu-
ment}.

5.2. We now have

ThEOReM 5.2.1. There is a Cartan formula
:88-8

and
*(u u + @ u,

*(v) v @ + a Sq2 + Sq2 @ a + @ v.

Proor. * may be chosen so

Now, discounting elements in ,

Sq (o) Sqto @ + Sqao Sqt + Sqt @ Sqato + Sqto
and adding we establish 5.2.1 up to an element coming from the base. How-
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ever, the image of H* (K (Z2, n), Z,.) in H* (8. Z.) is

, O, Sq2e, 0, Sq, 0, Sq4Sq2, Sq6
in dimensions less than 7. Hence there is no cohomology coming from the
base in dimensions 1, 3, 5 which are the dimensions of u, , and w respectively.
The proof is complete.

5.3. 5.2.1 together with 3.2.2 implies that if H. represents the next stage
in the Adams resolution of lim Bv2,...,ol, i.e., kill u, , v, there is a Cartan
formula

5.3.1 :3C

lifting . Explicitly we have

THEOREM 5.3.2. H* (3, Z.) has generators , , 9, (o over a (2) with

,* q(,o), *() q(,), *() q(,)

and relations

Sql Sql Sq Sq Sq(o O,

Zq’ o, zq’co sq’ + Sq +.
(The proof, involving the calculation of Tor(sq.sqo) (Z, Z), is analogous

to the proof of 5.1.2.)
From 5.3.2 we now obtain the tertiary Cartan formulae of

THEOREM 5.3.3.
*() = +@,

*( @ + @ Sq + Sq @ + @ ,
*( @ + @ Sq + Sq @ + @ ,
*( @ + @ Sq + Sq @ + @

hold for some choice of .
Proof.

,[ * (o) o (R) + (R) o,

’1" () (R) + o (R) Sq + Sq (R) o + (R) ,,

Now, s in the proof of 5.2.1, the formulae of 5.3.3 hold modulo possibly
Sq @ or (R) Sq but Sq is in the indeterminacy of and we can get rid of it
without changing any of the lower images.

5.3.3 in turn shows there is a 4 order Cartan formula. The author does
not know how much further this process will continue.
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