
THE LEVI PROBLEM IN CERTAIN INFINITE DIMENSIONAL
VECTOR SPACES

BY

LAWRENCE GRUMAN

1. Introduction
Let E be a complex vector space with a locally connected Hausdorff topology

T which is at least as coarse as the finite topology T on E (composed of those
sets whose intersection with every finite dimensional subspace is an open set
in the Euclidean topology). A complex valued function f defined on an open
subset D of (E, T) is Gdteaux differentiable if for all a, b E, (a - ub) is holo-
morphic as a function of u in D. If in addition, f is continuous for the topology
T, then f is said to be holomorphic in D. A domain o$ holomorphy is an open
set D of (E, T) such that for every boundary point b e OD, there exists a func-
tionf holomorphic onD which cannot be continued (locally) as a holomorpc
function to any open neighborhood of b. If fb can be chosen the same for
every b e OD, then D is said to be a domain of existence.
A function g which takes on real values in the range [-- , -t- is said to

be plurisubharmonic in an open set D of (E, T) if g is upper semi-continuous
and if for all a, b E, g (a - ub) is either identically - or a subharmonic
function of u in D. We say that an open se D is pseudoconvex if for all a E,
-log d (z) is plurisubharmonic, where

da (z) sup {r z -t- ka eD for all , IX _< }.

There have been attempts to characterize domains of holomorphy in infinite
dimensions in terms of the characterizations given in fiuite dimensions. A
characterization of the type Cartan-Thullen can be found for certain infinite
dimensional space in [6], [7], [8]. We shall give a characterization here in
terms of pseudoconvexity.

For finite dimensional spaces, the following properties are equivalent:
(cf. [], [4], [5])

(i) D is a domain of existence.
(ii) D is a domain of holomorphy.
(iii) D is pseudoconvex.

(It was Levi who first conjectured this result, which was proved by Oka. ) We
investigate two infinite dimensional cases for which this is still valid:

(1) for any complex vector space equipped with the finite topology To
(2) for any separable Hilbert space

It was shown in [2] (for case (1) ) and [3] (for case (2)) that every domain
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of holomorphy is pseudoconvex.
the converse.

Thus, we shall be concerned with proving

2. The finite topology and the Levi problem
We now prove that for any complex vector space equipped with the finite

topology, a pseudoconvex is a domain of holomorphy. The argument will be
a combination of transfinite and finite induction. But first we prove a lemma
about extending holomorphic functions from subspaces.

DFIITION 2.1. Let Q be an open set in C" and let {z e Q" z 0}.
Let $ be a holomorphic function defined on (as an (n 1)-dimensional
manifold). The f are said to be compatible if ] ] on n .
LEMM/k 2.2 Let Q be a pseudoconvex domain in C’* and f compatible holo-

morphic functions defined on . Then there exists a holomorphic function
g(z) in Q such that g f on and such that g cannot be extended as a holomorphic
function to an open neighborhood of any boundary point.

Proof. Let (1, ) be an n dimensional multi-index composed
of zeros and ones. We say that # <_ if # <_ for all i; otherwise, $ .
Let

v ,1-1 and \U$.
Let z (z, z_, z+, z), an (n 1) tnple.
For every Zoe for some , there ests an open polysc h,o such that

h,o Q and Ao n for $ . We dee a holomorpc function in
A,o the follog way" let i be the smafiest integer such that 1; we
expand f to a holomorpc function in ,o by setting g (z) f (z); hang
deed g (z), we choose the next smallest integer j i forwch 1 and let
h f g be a holomorphic fction defined on h,o n , note that h 0
on n , since f f there; we set h(z) h(z) in h,o and let g(z)
g (z) + (z); then g f on and g f on we contue in ts way,
and after exhausting those indicies for which has a one, we arrive at a holo-
morpc fction Go (z) defined h such that G,o f on n h, for a k
such that 1. By the construction of the polydiscs, for z0 a, zo
and zho h,,o, zx we have k (, ), and thus, since
Go f G,o n honA,o fork 1,Go G, is divible by
z A n h,o.

Let go(Z) Go/(Z z,), wch defines meromorphic function in
A,o. If,o nh,,o ,then

(G.o G,,0)/(z,...
defines a holomorphic function in ,o n A,’o, since G,o G,o is divisible by
z for all i such that z 0 in A,o n A,’o We set go =- 1 in

r --I CO

Then the g’s form a set of Cousin I data in Q, and since Q is pseudoconvex,
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there exists a meromorphic function m() defined in Q such that
h (z) m (z) g (z) is holomorphic in A (and m (z) go (z) is holomor-
phic in r) [1]. Let w(z) z z re(z). Then w(z) is holomorphic in Q
and w (z ) G,o (z ) j’ (z ) for

Since Q is a pseudoconvex domain, by the solution of the Levi problem in
finite dimensions, there exists a holomorphic function s(z) which cannot be
continued as a holomorphic function to any neighborhood of any boundary
point of Q. Let

+
Since the topology of Q has a cotmtable base, there exists at most a countable
number of r for which s (z) can be continued to aa open neighborhood of some
boundary point (for each neighborhood, there is at most one r), and hence,
there exists r0 such that s (z) cannot be thus extended. This function satis-
fies the conclusions of the Lemma. Q.E.D.
We have now done most of the work for the following"

Toa 2.3. Let E be a complex vector space equipped with the finite topol-
ogy To. Then an open set D is a domain of existence if (and only if) it is pseu-
doconvex.

Proof. We assume, withoutout loss of generality, that he origin lies in D.
We choose a Hamel basis {z,}, for E, where we assume the set to be well
ordered. Let ao be the the smallest elemen of in this ordering and
let Do D n Q0, where Qo is the linear space spanned by z,. Then there
exists a function f on D which cannot be continued to an open neighbor-
hood of any boundary point of Do. By a process of transfinite induction on
2, we extendf to a holomorphic function F on D which cannot be continued
as a holomorphic function to an open neighborhood of any boundary point.
For a given a’, let X, be the subspace spanned by the set

Y’= {z, :o" < a’}.
We equip X’ with the finite topology, and we assume that there exists a
holomorphic function J defined on D n X such that if Q is any subspace
spanned by a finite number of the z,,f In cannot be continued as a holmor-
phic function to an open neighborhood of any boundary point of D n Q (in
the Euclidean topology). Let X be the subspace spanned by

Y" Y’ u {z,,}.

We show that we can find a holomorphic function f" defined on
D n X" (equipped with the finite topology) such that f" j on D n X’ and
such that, if Q is any subspace spanned by a finite number of elements of Y",
je, cannot be extended as a holomorphic function to an open neighborhood of
any boundary point of D n q.
To do this, we apply finite induction to the dimension of Q. If dim Q 1
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and is spanned by z( ’), then" ;if is spanned by z,,, we need
only find a holomorphic function, defined in D n with ,,(0) $’ (0) and
such that cannot be continued as a holomorpMc function to an open neigh-
borhood of any boundary point of D n , which is always possible. We now
assume that we have defined ’ on all subspaces for which dim

_
n 1

and let 0 be a subspace spanned by n elements of Y’. Ifz,, is not one of
these elements, we let’ on D. If z, is one of these elements: the set
is formed by {z,, z}, r 1, n 1, z Let

, Q0nDn{z’z, 0},0, Q0nDn{z’z 0}.

Then f, =/’, which is defined on , by the transfinite induction hypothesis,
and f f’, which is defined on , by the finite induction hypothesis, de-
fine a set of compatible functions in Q0 n D, so by Lemma 2.2, we can extend
f" to Qo n D as a holomorphic function which cannot be continued to an open
neighborhood of any boundary point. This establishes the finite induction,

X"so f" is defined on D n and holomorphic for the finite topology, since every
finite dimensional subspace of X" can be embedded as a hyperplane in one, of
these finite dimensional subspaces Q. This also completes the transfinite in-
duction, sof0 can be extended to a function F on D such that F cannot be con-
tinued as a holomorphic function to a neighborhood of any boundary point.

Q.E.D.
The main problem with the finite topology is that it allows too many holo-

morphic functions for most purposes. We turn our attention now to another
topology.

3. Separable Hilbert spaces and the Levi problem
If is a Banach space, the Hamel basis that we chose in Section 2 will in

general have no relation to the norm topology and so the function that we
defined will not be continuous for that topology. But if /is a Hilbert space,
we have a norm which is essentially the same as the norm of the underlying
Euclidean subspaces. It is then possible to define a function through exten-
sion which converges to a holomorphic function in the domain of definition.
We formulate the extension properties in the following lemma.
LEM 3.1. Le D be a domain of holomorphy in C’* and le

z (z, z_)

be .a coordinate o/Q D r z,, 0}, which we assume
f (z’) be a holomorphic ]unc$ion on Q (as an (n 1)-dimenswnal mani]old).
Let

d (z) inf {i]z z" ]1" z" CDI.
Then given A > 0, $here exists a holomorphic function Ga (z) defined in D such
hat

I/(z’,O)-G(z’,z)l< Izl
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for
z eK {z e D: log d(z) + log z - 1, IlYll -< A, log d(z) <_ log A }.

Furthermore, Ga (z) can be chosen so that it cannot be continued as a holomorphic
function to a neighborhood of any boundary point ofD.

Proof. (The proof is n adaptation of sn ides of H6rmsnder [6, p. 88].)
The set

M {z: zeD, (zl, z,-1,0) Q}

is disjoint from K, for z e M implies that z _> d (z). ThusM and Ka Q
are two disjoint relstively closed sets in D (since K is compact in D ), snd so
there exists " function such thst b - 1 in s neighborhood ofK u Q and- 0 in s neighborhood of M. Let D’ D\21r snd define

(z) ..., z,_,, 0),
which is holomorphic inD. Let]" (z) (z), which we emend to all of D by
setting it equal to ero on r. We let

f ) f" (z ) v (z ),

where we determine (z) so as to make F a holomorphic function (i.e. such
that F 0, where -(O/Oz)d). This is equivalent to

the right hand side is (R) and $ closed, so there exists a v satisfying the equation
in D, and since 0 in a neighborhood of Ka, v is holomorphie in a neigh-
borhood of Ka.
By Theorem 4.3.2 [6], v can be uniformly approximated in Ka by functions

holomorphie in D Thus, there exists h(z) holomorphic in D such that
[v(z) h(z)] _< 1/2 on Ka. Then H(z) R(z) zh(z) satisfies
H (z) J (z) -< z. 1/2 on ga.
Since D is a domain of holomorphy, there exists a function s (z) holomorphic

in D which cannot be continued as a holomorphic function to an open neigh-
borhood of any boundary point. Since Ka is compact, there is a constant
k > 0 such that s (z) _< k on K. For Fo (z) H (z) + cz s (z), given any
open neighborhood of any boundary point, there is at most one value of c for
which Fo (z) can be continued as a holomorphic function to that neighborhood.
Since C has a countable base of open sets, there exists co, co <- 1/2k, such
that Ga (z) H (z) W c0z s (z) satisfies the conclusions of the lemma. Q.E.D.

Lemma 3.1 now allows us to prove the following"

THEOa 3.2. Let D be a pseudoconvex domain in a separable Hilbert space
E. Then D is a domain of existence.

Proof. Let z, i 1, 2, be a countable set which is dense in the boundary
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of D. By the Gram-Schmidt orthogonalization process, we convert the z’s
into an orthonormal system which we expand to a complete orthonormal
system b in E. Let W be the subspace spanned by (1, b) and let
Q D n W, which is a domain of holomorphy in the finite dimensional
Euclidean topology on W since it is pseudoconvex.

Let Am n. For Q1, there exists a function G1 which cannot be continued
as a holomorphic function to an open neighborhood of any boundary point.
Having defined G in Q, we define G+ in Q+I satisfying the conclusions of
Lemma 3.1 for K+. We show that the functions thus defined converge to a
function holomorphic in D.

Let > 0 be given and let z e D. Then there exists t, 1 > > 0, such that
z’Dforilz’-- z]! < . Letn >_ max (lizii -t- 1, 4/)andletm >_ nbeso
large that

(,-+, I I’)" < mi ((5/4e,

Fork>_m, inQ z= (z ,z)eKa,andz’ z’ga for zil < /4e,
Since G (z) is continuous, there exists > 0 such that

G-(z’) G,(ze) < n/4 for llz’ zll < r.
Let i" min (i*, /4e, y/8) and let IIz’ zi] < . Then

(Z-.+, + (Z-, z
Hence

e(z’) e(z) < e.(z") .(’) + -, z + -, z

< ,/4 + /4 + n/4

so G. converges to a continuous fction in D. Furthermore, G (z uh) is
holomorphic for lluhll < , since it is the uform lit of holomorphic func-
tions. It is also clear that G cannot be extended to any larger domain, for
then it could be extended beyond some bodary point, which is not possible
by the construction of the function.

Q.E.D.
Wle proving the above theorem, we also proved"

THEOREM 3.3. Let D be a domain of holomorphy in a separable Hilbert space
E and let W be afinite dimensional subspace. Then for any function defined and
holomorphic in Q W n D, there exists a function G defined and holohic in
D such that G (z) f(z) on Q. G(z) can also be chosen to have D as its natural
domain of definition.
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