LOCALIZATION OF MAPPING SPACES

BY MARTIN BENDERSKY

1. Introduction

Let \mathfrak{C} be the category of spaces with the homotopy type of a c.w. complex, and continuous maps. In Anderson [1] a functor $R:\mathfrak{C}\to\mathfrak{C}$ is introduced which has the effect of localizing the homotopy groups of a 1-connected space. In this paper we study R for more general classes of spaces in \mathfrak{C} .

In $\S 2$ we define R and prove the Universality Property (2.7). While much of this is in [1], a careful proof of (2.7) is necessary for $\S 3$.

§3 is devoted to generalizing the localizing properties of R to nilpotent spaces. Here we find that R localizes the homotopy groups above dimension 2, and kills the M-torsion of $\pi_1(X)$. While the effect on π_1 is not as pleasant as Hilton, Mislin and Roitberg's localizing functor ()_(P) [6], R does have the advantages of being functorial on $\mathbb C$ (as opposed to the associated homotopy category), and being applicable to any space in $\mathbb C$ ($X_{(P)}$ is not defined if X is not nilpotent). It is also more conceptual than Bousfield-Kan's functor [2].

In §4 we show that mapping spaces X^r are completely localized by $R(X)^r$ if X is nilpotent, and Y is finite path connected. In §5 we modify R slightly to obtain a functor R_0 . We show that X^r is localized by the mapping space $R_0(X)^r$, where now, Y is simply connected and finite, but X has no conditions on its fundamental group (5.7). It should be remarked that $(X^r)_{(P)}$ localizes, but $(X_{(P)})^r$ is not even defined.

Unless otherwise indicated all spaces belong to C, have finitely generated homotopy groups, and are path connected.

2. The functor R

Let P be a set of primes. Let $Z_{(P)}$ be the integers localized at P. $M \subset Z$ shall denote the set of integers which are invertible in $Z_{(P)}$. A group is M-torsion or P-torsion if its elements are all torsion of order belonging to M, or P respectively.

For $a \in Z$, the Moore space, M(a), is defined to be the cofibre of a map of degree a from S^1 to S^1 .

DEFINITION 2.1. $\pi_n(X; \mathbb{Z}/a) = [S^{n-1}M(a), X]$ where [,] is homotopy classes of base point preserving maps. For $n \geq 2$ this is a group.

From the Puppe sequence

$$S^1 \xrightarrow{a} S^1 \to M(a) \to S^2 \to S^2 \to SM(a) \to \cdots$$

Received July 23, 1973.

we obtain a long exact sequence

$$(2.2) \pi_1(X) \xleftarrow{a} \pi_1(X) \leftarrow \pi_1(X; \mathbb{Z}/a) \leftarrow \pi_2(X) \xleftarrow{a} \cdots.$$

DEFINITION 2.3. X is a $Z_{(P)}$ -space if $\pi_i(X; Z/m) = 0$ for all $i \geq 1$, $m \in M$. For i = 1 this means $\pi_1(X; Z/m)$ has only one element.

A group G is local if the map $G \to G$ defined by $g \to g^m$ is a bijection for $m \in M$. A space is local if all its homotopy groups are local.

From 2.2 it follows that a local space is a $Z_{(P)}$ -space. The converse is almost true:

(2.4) If X is a $Z_{(P)}$ -space $\pi_i(X)$ is a local group for $i \geq 2$, and $\pi_1(X)$ has no M-torsion.

Let $R^1(X)$ be obtained from X by attaching a cone on each map of any $S^kM(a)$, for $a \in M$. Inductively define $R^{i+1}(X) = R^1(R^i(X))$.

Definition 2.5. $R(X) = \bigcup_i R^i(X)$. Clearly R is a functor.

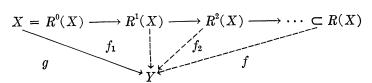
PROPOSITION 2.6 (Anderson [1]). R(X) is a $Z_{(P)}$ -space. The inclusion $e: X \to R(X)$ induces a P-bijection in reduced, integral homology, and a surjection in π_1 .

(A homomorphism $g: G_1 \to G_2$, between arbitrary groups, G_1 , and G_2 is a P-bijection if ker g is M-torsion, and for $x \in G_2$, there is an $m \in M$ such that x^m is in the image of g.)

THEOREM 2.7. Let $g: X \to Y$ be a map of X to a $Z_{(P)}$ -space Y. Then there is up to homotopy a unique map, $f: R(X) \to Y$, such that

homotopy commutes.

Proof. Existence.



To construct f_i , we must extend f_{i-1} to a cone on any map

$$S: S^kM(a) \rightarrow R^{i-1}(X), \quad a \in M$$

Since Y is a $Z_{(P)}$ -space

$$S^k M(a) \xrightarrow{S} R^{i-1}(X) \xrightarrow{f_{i-1}} Y$$

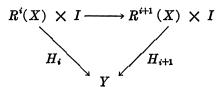
is null homotopic. The null homotopy gives us the required extension. Uniqueness. Suppose we have

$$R(X) \xrightarrow{f_1} Y$$
,

 f_1 and f_2 extensions of g. We denote by f_i^{ε} ($\varepsilon = 1, 2$), the restrictions to $R^i(X)$. Suppose we have found a homotopy

$$H_i: R^i(X) \times I \to Y$$

from f_i^1 to f_i^2 . We wish to find an $H_i: R^{i+1}(X) \times I \to Y$ such that



communtes.

We will then be able to pass to the limit to obtain a homotopy H from f^1 to f^2 .

For a map s: $S^kM(a) \to R^i(X)$, $a \in M$, D is defined to be the space

$$(S^kM(a) \times I) \cup Cone(S^kM(a) \times \{0\}) \cup Cone(S^kM(a) \times \{1\}).$$

We have a map $T:D \rightarrow Y$ defined by

$$(H_i \circ (s \times identity)) \cup (f_{i+1}^1 \circ s) \cup (f_{i+1}^2 \circ s).$$

But D is the same homotopy type as $S(S^kM(a))$. Hence, since Y is a $Z_{(P)}$ -space, T is null homotopic, and we obtain a map

$$T^1: (D \times I)/(D \times \{1\}) \rightarrow Y.$$

 $(D \times I)/(D \times \{1\})$ is homeomorphic to $\operatorname{Cone}(S^kM(a)) \times I$, and we thus obtain a map

$$h: (R^{i}(X) \cup \operatorname{Cone}(S^{k}M(a))) \times I \to Y.$$

Using the above procedure for each map, s, gives us the desired homotopy H_{i+1} .

(2.8) Remark. (i) From the proof, it is clear that the Universality Property is true for any space obtained from X by attaching cones on mappings of Moore spaces. Furthermore, if Y is path connected the mappings of Moore spaces need not be base point preserving.

(ii) In Anderson [1] the uniqueness is shown for maps which restrict to null homotopic maps on each $R^{i}(X)$.

3. Properties of R

A space, X, is said to be nilpotent if $\pi_1(X)$ is a nilpotent group, and acts nilpotently on the higher homotopy groups of X. See Bousfield-Kan [2] for details.

Proposition 3.1. If X and R(X) are nilpotent spaces, then

$$e_i$$
: $\pi_i(X) \rightarrow \pi_i(R(X))$

localizes for $i \geq 2$, and e_1 is the quotient map

$$\pi_1(X) \rightarrow \pi_1(X)/(M\text{-Torsion}) = \pi_1(R(X)).$$

Proof. The first part of 3.1 follows from 2.6 and 3.2 below. The last part is Proposition 3.4.

LEMMA 3.2. Let $f: X \to Y$ be a mapping between nilpotent spaces. Then $H_*(f)$ is a P-bijection if and only if $\pi_*(f)$ is a P-bijection.

Proof. One may use the argument in Dror [3], modified for P-bijection or refer to Hilton, Mislin, and Roitberg [6].

3.1 becomes interesting in light of

Theorem 3.3. If X is nilpotent, then R(X) is nilpotent.

Proof. Let

$$R(X)^{\sim} \xrightarrow{\Phi} R(X)$$

be the Universal covering of R(X). Define $R^{i}(X)^{-} = \mathfrak{G}^{-1}(R^{i}(X))$. In particular

$$\mathcal{O}^{-1}(X) = \bar{X} \xrightarrow{\mathcal{O}} X$$

is a fibration with discrete fibre. Hence \bar{X} is nilpotent. Let η be the cone on a map of a suspension of a Moore space into $R^i(X)$; η denotes a lift of η to $R(X)^{\sim}$. $R^{i+1}(X)^{\sim}$ is obtained from $R^i(X)^{\sim}$ by attaching the cones $\omega \cdot \eta$, for all $\omega \in \pi_1(R(X))$, η as above. Note the attaching maps do not preserve base points. It follows from 2.8 (i) that $\tilde{e}: \bar{X} \to R(X)^{\sim}$ satisfies the Universal Property. Since the 1-skeleton of R(X) is contained in X, and X is path connected, $\pi_1(R(X), X)$ is the 1-point set. By the homotopy extension property, $\pi_1(R(X)^{\sim}, \bar{X})$ is the 1-point set, and \bar{X} is path connected. Since R(X) is a $Z_{(P)}$ -space $R(X)^{\sim} = R(\bar{X})$. It follows from 3.2 that \tilde{e} localizes homotopy. Hence e localizes homotopy in dimension ≥ 2 .

Suppose $\alpha \in \pi_1(R(X))$. Since $\pi_1(e)$ is onto, we may suppose $\alpha = \pi(e)(\alpha^1)$ for some $\alpha^1 \in \pi_1(X)$. Since $\pi_i(e)$, i > 1, is the localization map, it follows

by a simple induction that $\Gamma_i(X) \to \Gamma_i(R(X))$ is P-surjective, where

$$\Gamma_1(Y) = \pi_*(Y) \supset \Gamma_2(Y) \supset \cdots$$

is the filtration of $\pi_*(Y)$ determined by the action of $\pi_1(Y)$.

Since X is a nilpotent space there is a k, such that $\Gamma_k(X) = 0$. Therefore every element in $\Gamma_k(R(X))$ is M-torsion. But $\pi_*(R(X))$ is local for $* \geq 2$, so $\Gamma_k(R(X))$ must be 1, and R(X) is a nilpotent space.

Proposition 3.4. Suppose $\pi_1(X)$ is a nilpotent group. Then

$$\pi_1(R(X)) = \pi_1(X)/(M\text{-torsion})$$

and $\pi_1(e)$ is the canonical quotient map.

Proof. Since X is path connected, and X contains the 1-skeleton of R(X), $\pi_1(R(X), X) = 0$. We wish to show that $\pi_2(R(X), X)$ is M-torsion. 3.4 will then follow, since $\pi_1(R(X))$ has no M-torsion. To this end we state

Lemma 3.5 (Hilton [4]). There is a localization functor which assigns to each nilpotent group G, a nilpotent group $G_{(P)}$, and a map $e: G \to G_{(P)}$ such that

- (i) $G_{(P)}$ is a local group and e is a P-bijection,
- (ii) localization is an exact functor.

We now consider the homotopy sequence of the pair $(R(X)^{\sim}, \bar{X})$ (the notation is that of 3.3). By the homotopy extension property we may identify $\pi_2(R(X), X)$ with $\pi_2(R(X)^{\sim}, \bar{X})$. We therefore obtain the sequence

$$\pi_2(R(X)) \xrightarrow{j} \pi_2(R(X), X) \rightarrow \pi_1(\bar{X}) \rightarrow 0.$$

For this situation there are two relevant observations:

- (1) The image of j lies in the center of $\pi_2(R(X), X)$
- (2) The subgroup, Γ , of $\pi_2(R(X), X)$ generated by elements of the form $(\omega \circ \alpha)\alpha^{-1}$, $\omega \in \pi_1(\bar{X})$, $\alpha \in \pi_2(R(X), X)$ coincides with the commutator subgroup (Spanier [7, pg. 385]).

It follows from (1) that $\pi_2(R(X), X) = \pi$ is nilpotent. Suppose π contains an element, α , which is not M-torsion. The exact sequence

$$0\,\rightarrow\,[\pi,\,\pi]\,\rightarrow\,\pi\,\rightarrow\,\pi/[\pi,\,\pi]\,\rightarrow\,0$$

induces, by 3.5 (ii), an exact sequence

$$0 \to [\pi, \pi]_{(P)} \to \pi_{(P)} \to (\pi/[\pi, \pi])_{(P)} \to 0.$$

But the relative Hurewicz theorem implies $(\pi/[\pi, \pi])_{(P)} = 0$. Furthermore $[\pi_{(P)}, \pi_{(P)}] = [\pi, \pi]_{(P)}$ (Hilton [5]). Since $\pi_{(P)}$ is nilpotent, we must have $\pi_{(P)} = 1$. However by 3.5 (i), $e(\alpha) \neq 1$. We conclude that π is M-torsion, proving 3.4.

In order to obtain information about $H_*(R(X); Z)$ we proceed as follows. Let Y be a $Z_{(P)}$ -space. Then if Y is 1-connected, $H_*(Y; Z/m) = 0$, $* \geq 1$ (Sullivan [8]). For Y arbitrary, we have the fibration

$$\tilde{Y} \rightarrow Y \rightarrow K(\pi_1(Y), 1).$$

From the above remark, this fibration is orientable with Z/m coefficients, and we obtain the following from the Serre spectral sequence.

PROPOSITION 3.6. Let $\pi_i(Y; Z/m) = 0$ $i \geq 1$, $\pi = \pi_1(Y)$. Then $H_*(Y; Z/m) = H_*(\pi; Z/m),$

i.e., the obstructions to $H_*(Y;Z)$ being local, are the groups $H_*(\pi;Z/m)$.

Corolary 3.7. If π is nilpotent and local then $H_*(Y; Z)$ is local.

For, by Hilton [4], $\tilde{H}_*(\pi)$ is local, $* \geq 0$. Note that no assumption on the action of π on the higher homotopy groups is necessary.

Corollary 3.8. Suppose $\pi_1(X)$ is abelian with k free summands. Then

$$H_*(X) \xrightarrow{e} H_*(R(X))$$

is the localization map for * > k.

4. Applications to mapping spaces

We now consider the problem of the localizing the space X^{r} . The base point shall be the constant map.

Lemma 4.1. $R(X)^{Y}$ is a $Z_{(P)}$ -space for X, Y arbitrary c.w. complexes.

Proof. $\pi_*(R(X)^{S^kM(m)}) = 0$ for $* = 0, 1, 2, \dots, k = 0, 1, 2, \dots, m \in M$. Therefore $R(X)^{S^kM(m)}$ has the homotopy type of a point. It follows that $[Y, R(X)^{S^kM(m)}] = 0$. By adjunction $[S^kM(m), R(X)^Y] = 0, k \geq 0, m \in M$. Hence $R(X)^Y$ is a $Z_{(P)}$ -space.

LEMMA 4.2. Let Y be a finite c.w. complex, X a nilpotent path connected space, and F the fibre of the map $e: X \to R(X)$. Then $\pi_n(F^Y)$ is an M-torsion group, $n \geq 1$.

Proof. From the long exact sequence of the fibration $F \to X \to R(X)$ it follows that $\pi_*(F)$ is M-torsion, $* \geq 1$, and F is connected. Assume the result is true for a complex Y with k cells. There is the Puppe sequence

$$Y \to Y \cup D^{\tau} \to S^{\tau}$$
.

and the induced exact sequence

$$[S^{*+\tau}, F] \to [S^*(Y \cup D^{\tau}), F] \to [S^*Y, F],$$

from which it follows that $\pi_*(F^{Y \cup D^r})$ is M-torsion, $* \geq 1$ proving 4.2. Let $X^Y \to R(X)^Y$ be composition with $e: X \to R(X)$.

Proposition 4.3. With X, Y as in 4.2,

- (i) $\pi_*(e): \pi_*(X^Y) \to \pi_*(R(X)^Y)$ localizes for $* \geq 2$,
- (ii) ker $\pi_1(e)$ is the M-torsion of $\pi_1(X^Y)$.

Proof. Both parts follow from the exact sequence

$$[S^nY, F] \rightarrow [S^nY, X] \rightarrow [S^nY, R(X)] \rightarrow [S^{n-1}Y, F]$$

and the lemmas above.

We now come to the main result of this section.

THEOREM 4.4. Let X be a nilpotent space, Y finite and path connected. Then $\pi_*(e)$ localizes the homotopy groups of X^Y for $* \geq 1$.

It remains to show that $\pi_1(e)$ is the localization map. We first prove a special case.

LEMMA 4.5. Let X be simply connected, Y finite. Then $\pi_*(e)$ localizes the homotopy groups of X^{Y} for $* \geq 1$.

Proof. Let $\alpha \in \pi_1(R(X)^Y)$. There is the diagram

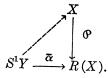
$$m \wedge \operatorname{id} \bigcup_{S^{1}(Y)}^{S^{1}Y \xrightarrow{\overline{\alpha}} R(X)} \beta$$

where $m: S^1 \to S^1$ is a map of degree m, and $\bar{\alpha}$ is the adjoint of α . If we can show that there is a $\beta: SY \to R(X)$, unique up to homotopy, making (4.5) commute, for $m \in M$, then α will have a unique m-th root. The mapping cone of $m \wedge id$ is $M(m) \wedge Y$. The obstructions to unique extension lie in

$$\tilde{H}^*(M(m) \wedge Y; \pi_*(R(X)))$$

Since $\pi_*(R(X))$ is a local group, and M(m) is a \mathbb{Z}/m Moore space, it follows that all obstructions are 0, and $\pi_1(R(X)^Y)$ is local.

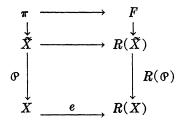
To show $\pi_1(e)$ is a P-bijection we consider the lifting problem



The obstructions \mathfrak{O}_* to lifting $\bar{\alpha}$ lie in $H^{*+1}(S^1 \wedge Y; \pi_*F)$ where F is the fibre of \mathfrak{O} . $\pi_*(F)$ is M-torsion. Hence for each *, there is a $d_* \epsilon M$ such that \mathfrak{O}_* is of order d_* . Since Y is finite there is a k, such that a lift to the k-th stage of the Moore-Postnikove resolution of \mathfrak{O} implies a lift to X. Using the Co-H space structure of S^1 , we replace $\bar{\alpha}$, by $(d_1d_2\cdots d_k)\bar{\alpha}$ which we denote $d\bar{\alpha}$. Since the group structures of [SY, K(G, n)] given by the Co-H space structure of S^1 and by the H-space structure of K(G, n) coincide, we see that

the obstructions to lifting $d\alpha$ are zero, and $\pi_1(e)$ is P-surjective. The P-injectivity of $\pi_1(e)$ follows from 4.3 (ii). This proves 4.5.

To prove 4.4 in general we consider the diagram



where

$$\tilde{X} \xrightarrow{\Phi} X$$

is the universal cover of X, $R(\mathcal{O})$ is given by universality, and F is the fibre of $R(\mathcal{O})$. e localizes higher homotopy groups, and $\pi_1(R(\tilde{X})) = 0$. It follows that $\pi_i(F) = 0$, $i \geq 1$. The Whitehead theorem implies the path component of the base point in F has the homotopy type of a point. Since Y is path connected, F^Y has the homotopy type of a point. It follows that $\pi_i(R(\tilde{X})^Y) \to \pi_i(R(X)^Y)$ is an isomorphism for $i \geq 1$. Similarly $\pi_i(\tilde{X}^Y) \to \pi_i(X^Y)$ is an isomorphism for $i \geq 1$. 4.4 now follows from 4.5.

5. Localizing X^{r} , Y simply connected

Let X be a space. $R_0^1(X)$ is defined to be the space obtained from X by attaching a cone on all maps $S^kM(m) \to X$, $m \in M$, $k \ge 1$. Inductively define $R_0^{i+1}(X) = R_0^1(R_0^i(X))$.

Definition 5.1. $R_0(X) = \bigcup_i R_0^1(X)$.

Clearly R_0 is a functor. The proof of the following proposition is similar to the proof of the corresponding statements for R.

Proposition 5.2. (i) $\pi_i(R_0(X); \mathbb{Z}/m) = 0, m \in M, i \geq 2.$

(ii) The natural map $e_0: X \to R_0(X)$ is universal with respect to maps $X \to Y$, where Y is a space such that $\pi_i(Y; \mathbb{Z}/m) = 0$, $i \geq 2$, all $m \in M$.

In the following lemma X(n) denotes the *n*-th connected cover of X.

LEMMA 5.3. If Y is (n-1)-connected the natural homomorphism $\pi_i(X(n)^Y) \to \pi_i(X^Y)$

is an isomorphism for $i \geq 1$.

Proof. In the proof of 4.4 it is shown that $X(1)^Y \to X^Y$ induces an isomorphism for π_i , $i \geq 1$, if Y is path connected. There is the fibration

(5.4)
$$F = K(\pi_k(X), k-1) \to X(k) \to X(k-1).$$

Furthermore $\pi_i(F^Y) = [S^iY, F] = H^{k-i-1}(Y; \pi_k(X)).$

Since Y is (n-1)-connected and $\pi_k(X)$ is finitely generated, the Universal coefficient theorem implies

$$H^{k-i-1}(Y; \pi_k(X)) = 0, i \geq 0, k \leq n.$$

5.3 now follows from the long exact homotopy sequence associated to (5.4).

Proposition 5.5. If X is path connected then $R_0(X(n)) = R_0(X)(n)$.

Proof. There is the diagram

where $R_0(X)^{\sim}$ is the universal cover of $R_0(X)$, and $\bar{X} = \mathcal{O}^{-1}(X)$. As in the proof of 3.3, $R_0(X)^{\sim} = R_0(\bar{X})$. Since R_0 is obtained from X by attaching cones on suspensions of Moore spaces, $\pi_1(R_0(\bar{X}), \bar{X}) = \pi_2(R_0(\bar{X}), \bar{X}) = 0$. It follows that $\bar{X} = \bar{X}$. 5.5 is therefore true for n = 1. Since $H_*(e_0)$ is a P-bijection, $\pi_*(\tilde{e}_0)$ is the localization map for *>2, and $\pi_2(e_0)$ is the canonical map

$$\pi_2(X) \rightarrow \pi_2(X)/(M\text{-torsion}).$$

Since $\pi_*(e_0)$ is the localization homomorphism for $* \geq 3$, 5.5 follows for $n \geq 2$.

COROLLARY 5.6. Suppose Y is a 1-connected, finite c.w. complex. Then

$$\lambda: X^{\Upsilon} \to R_0(X)^{\Upsilon}$$

localizes all homotopy groups.

Proof. 5.6 follows from the diagram below with "=" meaning "induces an isomorphism for π_* , $* \geq 1$ ".

$$X(2)^{Y} = \frac{f}{X^{Y}}$$

$$\lambda_{1} \downarrow \qquad \qquad \downarrow \lambda$$

$$R(X(2))^{Y} = R_{0}(X(2))^{Y} = R_{0}(X)(2)^{Y} = R_{0}(X)^{Y}$$

$$f_{1} \qquad \qquad f_{2} \qquad f_{3}$$

f and f_3 are equivalences by 5.3. f_2 is an equivalence by 5.5. f_1 is an equivalence since $R = R_0$ for 2-connected spaces. λ_1 induces the localization homomorphism in π_* , $* \geq 1$ by 4.5.

COROLLARY 5.7. R_0 localizes $\pi_* * \geq 3$.

Proof. Take $Y = S^2$ in 5.6.

REFERENCES

- D. W. Anderson, Localizing CW complexes, Illinois J. Math., vol. 16 (1972), pp. 519–525
- 2. A. K. Bousfield and D. M. Kan, Homotopy Limits, completions, and localizations, Lecture Notes in Mathematics, no. 304, Springer-Verlag, New York, 1972.
- E. Dror, A Generalization of the Whitehead Theorem, Symposium on Algebraic Topology, Lecture Notes in Mathematics, no. 244, Springer-Verlag, New York, 1971.
- P. Hilton, Localization and cohomology of nilpotent groups, Math. Zeitschrift, vol. 132 (1973), pp. 263-286.
- 5. ——, Remarks on the localization of nilpotent groups, to appear.
- 6. P. HILTON, G. MISLIN, AND J. ROITBERG, Localization of Nilpotent groups and spaces,
- 7. E. SPANIER, Algebraic topology, McGraw-Hill, New York, 1966.
- 8. D. Sullivan, Geometric topology, Part I., Localization, periodicity and Galois symmetry, MIT, 1970 (mimeographed notes).

University of Washington Seattle, Washington