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Abstract

In this paper we show that if T is an isoloid operator for which Weyl’s
theorem holds and if p(t) is a polynomial then Weyl’s theorem holds for p(T)
if and only if p(co(T)) co(p(T)) where co(T) is the Weyl spectrum of T. We
also prove that if Weyl’s theorem holds for T and if N is a nilpotent operator
commuting with T then Weyl’s theorem ,holds for T / N.

1. Preliminaries

Let X be a complex Banach space and let ’(X) be the space of continuous
linear operators on X considered with the norm topology. For T e &(X) let
a(T), (T), and noo(T) be respectively the spectrum, the resolvent set, and the
isolated points of a(T) which are eigenvalues of finite (geometric) multiplicity.
Let V’(T) and N(T) respectively denote the null space and the range space of
T. Let be the class of Fredholm operators on X (T e if and only if N(T)
is closed and the dimension of ff(T) and the codimension of N(T) are both
finite) and let o be the class of Fredholm operators of index 0, i.e., those oper-
ators in for which dim jV’(T) codim N(T). If f(X) is the ideal of com-
pact operators on X then will denote the image of T under the canonical
mapping of (X) into the quotient algebra (X)/:;Cr(X). Finally, let be the
set of complex numbers.

DEFINITION 1. The Weyl spectrum co(T) of T 6 &(X) is defined by co(T)
{2:21- To}.

Remark. If X is finite dimensional then co(T) 0. However, if X is in-
finite dimensional (and from now on we shall assume X to be so) then co(T) is
a nonempty compact subset of a(T) and it always contains a(). Also, if no(T)
is the set of eigenvalues of finite multiplicity of T then a(T) no(T) co(T).

We say that Weyl’s theorem holds for T if co(T) tr(T) noo(T).
From the above remark it follows immediately that if no(T)= 0 then

Weyl’s theorem holds for T.
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2. Spectral mapping theorem for the Weyl spectrum

In this section we give conditions under which f(o(T)) o(f(T)) for a
holomorphic function f(t) defined in a neighborhood of spectrum of T. We
may remark (see rl, Example 3.3]) that in general even for a polynomial p(t),
p(o)(T)) oo(p(T)).
To avoid trivialities, in the sequel, whenever we consider a polynomial we

shall assume that it is not a constant polynomial.

LEMMA 1. Let T .W(Z). Then for any polynomial p(t) we have tr(p(T))
ZCoo(p(r)) c p(er(r) Zoo(T)).

Proof. Let 2 tr(p(T)) Zroo(p(T)) p(tr(T)) rCoo(p(r)).

Case I. 2 is not an isolated point of p(tr(T)). In this case there exists a
sequence (2,) contained in p(tr(T)) such that 2, --* 2. There exists a sequence
(/,) in tr(T) such that p(#,) 2, 2. This implies that (p,) contains a con-
vergent subsequence and we may assume that lim/. Po. Hence 2
lim p(p,) P(#o). Since Po a(T) rCoo(T) then 2 p(a(T) ZCoo(T)).

Case II. 2 is an isolated point of a(’p(T)) so that either 2 is not an eigenvalue
of p(T) or it is an eigenvalue of infinite multiplicity. Let p(T)- 2I
ao(T btlI) (T

If 2 is not an eigenvalue ofp(T) then none of pl,..., p can be an eigenvalue
of T and of course, at least one of/,..., p, is in tr(T). Therefore,

2 e p(tr(r) Zroo(r)).

If 2 is an eigenvalue ofp(T) of infinite multiplicity then at least one of #t,...,
p,,, say pt, is an eigenvalue of T of infinite multiplicity. Then/t e tr(T)
noo(T) and p(#) so that e p(tr(T) rtoo(T)).

DEFINITION 2. An operator T is called isoloid if isolated points of tr(T) are
eigenvalues of T.

PROPOSITION 1. Let T .W(X) be isoloid. Then for any polynomial p(t) we
have p(tr(T) Zroo(T)) tr(p(r)) ZCoo(p(r)).

Proof. In the presence of Lemma we need only to show that p(tr(T)
roo(T)) c tr(p(r)) rCoo(P(r)).

Let 2 p(tr(T) Zoo(T)). Since p(tr(T)) tr(p(T)) then 2 tr(p(T)). If
possible let e Ztoo(p(T)) so that in particular, is an isolated point of tr(p(T)).
Let

(1) p(r) 21 ao(r pI)...(r p,I).

The relation (1) shows that if any of pl,..., p is in r(T) then it must be an
isolated point of t(T) and hence an eigenvalue (since T is isoloid). Since 2 is
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an eigenvalue of finite multiplicity any such must also be an eigenvalue of
finite multiplicity and hence belongs to Zroo(T). This contradicts the fact that
2 p(a(T) noo(T)). Therefore, 2 6 Zoo(p(T)) and

p(a(T) :oo(T)) a(p(T)) Zoo(p(T)).

THEOREM 1. Let T be an isoloid operator and let Weyl’s theorem hoMfor T.
Then for any polynomial p(t) Weyl’s theorem holds for p(T) if and only if
p(cg(T)) o(p(T )).

Proof. From Proposition p(a(T) noo(T)) a(p(T)) roo(p(T)). If
Weyl’s theorem holds for T then o(T) a(T) noo(T) so that

p(cg(T)) p(a(T) roo(T)) a(p(T)) noo(p(T)).

The theorem follows immediately from this relationship.

Example 1. We give an example to show that both Proposition 1 and The-
orem may fail if T is not assumed to be isoloid.

Define Tx and T2 on 12 by

and
Tx(x, x2, ) (xt, O, x2/2, xa/2, )

T2(Xl, x2,... ) (0, xt/2, x2/3, xa/4,. ).

Let T be defined on X 12 ( 12 by T Tt (T2 I). Then

and
a(T) {1} t3 {z: Izl 1/2} t3 {-1}, Zroo(T) {1}

(T) {z: lzl 1/2} w {-1}.

Thus Weyl’s theorem holds for T.
Let p(t) 2. It is easy to verify that

and

,(p(T)) {z: 121 < 1/4} {1}, Zoo(p(T)) {1}

(.o(p(T)) {z: Izl 1/4} w (1}.

Thus p(a(T) noo(T)) but tr(p(T)) roo(p(T)). Also, co(p(T))
p(co(T)) but Weyl’s theorem does not hold for p(T).

For the proof of the next theorem we need the concept of limit of a sequence
of compact subsets of the complex plane. For this we refer to [7].

THEOREM2. Let T .W(X) be such that for any polynomial p(t) then
p(co(T)) to(p(T)). Then iff(t) is a holomorphic function defined in a neigh-
borhood of a(T) then f(co(T)) co(f(T)).
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Proof. Let (p,(t)) be a sequence of polynomials converging uniformly in a
neighborhood of tr(T) to f(t) so that p,(T) f(T). Since f(T) commutes
with each p,(T) by I-7, Theorem 2] we have

co(f(T)) lim co(p,(T)) lim p,(to(T)) f(to(T)).

For the definitions of spectral operators (in the sense of Dunford) and the
related concepts we refer to I-2, Chapter XV].

COROLLARY 1. Let T be a spectral operator offinite.type, in particular let T
be a normal operator on a Hilbert space. Then for any holomorphic function f(t)
defined on a neiyhborhood of a(T) we have co(f(T)) f(to(T)).

Proof. For any polynomial p(t), p(T) is a spectral operator of finite type.
Hence, p(T) is isoloid and Weyl’s theorem holds for p(T) [-7, Theorem 4-1. By
Theorem 1, p(to(T)) to(p(T)). The result now follows from Theorem 2.

3. Two perturbations theorems

In this section we prove the conjecture made in I-7] and give one more result
on the same lines.

LEMMA 2. Let T .W(X) and let N be a quasinilpotent operator commuting
with T. Then to(T + N) to(T).

Proof. It is enough to show that if 0 6 to(T) then 0 6 to(T + N).
Let 0 6 to(T) so that 0 a(). For all 2 we have tr((T + 2N) ^) tr().

Hence 0 6 tr((T + 2N)^) for all 2 .
Thus for all 2 e cg, T + 2N is a Fredholm operator and in particular has

closed range and has an index. By 1_4, Theorem V.1.8], T + 2N has the same
index for all 2 e . (This is not explicitly stated in the theorem quoted. How-
ever it follows immediately from the theorem and the fact that the index stays
stable in a neighborhood of a Fredholm operator.) Since T is a Fredholm
operator of index 0 then T + N o so that 0 to(T + N).

COROLLARY 2. Let T be a spectral operator and let S be its scalar part. Then
to(T) to(S). Also, if tr(T) does not have isolated points then Weyl’s theorem
holds for T.

Proof. T S + N where N is a quasinilpotent operator commuting with
T. Hence to(T) to(S).

If tr(T) does not have isolated points then tr(S) (= tr(T)) does not have iso-
lated points. Since Weyl’s theorem holds for S i7, Theorem 4],

to(T) to(S)= tr(S) a(T) (= a(T) Xoo(T)).

Hence, Weyl’s theorem holds for T.
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The next theorem proves the conjecture made in [7].

THEOREM 3. Let T (X) and let N be a nilpotent operator commuting with
T. If Weyl’s theorem holds for T then it also holds for T + N.

Proof. We show that noo(T + N) Hog(T).
Let 0 e Hog(T) so that W(T) is finite dimensional. Let (T + N)x 0 for

some x -# 0. Then Tx -Nx. Since N commutes with T it follows that for
every positive integer

(2) Tmx (- 1)mNmx.

Let n be the smallest positive integer such that Nn 0. The relation (2)
shows that for some r with < r < n, T’x 0 and then T x A/’(T). Thus

A/’(T + N) =
Therefore, V(T + N) is finite dimensional. Also if for some x (#0) Tx 0
then (T + N)"x 0 so that 0 is an eigenvalue of T + iV. Again since
a(T + N) a(T) it follows that 0 oo(T + N).
By symmetry 0 noo(T + N) implies 0 7too(T). Thus we have

o9(T + N) o(T) (by Lemma 2)

a(T) Hog(T) (since Weyl’s theorem holds for T)

a(T + N),, noo(T + N).

Therefore, Weyl’s theorem holds for T + N.

Example 2. Let X 12 and let T and N in &a(X) be defined by

T(x, x2, x3,. .) (0, x/2, x2/3,...)
and

N(x, x2, x3, ) (0, x/2, O, 0,...).

Since the point spectrum of T is empty then Weyl’s theorem holds for T.
Also N is a nilpotent operator. Since

0 Zroo(T + N)c o9(T + N)

then Weyl’s theorem does not hold for T + N.
This example shows that Theorem 3 may fail if N is not assumed to commute

with T. It also shows that if Weyl’s theorem holds for T and F is a finite rank
operator (i.e., (T) is finite dimensional) then Weyl’s theorem may not hold
for T + F. The next theorem gives some conditions under which Weyl’s
theorem would hold for T + F when it holds for T.

Recall that if 2 is an isolated point of a(T) and P is the projection associated
with 2 then the dimension of P is called the algebraic multiplicity of 2. If dimen-
sion of P is finite and not zero then 2 must be an eigenvalue of T. By Xoa(T)
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we denote the set of isolated eigenvalues of T of finite algebraic multiplicity.
It is well known that non(T) roo(T). For the details we refer to [6, 111.6.5].

THEOREM 4. Let Weyl’s theorem holdfor T and let F be afinite rank operator.
Let rCoo(T)= roa(T) and let roo(T + F)= noa(T + F). Then Weyl’s
theorem holds for T + F.

Remark. By [3, Theorem 4.2] the hypothesis noo(T) ZCoA(T) is satisfied
if 2 noo(T) implies 2I T is normally solvable.

Proof. As in [6, IV.6.2-1 we define the multiplicity function (2, T) for T by

{m if (T)
(;, T) P if 2 is an isolated point of a(T)

in all other cases.

Let A (T) no(T).
The first Weinstein-Aronszajn formula [6, Theorem IV.6.2] gives

(.) (2, T + F) (2, T) + v(2, co), 2A,

where v(, to) is a finite integer valued function. (For the details of the definition
of v(;, to) refer to [6, IV.6.2]. The only property of v(, to) that we shall use is
that it is finite integer valued function and so we do not include details of its
definition.)
Let/ rCoo(T) (T) non(T) (T). Then (,)shows that (, T + F)

is finite and hence

2 noa(T + F)t3 (T + F)= roo(T + F)t3 (T + F).

Hence

Similarly

Thus

so that

7too(T) w (T) Zroo(T + F) (T + F).

noo(T / F) w (T / F) noo(T) (T).

noo(T) w (T)= roo(T + F)3 (T + F)

a(T) noo(T) a(T + F),,, noo(T + F).

The theorem now follows from the fact that to(T + F) to(T).
We conclude this paper by mentioning a few questions that we have not been

able to answer.
1. Does there exist a Toeplitz operator T such that Weyl’s theorem does not

hold for T2? We know (see, e.g. [5, Problem 195]) that T2 is not Toeplitz
unless T is analytic or coanalytic.
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We may add that Example 3.3 in [-1] along with Theorem may be used to
show that there exists a Toeplitz operator T and a polynomial p(t) such that
Weyl’s theorem does not hold for p(T). Note that a Toeplitz operator is
isoloid.

2. Does there exist a hyponormal operator T such that Weyl’s theorem does
not hold for T27 Note that T 2 may not be hyponormal if T is hyponormal
[5, Problem 164].

3. If Weyl’s theorem holds for T and F is a finite rank operator commuting
with T then does Weyl’s theorem hold for T + F?
We may remark that if F is required to be a compact operator then Weyl’s

theorem may not hold for T + F if it holds for T. A simple example is to take
T 0 and F to be adjoint of the operator T2 given in Example 1.
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