LOCALIZATION OF MAPPING SPACES

BY
MARTIN BENDERSKY

1. Introduction

Let € be the category of spaces with the homotopy type of a c.w. complex,
and continuous maps. In Anderson [1] a functor R : € — @ is introduced
which has the effect of localizing the homotopy groups of a 1-connected space.
In this paper we study R for more general classes of spaces in €.

In §2 we define R and prove the Universality Property (2.7). While much
of this is in [1], a careful proof of (2.7) is necessary for §3.

§3 is devoted to generalizing the localizing properties of R to nilpotent
spaces. Here we find that R localizes the homotopy groups above dimension
2, and kills the M-torsion of w1 (X'). While the effect on  is not as pleasant as
Hilton, Mislin and Roitberg’s localizing functor ( ) [6], B does have the ad-
vantages of being functorial on € (as opposed to the associated homotopy
category ), and being applicable to any space in @ (X(p) is not defined if X is
not nilpotent). It is also more conceptual than Bousfield-Kan’s functor [2].

In §4 we show that mapping spaces X* are completely localized by R (X))
if X is nilpotent, and Y is finite path connected. In §5 we modify R slightly
to obtain a functor B,. We show that X" is localized by the mapping space
Ro(X)¥, where now, Y is simply connected and finite, but X has no conditions
on its fundamental group (5.7). It should be remarked that (X)) local-
izes, but (X ()" is not even defined.

Unless otherwise indicated all spaces belong to €, have finitely generated
homotopy groups, and are path connected.

2. The functor R

Let P be a set of primes. Let Z) be the integers localized at P. M C Z
shall denote the set of integers which are invertiblein Z(» . A group is M-tor-
sion or P-torsion if its elements are all torsion of order belonging to M, or P
respectively.

For a € Z, the Moore space, M (a), is defined to be the cofibre of a map of
degree a from S' to S*.

DeriNiTION 2.1. m(X; Z/a) = [S" M (a), X] where [ , ] is homotopy
classes of base point preserving maps. For n > 2 thisis a group.

From the Puppe sequence
S M@) > S-S > SM@) > -
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we obtain a long exact sequence

22) mX)LmX)—mX;Z/a) —m(X) 2

DeriniTioN 2.3. Xisa Zp-spaceif 7;(X;Z/m) = Oforalli > 1, m ¢ M.
For 7 = 1 this means m (X; Z/m) has only one element.

A group G is local if the map G — G defined by g — ¢™ is a bijection for
meM. A space is local if all its homotopy groups are local.

From 2.2 it follows that a local space is a Zz)-space. The converse is almost
true:

(24) If Xisa Zp-space 7;(X) is a local group for ¢ > 2, and m (X)) has
no M-torsion.

Let R'(X) be obtained from X by attaching a cone on each map of any
S*M (a), for @ e M. Inductively define R (X) = R*(R'(X)).

DeriniTioN 2.5. R(X) = U; R*(X). Clearly R is a functor.

ProrosiTioN 2.6 (Anderson [1]). R(X) s a Z)-space. The inclusion

e: X — R (X) induces a P-bijection in reduced, tntegral homology, and a surjec-
tion in m.

(A homomorphism g: Gy — G,, between arbitrary groups, Gi, and G; is a
P-bijection if ker g is M-torsion, and for = € G,, there is an m ¢ M such that
z™ is in the image of g.)

TurorEM 2.7. Let g: X — Y be a map of X to a Zpy-space Y. Then
there is up to homotopy a unique map, f: R(X) — Y, such that

X -2, R(X)

homotopy commutes.
Proof. Existence.
X = R(X) — R'(X) — BX(X) — -+ < R(X)
N1 E ,/fz ”””””””””
g i P f
To construct f;, we must extend f; 3 to a cone on any map

S: S*M(a)— RT'(X), aeM
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Since Y is a Z(p)-space

SM(a) —S— p(x) L=y

is null homotopic. The null homotopy gives us the required extension.
Uniqueness. Suppose we have

rx) oy,
Ja
—_
fi and f» extensions of g. We denote by fi (¢ = 1, 2), the restrictions to
R*(X). Suppose we have found a homotopy
H,':Ri(X) XI -Y
from f} to f3. We wish to find an H; : R™™(X) X I - Y such that
R(X) X I—— R (X) X I

x‘ Hiiq

Y

communtes.

We will then be able to pass to the limit to obtain a homotopy H from f* to
2

I .
For a map s: 8*M(a) - R'(X), a e M, D is defined to be the space

(S* M (a) X I) u Cone(S*M (a) X {0}) u Cone(S*M (a) X {1}).
We have amap 7' : D — Y defined by
(H;o (s X identity)) u (fizros) U (fiaos).

But D is the same homotopy type as S(S*M (a)). Hence, since Y is a Z -
space, T is null homotopic, and we obtain a map

T': (D X I)/(D X {1}) > Y.
(D X I)/(D X {1}) is homeomorphic to Cone (S*M (a)) X I, and we thus
obtain a map
h: (R(X) u Cone(S*M(a))) X I - Y.

Using the above procedure for each map, s, gives us the desired homotopy
H i41e

(2.8) Remark. (i) From the proof, it is clear that the Universality Prop-
erty is true for any space obtained from X by attaching cones on mappings of
Moore spaces. Furthermore, if Y is path connected the mappings of Moore
spaces need not be base point preserving.
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(ii) In Anderson [1] the uniqueness is shown for maps which restrict to
null homotopic maps on each R*(X).

3. Properties of R

A space, X, is said to be nilpotent if (X)) is a nilpotent group, and acts
nilpotently on the higher homotopy groups of X. See Bousfield-Kan [2] for
details.

Prorposition 3.1. If X and R(X) are nilpotent spaces, then
e m(X) - m(B(X))
localizes for © > 2, and e, is the quolient map
m(X) - m(X)/(M-Torsion) = m(R(X)).

Proof. The first part of 3.1 follows from 2.6 and 3.2 below. The last part
is Proposition 3.4.

LemMmA 8.2. Letf: X - Y be a mapping between nilpotent spaces. Then
H, (f) is a P-bijection if and only if w«(f) 7s a P-bijection.

Proof. One may use the argument in Dror [3], modified for P-bijection or
refer to Hilton, Mislin, and Roitberg [6].

3.1 becomes interesting in light of
TreoreEM 3.3. If X s nilpotent, then R (X) is nilpotent.
Proof. Let

R(X) -2 R(X)
be the Universal covering of R(X). Define R'(X)” = ¢ (R*(X)). In
particular
@

Xy =X — X

is a fibration with discrete fibre. Hence X is nilpotent. Let # be the cone
on a map of a suspension of a Moore space into R’ (X); 7 denotes a lift of n to
R(X)~. R™(X) is obtained from R'(X)” by attaching the cones w- 4, for
all w em (R(X)), n as above. Note the attaching maps do not preserve base
points. It follows from 2.8 (i) that 2: X - R(X)~ satisfies the Universal
Property. Since the 1-skeleton of R (X) is contained in X, and X is path
connected, m(R(X), X) is the 1l-point set. By the homotopy extension
property, m (R(X)~, X) is the 1-point set, and X is path connected. Since
R(X) is a Z@-space R(X)~ = R(X). It follows from 3.2 that & localizes
homotopy. Hence ¢ localizes homotopy in dimension >2.

Suppose o e 7 (R (X)). Since m (¢) is onto, we may suppose o = w(e) (o)
for some o' e m (X). Since m(e), ¢ > 1, is the localization map, it follows
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by a simple induction that T';(X) — I';(R (X)) is P-surjective, where
Pl(Y) = Tx (Y) - Fz(Y) o

is the filtration of 7« (Y) determined by the action of =1 (Y).

Since X is a nilpotent space there is a k, such that T'x(X) = 0. Therefore
every element in I'y (R (X)) is M-torsion. But 7« (R (X)) is local for » > 2,
80 I+ (R (X)) must be 1, and R (X) is a nilpotent space.

ProrosiTioN 3.4. Suppose m (X) s a nilpotent group. Then
m(R (X)) = m(X)/(M-torsion)
and w1 (e) is the canonical quotient map.

Proof. Since X is path connected, and X contains the 1-skeleton of R (X),
m(R(X),X) = 0. We wish to show that m (R(X), X) is M-torsion. 3.4
will then follow, since 7 (R(X)) has no M-torsion. To this end we state

Lemma 3.5 (Hilton [4]). There is a localization functor which assigns to
each nilpotent group G, a nilpotent group G, and a map e : G — Gy such
that

i) G s a local group and e is a P-bijection,

(i) localization is an exact functor.

We now consider the homotopy sequence of the pair (R(X)~, X) (the
notation is that of 3.3). By the homotopy extension property we may iden-
tify m (R(X), X) with m(R(X)~, X). We therefore obtain the sequence

nRX)) 15 mERX),X) — m(X) — 0.

For this situation there are two relevant observations:

(1) The image of j lies in the center of m (R (X), X)

(2) The subgroup, T, of m(R(X), X) generated by elements of the form
(woa)a™, wem(X), a em(R(X), X) coincides with the commutator sub-
group (Spanier [7, pg. 385]).

It follows from (1) that m(R(X), X) = = is nilpotent. Suppose = con-
tains an element, o, which is not M-torsion. The exact sequence

0— [nx] > 7 — x/[m,7x] >0
induces, by 3.5 (ii), an exact sequence
0 — [m 7l — 7@ — (@/lm, 7)) - 0.

But the relative Hurewicz theorem implies (w/[m, 7])@ = 0. Further-
more [r@), mpy] = [r, 7] (Hilton [5]). Since w() is nilpotent, we must
have m = 1. However by 3.5 (i), e(a) # 1. We conclude that = is
M -torsion, proving 3.4.

In order to obtain information about H« (R (X); Z) we proceed as follows.

Let Y be a Z-space. Then if YV is 1-connected, H«(Y; Z/m) = 0,
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* > 1 (Sullivan [8]). For Y arbitrary, we have the fibration
Y 5 Y - K(m(@),1).

From the above remark, this fibration is orientable with Z/m coefficients, and
we obtain the following from the Serre spectral sequence.

Prorostmion 3.6. Let m(Y;Z/m) = 04 > 1, = m(Y). Then
H«(Y;Z/m) = Hx(m; Z/m),
i.e., the obstructions to H(Y'; Z) being local, are the groups Hy (w; Z/m).
COROLARY 3.7. If w is nilpotent and local then H4 (Y ; Z) is local.

For, by Hilton [4], H4 () is local, * > 0. Note that no assumption on
the action of = on the higher homotopy groups is necessary.

CoOROLLARY 3.8. Suppose m1 (X)) is abelian with k free summands. Then

Hy(X) — Hx(R(X))
18 the localization map for « > k.

4, Applications to mapping spaces

We now consider the problem of the localizing the space X”. The base
point shall be the constant map.

Lemma 4.1. R(X)Y is a Z(p)-space for X, Y arbitrary c.w. complexes.

Proof. 7« (R(X)*™™) = Ofor* =0,1,2,---,k=0,1,2, -+, meM.
Therefore R (X )Skm"‘) has the homotopy type of a point. It follows that
[V, R(X)*¥™] = 0. By adjunction [S*M (m), R(X)"] =0, k > 0,
meM. Hence R(X)" is a Z ) -space.

Levma 4.2. Let Y be a finite c.w. complex, X a nilpotent path connected
space, and F the fibre of themap e : X — R(X). Then m,(F") is an M-torsion
group, n > 1.

Proof. From the long exact sequence of the fibration F — X — R(X) it
follows that w4 (F) is M-torsion, * > 1, and F is connected. Assume the
result is true for a complex Y with & cells. There is the Puppe sequence

Y—->YuD — 8§,
and the induced exact sequence
[8**",F] — [$*(Y u D"), F] — [§8"Y, F),

from which it follows that s (F'V"") is M-torsion, * > 1 proving 4.2.
Let X¥ - R(X)” be composition with e : X — R(X).

Prorosition 4.3. With X, Y as in 4.2,
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(1) wale) : 7 (X)) = m (R(X)T) localizes for » > 2,
(i) ker m (e) is the M-torsion of = (X¥).

Proof. Both parts follow from the exact sequence
[8"Y,F] — [8"Y, X] — [S"Y, R(X)] — [8"'Y, F]

and the lemmas above.
We now come to the main result of this section.

TrHEOREM 4.4. Let X be a nilpotent space, Y finite and path connected. Then
w4 (¢) localizes the homotopy groups of X* for » > 1.

It remains to show that m (e) is the localization map. We first prove a
special case.

Lemma 4.5. Let X be stmply connected, Y finite. Then w4« (e) localizes the
homotopy groups of X* for » > 1.

Proof. Let o em(R(X)¥). There is the diagram

87 -2 R(X)

m A id l /”
/7
S(Y)

where m : 8' - S'is a map of degree m, and & is the adjoint of a. If we
can show that there is a 8 : SY — R(X), unique up to homotopy, making
(4.5) commute, for m ¢ M, then « will have a unique m-th root. The mapping
cone of m A idis M(m) A Y. The obstructions to unique extension lie in

H* (M (m) N Y;7e(R(X)))

Since 74 (R (X)) is a local group, and M (m) is a Z/m Moore space, it follows
that all obstructions are 0, and m (R (X)) is local.
To show m (e) is a P-bijection we consider the lifting problem

4

87 -2, kx).

The obstructions O to lifting & lie in H***(S' /A Y;x«F) where F is the
fibre of ®. m«(F) is M-torsion. Hence for each *, there is a d« ¢ M such
that O is of order d4. Since Y is finite there is a k, such that a lift to the
k-th stage of the Moore-Postnikove resolution of ® implies a lift to X. Using
the Co-H space structure of S*, we replace &, by (dids- - -di)& which we denote
da. Since the group structures of [SY, K (G, n)] given by the Co-H space
structure of 8' and by the H-space structure of K (G, n) coincide, we see that
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the obstructions to lifting de are zero, and m (e) is P-surjective. The P-in-
jectivity of m (e) follows from 4.3 (ii). This proves 4.5.
To prove 4.4 in general we consider the diagram

T — F
i} !
X R(X)
® l l R(®)
X e R(X)
where
x %, x

is the universal cover of X, R(®) is given by universality, and F is the fibre of
R(®). e localizes higher homotopy groups, and = (R(X)) = 0. It follows
that m;(F) = 0, ¢ > 1. The Whitehead theorem implies the path com-
ponent of the base point in F has the homotopy type of a point. Since Y
is path connected, F¥ has the homotopy type of a point. It follows that
m(R(X)") - m:(R(X)Y) is an isomorphism for ¢ > 1. Similarly =;(X*) —
7:(X") is an isomorphism for 7 > 1. 4.4 now follows from 4.5.

5. Locdlizing X7, Y simply connected

Let X be a space. R3(X) is defined to be the space obtained from X by
attaching a cone on all maps S*M(m) —» X, meM, k > 1. Inductively
define R (X) = Ri(Rs(X)).

DerFintTioN 5.1, Ro(X) = URi(X).

Clearly R, is a functor. The proof of the following proposition is similar
to the proof of the corresponding statements for E.

ProposiTiON 5.2. (1) m(Ro(X);Z/m) = O,meM,7 = 2.

(ii) The natural map e : X — Ro(X) 7s universal with respect to maps
X — Y, where Y is a space such that #;(Y; Z/m) = 0,¢ > 2,allmeM.
In the following lemma X (n) denotes the n-th connected cover of X.
LemMmA 5.3. If Y is (n — 1)-connected the natural homomorphism
(X (n)") = m(XT)
is an tsomorphism for ¢ > 1.

Proof. In the proof of 4.4 it is shown that X (1)* — X" induces an iso-
morphism for 7;, ¢ > 1,if Y is path connected. There is the fibration

(5.4) F=KmX),k—1)—> Xk) > Xk — 1).
Furthermore m;(F¥) = [S'Y,F] = H* 7' (¥; m (X)).
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Since Y is (n — 1)-connected and m, (X)) is finitely generated, the Universal
coefficient theorem implies

H" 7' (Y;m(X)) =0, ¢ >0,k < n.
5.3 now follows from the long exact homotopy sequence associated to (5.4).
Prorostmion 5.5. If X s path connected then By(X (n)) = Ro(X)(n).
Proof. There is the diagram

- €
X —= 5 Ry(X)~

X — % |, R(X)

where Eo(X)~ is the universal cover of Ro(X), and X = ¢'(X). Asin
the proof of 3.3, Ro (X)~™ = Ro(X). Since R, is obtained from X by attach-
ing cones on suspensions of Moore spaces, m1 (Ro(X), X) = m(Ro(X), X) =
0. It follows that X = X. 5.5 is therefore true for n = 1. Since H (e)
is a P-bijection, m« (&) is the localization map for * > 2, and m (&) is the
canonical map
m(X) - m(X)/(M-torsion).
Since 7« (e) is the localization homomorphism for * > 3, 5.5 follows for
n > 2.
COROLLARY 5.6. Suppose Y is a 1-connected, finite c.w. complex. Then
N XY o R(X)Y
localizes all homotopy groups.

Proof. 5.6 follows from the diagram below with ="’ meaning “induces an
isomorphism for m, * > 17.
f
x(2)” X’
M A

R(X(2))" = Ro(X(2))" = Ro(X)(2)" = Ro(X)"
f fa fs

f and f; are equivalences by 5.3. f; is an equivalence by 5.5. fi is an equiva-
lence since B = R, for 2-connected spaces. ); induces the localization homo-
morphism in 74, * > 1 by 4.5.

COROLLARY 5.7. Ry localizes s * > 3.
Proof. TakeY = §%in 5.6.
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