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BY
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1. Introduction

Given a function f: X — Y, a class & of topological spaces, and a class € of
functions, the extension function problem is to find a topological extension Z
of X and extension function F: Z — Y of f such that Z € o« and Fe ¥. The
first author [5] proved that if f is continuous, then it is possible tp construct a
continuous perfect extension F on some topological extension Z of X and noted
that if X and Y are Hausdorff spaces, then Z is not necessarily Hausdorff.
Viglino [21] started with a continuous function f and Hausdorff spaces X and
Y and required that F be continuous and Z be Hausdorff; he showed it was
possible to obtain a maximal continuous extension function F (maximal in the
sense that there is no proper continuous extension of F defined on a Hausdorff
topological extension). Such maximal continuous extensions are called abso-
lutely closed and are characterized in [6] in terms of a closedness-like property
of F and a compactness-like property of point-inverse of F—analogous to the
perfect function setting.

The notion of “O-continuity” between Hausdorff spaces is more useful in
certain cases (cf., [8], [11], [13], [16]) than “continuity.” In this paper, we
start with a 0-continuous function f and Hausdorff spaces X and Y and require
that F be 0-continuous and Z be Hausdorff. Maximal 6-continuous extension
functions are called f-absolutely closed and are investigated in Section 4; in
particular, a f-continuous function between H-closed spaces is 0-absolutely
closed. We are able to show that if Y is regular or H-closed, Urysohn, then f
has a @-absolutely closed extension F. A concept stronger than 6-absolutely
closure, called -perfect, is developed in Section 3 and characterized in terms of
a closedness-like property and compactness-like property of point-inverses.

A O-continuous function between Hausdorff spaces that has a f-continuous
extension between their Katétov extensions is called a 6-p-map and is studied
in Section 5. Now 6-p-maps are related to 0-absolutely closed functions as
every 0-p-map from a Hausdorff space into an H-closed space has a 6-absolutely
closed extension. In Section 6, the compactness-like properties of point-inverses
of 0-perfect and 6-absolutely closed functions are investigated and related. A
filter concept, called almost convergence, is defined in this section, developed
in Section 2, and used to obtain many of the results in the rest of the paper.

The reader is referred to [3] for the definitions not given here. Here are a
few additional definitions and results that are needed throughout the paper.
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In a space X, the set of regular open subsets, i.e., {int (cl 4): 4 = X}, forms
an open basis for a topology on the underlying set of X; this new topological
space is denoted as X, and called the semiregularization of X. A space X is
semiregular if X = X, and is semiregular at a point p € X if {int (cl A):
peint (cl 4) and 4 < X} is a neighborhood basis of p in X. The space Xj is
semiregular.

Let & be a filter base on a space X. If x € X is an adherent point of &#, we
write x € ady &, and if & converges to x € X, we write & —» x. If # and ¥
are filter bases on X, we say that ¢ is finer than &, written as # < ¥, if for
each F e &, there is G € ¢ such that G = Fand that # meets 4if FNn G # 0
for every Fe & and G € 4. The neighborhood filter of a set 4 = X, denoted
as A, is the set of neighborhoods of 4; 4 is used to denote the filter base
{cl U: Ue A& ,}. Usually, A, is denoted as A.

Let & be a filter base on a space X. We say & almost converges to a subset
A < X, written as & ~» 4 or &F ~»x A, if for each cover &/ of A by subsets
open in X, there is a finite subfamily # < & and Fe & such that F <
U{clV:Ve®B}. We say F almost converges to a point x € X, written as
F ~» x, if F -~ {x}. Now, A, - x, whereas, &, ~» x. A point x € X is an
almost adherent point of %, written as x € al # or x € aly &, if # meets A ,.

For a set A < X, the almost closure of A or 0-closure of A, denoted as cly A,
isaly {4} if A # 0 and is Q0 if 4 = Q; A is O-closed if A = cly A. Corre-
spondingly, the almost interior of A or O-interior of A, denoted as inty A, is
{x € X:cl U = A for some open set U containing x}. The concepts of almost
convergence, almost adherence, and almost closure were introduced by Velicko
to study H-closed spaces [19] and to obtain a generalization of Taimanov’s
extension theorem [20]. Almost closure is used by FitzGerald and Swingle in
[9], and a number of the results in this paper have been used by the authors in
7]

The following example is frequently used throughout the sequel.

(1.1) Example. [4, Example 3.14]. Let Y denote the well-known example
of a noncompact, minimal Hausdorff space due to Urysohn. That is, for each
pair of positive integers i, j, let a; ; = (1/i, 1/j), b; ; = (1/i, —1/j), and ¢; =
(1/i, 0), let

W ={a;;:(,j)eN x N} u {b; ;: (i,j)e N x N} u {¢;: i e N},

and let a, = (0, 1) and b, = (0, —1). The topology for W is the topology
inherited from the plane and a basic set containing a, (resp. b,) is of the form

Uiaog) = {ao} U {a; ;i = n,jeNj (resp. V,(by) = {bo} U {b; j:i = n,jeN}.

Let X be the subspace consisting of a, and all of the a; ;’s and ¢;’s; the subspace
X is H-closed, Urysohn and not compact.
We are indebted to the referee for his useful comments and suggestions.
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2. Basic results

In this section a number of useful results about almost convergence, almost
adherence, and almost closure are derived and used to obtain characterizations
of topological concepts ranging from Urysohn to f-continuity.

(2.1) Let & and 9 be filter bases on a space X, A < X, and x € X.

@) IfF ~» A, then ¥y, < F.

by F~wxifandonlyif ¥, < &F.

© IfF < Y, thenaly 9 < aly £F.

d IfF <Yand F ~» A, then G ~» A.

(e) aly F = () {cly F: Fe F}.

) IfF ~»xandx e A, then F ~» A.

) F ~Aifandonly if F ~» A N aly F.

th) IfF ~» A, then A naly F # 0.

(i) [19] IfU < Xisopen, thencly U = cl U.

() If & is an open filter base, then ady F = aly F.
(X) If % is an open ultrafilter on X, then U — x if and only if U ~» x.

The converse of 2.1(a) is false as & does not almost converge to 4, even
though /', < &, when & = {4} and 4 is a noncompact subspace of a regular
Hausdorff space X. Also, the converse of 2.1(f) is false as & does not almost
converge to x for any x € 4, even though & ~» 4, when & = {4} and 4 is an
infinite compact subset of a Hausdorff space X. By 2.2(k), convergence and
almost convergence are equivalent for open ultrafilters; however, for open
filter bases, this equivalence implies semiregularity.

(2.2) A space X is semiregular at a point p € X if and only if for every open
filter base 4, G ~» p implies ¥ — p.

Proof. Suppose X is semiregular at a point p € X and ¥ is an open filter
base on X such that 4 ~» p. Let B be a regular open set containing p. There is
an open Ue ¥ such that U < cl B. Hence, U = int U < int (cl B) = B.
Thus, ¥ — p. Conversely, suppose for every filter base ¥, ¥ ~» p implies
Y - p. Let

% = {int (cl U): p € U, U open}.

@ is an open filter base and ¥ ~» p. So, ¥ — p implying X is semiregular at p.
In the space X described in Example 1.1, let

Fn = {ck, ak,l: k, l > n}.

F = {F,: ne N} is an open filter base on X and F ~» a,, but & does not
converge to any point of X.

(2.3) A space X is Hausdorff if and only if for cach p € X, cly {p} = {p}.
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It is easy to prove for each 4 = X thatcl A < cly 4; the opposite inclusion,
cl A = cly A for each 4 < X, is equivalent to the space X being regular. One
direction of this equivalence was noted by Veli¢ko [20].

(2.4) A space X is regular if and only if for every A = X, cly, A = cl A.
Recall that a space X is Urysohn if every pair of distinct points are contained
in disjoint closed neighborhoods.

(2.5) A space X is Urysohn if and only if no filter base has more than one
almost convergence point.

Let X be a space. A subset A = X is quasi-H-closed relative to X [15, p. 160]
if every cover of 4 by open subsets of X contains a finite subfamily whose union
is dense in 4. If X is also Hausdorff, we say A4 is H-closed relative to X.

(2.6) The following are equivalent for a subset A < X:

(a) A is quasi-H-closed relative to X.
(b) For every filter base & on A, F ~»x A.
(c) For every filter base F on A, aly F N A # 0.

Proof. Clearly (a) implies (b), and by 2.1(h), (b) implies (c). To show (c)
implies (a), let o/ be a cover of 4 by open subsets of X such that the union of
any finite subfamily of « is not dense in 4. Then

F = {A\cly (Us U): S is finite subfamily of &/}

is a filter base on 4 and aly & N 4 = (. This contradiction yields that 4 is
quasi-H-closed relative to X.

One consequence of 2.6 is that H-closedness in a Hausdorff space X is equiv-
alent to every filter base on X almost converging to X and to every filter base on
X having nonvoid almost adherence. The latter equivalence was obtained by
Veli¢ko [19]; he also established the next result.

(2.7) A 0-closed subset of an H-closed space is H-closed.

(2.8) Let X be an H-closed, Urysohn space and A = X. The following are
equivalent :

(@) A is H-closed relative to X.
() [19] 4 = cly 4.
(c) [15] A is a compact subspace of X,.

In [22], Whyburn defined a filter base & to be directed toward a set A = X
provided for every filter base 4, # < ¥ implies ady ¥ N A # 0 and used this
concept to prove that a perfect (not necessarily continuous) function is compact.

This concept and almost convergence are characterized and related in the next
result.
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(2.9) Let & be a filter base on a space X and A = X. Then & is directed
towards A (resp. for every filter base 9, F < 4 implies aly 4 N A # 0) if and
only if for every cover o of A by open subsets of X, there is a finite subfamily
B < of and an Fe F such that F <= \) & (resp. F ~» A).

Proof. The proof of the two facts are similar; so, we will only prove the fact
in the parentheses. Suppose for every filter base 4, < ¢ implies aly ¥ N
A # Q. If F ~» x for some x € A, then by 2.1(f), & ~» A. So, suppose for
every x € A, & does not ~» x. Let & be a cover of 4 by subsets open in X. For
each x € A, there is an open set U, containing x and V, € & such that U, < V,
and F\cly U, # 0 for every Fe &. Thus, 9, = {F\cly U,: Fe Z} is a filter
base on X and & < ¥,. Now, x ¢ aly 4,. Assume that U {¥,: x € A} forms
a filter subbase with ¥ denoting the generated filter. Then ¥ < ¢ and

A n aly ¥ = Q. This contradiction implies there is a finite subset B = A and
F, e & for x € B such that

0 = () {F\clx U,: x € B}.
There is F € & such that F < () {F,: x € B}. It easily follows that
0= () {F\clx U,: xe B} and F < |J {clx V;: x€ B}.

Thus & ~» A. Conversely, suppose # ~» A and ¥ is a filter base such that
F < 9. By2l(d), 9~ A, and by 2.1(h), 4 n aly ¥ # 0.

A function f: X — Y is O-continuous (resp. weakly 0-continuous or wo-
continuous) if for every x € X and every neighborhood V of f(x), there is a
neighborhood U of x such that f(cl U) < cl V (resp. f(U) < cl V). Clearly,
every continuous function is -continuous. There are many advantages in using
0-continuity and wl-continuity in investigating Hausdorff spaces and, in par-
ticular, H-closed spaces. For example, every Hausdorff space is the irreducible,
perfect, 0-continuous image of some extremally disconnected Tychonoff space
(see [11]) and while not every continuous function from a Hausdorff space X
into an H-closed, Urysohn space Y has a continuous extension to the Kat&tov
extension kX of X (see [10]), every 0-continuous function from X to Y has a
0-continuous extension to xX. The notions of almost convergence and almost
adherence can be used to characterize 6-continuity.

(2.10) Let f: X — Y be a function. The following are equivalent :

(@) fis B-continuous.

(b) For every filter base F on X, F ~» x implies f(F) — f(x).
(c) For every filter base F on X, f (al F) < al f(F).

(d) For every open U = Y, f~Y(U) < int, f~* (cly U).

Proof. The proof of the equivalence of (a), (b), and (d) is straightforward.
(a) implies (c). Suppose & is a filter baseon X, x e al #, Fe #,and Uis a
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neighborhood of f(x). There is a neighborhood V of x such that f (cl V) <
clU. Since cl V n F # 0, then cl U f(F) # 0. So, f(x) € al f(F). This
shows that f (al &) < al f(%).

(c) implies (a). Let % be an ultrafilter containing f(#,). Now, f~ (%) is a
filter base since f(X) e % and f~ ' (%) meets N ,. So, f~Y (%) v N, is con-
tained in some ultrafilter ¥". Now ff ~'(#) is an ultrafilter base that generates
%. Since ff ~NU) < f(¥), then f(¥") also generates % ; hence al f(¥") = al %.
Since x € al ¥, then f(x) € f (al ") < al f(¥") = al %. So, % meets N ;) and

Ky € () {: % ultrafilter, % 2 f(F,)}

(denote this intersection by ¢). But % is the filter generated by f(4",) (see [3,
Proposition 1.6.6]); so, ¥ ., < f(# ). Hence, fis 0-continuous.

(2.10.1) COROLLARY. If f: X — Y is 0-continuous and A = X, then f (cly A) =
clg f(A).

Since the composition of #-continuous functions is a 6-continuous function
and the identity function is #-continuous, then f-continuous functions can be
used as maps in defining categories where the objects are topological spaces.
However, the composition of wf-continuous functions is not necessarily wo-
continuous; this defect is skirted in an interesting manner by Rudolf [18,
Theorem III, 3.2]. Here are some similarly proven facts about wf-continuous
functions.

(2.11) Let f: X — Y be a function. The following are equivalent :

(a) fis wO-continuous.

(b) For every filter base F on X, F — x implies f(F) ~» f(x).
(c) For every filter base F on X, f (ad &F) < al f(F).

(d) For every open U < Y, f~Y(U) < int f~! (cl U).

2.12) Iff: X — Y is wO-continuous, then:

(@) Foreach A < X, f(cl A) < cly f(A).
(b) [18] For each B < Y, £ (cl (int (cl f~1(B)))) < cl B.
(c) [18] For each open U < X, f (cl U) < cl f(U).

3. O-perfect functions

In [22], Whyburn proved that a function is perfect (i.e., closed and point-
inverses are compact) if and only if for every filter base & on f(X), F - y,
implies f ~ (&) is directed towards f ~*(y) and that a perfect function is compact
(i.e., inverse image of compact sets are compact). In view of 2.9, we say that a
function f: X — Y is O-perfect if for every filter base &# on f(X), & ~» y implies
STHF) 7).



48 R. F. DICKMAN, JR., AND JACK R. PORTER

(3.1) Letf: X — Y be a function. The following are equivalent :

(a) fis O-perfect.
(b) For every filter base & on X, f (al F) 2 al f(F).
(c) For every filter base F on f(X), F ~» B < Y implies f = (F) ~ f~1(B).

Proof. Clearly (c) implies (a).

(a) implies (b). Suppose & is a filter base on X and y € al f(F). Assume,
by way of contradiction, that f~*(y) n al # = 0. For each x € f (), there
is open U, of x and F,e & such that cl U, " F, = 0. Since f~(N,) ~»
Sy} and {U,: x ef~'(y)} is an open cover of f~!(y), there is a V e A,
and a finite subset B < f~'(y) such that f~' (cl V) < |J {cl U,: x € B}.
There is an Fe & such that F = () {F,: xe B}. Thus, FAf~'(clV) =0
implying cl V n f(F) = 0, a contradiction as y € al f(¥). This shows that
yef(al £).

(b) implies (c). Suppose & is a filter base on f(X) and & ~» B < Y. Let
@ be a filter base on X such that f"}(#) < 4. Then & < f(%) and al (%) N
B # 9. Hence,f(al9) nB# 0andal ¥ n f~*(B) # 0. By 2.9, fY(F)
f7Y(B).

(3.1.1) CoroLLARY. Iff: X — Y is O-perfect, then:

(@) Foreach A = X, clyg f(4) < f(cly A).
(b) For each O-closed A = X, f(A) is 0-closed.

(c) For each subset K quasi-H-closed relative to Y, f ~1(K) is quasi-H-closed
relative to X.

Proof. (a) is an immediate consequence of 3.1, and (b) follows easily from
(a). To prove (c), we will use 2.6. Let % be a filter base on f~!(K). Then f(%)
is a filter base on K. By 2.6, al f(9) n K # @ and by 3.1(b), al ¥ n f~'(K) #
0. By 2.6, f~X(K) is quasi-H-closed relative to X.

A function f: X — Y is said to be 0-compact if f possesses property (c) of
3.1.1. In order to obtain a characterization of f-perfect in terms of closedness-
like and compactness-like properties as Whyburn did for perfect functions,
stronger properties than (a) and (c) of 3.1.1 are needed. A subset 4 of a space
X is O-rigid provided whenever & is a filter base on X and 4 n aly & = 0,
there is an open U containing 4 and G € & such thatcl U n G = 0. A func-
tion f: X — Y is almost closed if for any set A < X, f (cly A) = cly f(A). Before
characterizing 0-rigidity, we will show that a 6-continuous, 6-compact function
into a Urysohn space with a certain property (the “f-closure” and “quasi-H-
closed relative” analogue of property o in [22]) is almost closed.

(3.2) Suppose F: X — Y is O-continuous and 0-compact and Y is Urysohn
with this property: For each A = Y and p € cly A, there is a subset H quasi-H-
closed relative to Y such that p € cly (H n A). Then f is almost closed.
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Proof. Let B = X. By 2.10.1, f(cly B) < cly f(B). Suppose p € cl, f(B).
There is a subset H quasi-H-closed relative to Y such that p € cly (H n f(B)).
Then

F ={dUn Hnf(B): Ue N}

is a filter base on Y such that # ~» p. Now, 4 = {Bn f~'(F): Fe F}isa
filter base on B n f~*(H). Since f~(H) is quasi-H-closed relative to X, then
there is x € aly ¥ n f~'(H). By 2.10, f(x) € aly f(¥9) < aly &. Since F ~» p
and Y is Urysohn, aly & = {p}. Thus, p € f (cly B).

(3.3) Let A be a subset of a space X. The following are equivalent :

(@) A is 6-rigid in X.
(b) For any filter base F on X, if A n aly F = 0, then for some F € F,
A A Clo F = w.

(¢) For each cover o of A by open subsets of X, there is a finite subfamily
B < o such that A < int cl (| 9).

Proof. The proof that (a) implies (b) is straightforward.
(b) implies (c). Let & be cover of A by open subsets of X and

F = { () X\cl U: & is finite subset of .szf}.
Ue%

If # is not a filter base, then for some finite subfamily 4 < &/, X =
U {1 U: Ue #}; thus, 4 = X < int cl ({J #) which completes the proof in
the case that & is not a filter base. So, suppose & is a filter base. Then
AnalZ = 0 and there is an Fe & such that 4 ncly F = 0. For each
x € A, there is open V, of x such thatcl V, n F = 0. Let V = | {V,: x € 4}.
Now, V' n F = 0. Since Fe &, then for some finite subfamily # = «,
F=(){X\cl U: Ue #}. It follows that V < cl (| #) and hence, 4 =
int cl (|J 9).

(c) implies (a). Let & be a filter base on X such that 4 nal # = 0. For
each x € A there is open V, of x and F, € &# such thatcl V, n F, = 0. Now
{V,: x € A} is a cover of 4 by open subsets of X; so, there is finite subset B = 4
such that 4 < int ¢l (| {V,: x € B}). Let U = int cl (U {Vi: x € B}). There
is Fe # such that F < [} {F,: xe B}. Since cl(U) = |J {cl V;: x € B},
thencl U n F = Q. Thus, A4 is 0-rigid in X.

Recall that a subset 4 = X is compact if and only if for every filter base &
on X such that 4 n ad (&) = 0, thereis F e & suchthat 4 n cl F = (. Thus,
by 3.3(b), 0-rigidity is a generalization of compactness with closure and adher-
ence replaced by almost closure and almost adherence, respectively. The open
cover characterization of 6-rigidity indicates the closeness of this property to
compactness. This remark is emphasized by this easily proven fact: A subset
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A < X is a compact subspace of X; if and only if for every cover & of 4 by
open subsets of X, there is a finite subfamily # = & such that

A4 < | {intx cly (U): Ue #}.

(3.4) A 0-continuous function f: X — Y is O-perfect if and only if

(a) fis almost closed, and
(b) point-inverses are 0-rigid.

Proof. 1If fis 6-continuous and 6-perfect, then by 3.1.1 and 2.10.1, f is almost
closed. To show f (), for y € Y, is rigid, let & be a filter base on X such that
Tl nalF =0. So, y¢f(al F) and by 3.1(b), y ¢ al f(F). There is
open U of y and F € & such that cl U n f(F) = 0. Therefore, f~* (cl U) n
F = 0. Since fis f-continuous, then for each x € f ~!(y), there is open V of x
such that cl V < f~1 (cl U). So, f~%(») ncly F = 0. Conversely, suppose
a O-continuous function f satisfies (a) and (b). Let & be a filter base on f(X)
such that & ~» y. Let & be a filter base on X such that f"(#) < 4. So,
F < f(%) implying that y e al f(¥). So, for every Ge ¥, yecly f(G) =
f(cly, G). Hence, f Y y)nclyG # O for every Ge¥. By (b), f~'()) n
al ¢ # 0. By 3.1, fis 0-perfect.

Actually, in the proof of the converse of 3.4, we have shown that property
(a) of 3.4 can be reduced to this statement: For each 4 = X, f(cly 4) =2

clp f(A4); in fact, we have shown the next result (the function is not necessarily
6-continuous).

(3.4.1) COROLLARY. Letf: X —» Y. If

(@) foreach A < X, cly f(4) < f(cly A) and
(b) point-inverses are 0-rigid,
then f'is O-perfect.

(3.4.2) COROLLARY. If f: X - Y satisfies (a) and (b) of 3.4, then f~*!
preserves O-rigidity.

Proof. Let K< Y be O-rigid and & be a filter base on X such that
aly  nf"YK) = 0. By3.4.1and3.1,al f(F) n K = 0. So, thereis Fe #
such that cl, f(F) n K = 0. Butcly f(F) = f(cly F). So,clyg Fn f~(K) = 0.
So, by 3.3, f "}(K) is O-rigid.

(3.4.3) COROLLARY. The identity functions from X to X, and from X, to X
are 0-perfect.

Proof. 3.4 can be applied since both identity functions are 0-continuous.
Property (b) of 3.4 follows directly from 3.3(b); property (a) of 3.4 follows the
fact that for 4 = X, the O-closure of 4 in X is the same as the 0-closure of 4
in X,
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For the space X described in Example 1.1, the identity function from X to X,
is continuous and G-perfect but is not closed and, hence, not perfect.

(3.5) Suppose f: X - Y has 0-rigid point-inverses. Then:

(a) fis 0-continuous if and only if for each y € Y and open set V containing y,
there is an open set U containing f ~(y) such that f (cl U) < cl V.

(b) If for each y € Y and open set U containing f ~ (), there is an open set V
of y such that f~! (c1 V) < cl U, then for each A < X, cly f(4) < f(cly A).

Proof. The proof of one direction of (a) is obvious, and the proof of the
other direction is straightforward using 3.3(c). To prove (b), let ) # 4 = X
and y ¢ f(clg A). Then f~'()) ncly A = 0. Now F = {4} is a filter base
and al & n f~1(y) = 0. So, there is open set U containing f ~*(y) such that
clUNn A =0. There is open V of y such that f~*(cl V) = cl U. So,
cl V nf(4) = 0. Hence, y ¢ cly f(4).

The next result is closely related to 3.5(b); the proof is straightforward.

(3.6) Let f: X - Y. The following are equivalent:

(@) For every 0-closed A < X, f(A) is 0-closed.
(b) For every B = Y and 0-open U containing f ~'(B), there is 0-open V
containing B such that f ~'(V) = U.

(B.7) Iff: X = Y is continuous (resp. O-continuous) and Y is Hausdorff (resp.
Urysohn), then f is perfect (resp. 6-perfect) if and only if for every filter base ¥
onX,iff(F) > ye Y (resp.f(F)~ye Y), thenady F # Q(resp. aly F # 0).

Proof. The proof of the “perfect” and “@-perfect” parts are similar; so, we
only present the proof of the “f-perfect” part here. Suppose fis f-perfect and
f(F)~y. So, f7Y(F)~ f 1 (y). Since f~f(F) < &, then by 2.1(d),
F ~» f71(p); by 2.1(h), al F # 0. Conversely, suppose for every filter base
F on X, if f(F)~ yeY,thenaly F # 0. Suppose ¥ is a filter base on f(X)
such that ¥ ~» y € Y, and suppose J is a filter base on X such that f “1(%9) <
#. Then 4 = ff 1 (%) < f(#). So, f(o#)~y. Hence, aly # # 0. Let
z € Y\{y}. Since Y is Urysohn, there are open sets U, of zand U, of y such that
cd U, ncl U, = 0. There is He # such that f(H) < cl U,. For each x €
f~Y(2), there is open V, of x such that f(clV,) = cl U,. So,cl V,n H = 0.
It follows that f ~!(z) n aly # = Qforeachz e Y\{y}. So,aly # n f~1(y) #
0 and fis 0-perfect.

(3.7.1) CorOLLARY. If f: X - Y is O-continuous, X is quasi-H-closed, and
Y is Urysohn, then f is 0-perfect.

Proof. Since X is quasi-H-closed, then every filter base on X has nonvoid
almost adherence; now, the corollary follows directly from 3.4.
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(3.7.2) CororLLARY. If f: X = Y is O-continuous, X is Hausdorff, and Y

is H-closed, Urysohn, then f has an unique, 0-continuous, O-perfect extension
fromkXtoY.

Proof. By Corollary I1.3.3 in [18], f has an unique f-continuous extension
from kX to Y; this extension is @-perfect by 3.7.1.

4. Absolutely closed and 6-absolutely closed functions

In [21], Viglino defines a continuous function f: X — Y, where X is Haus-
dorff, to be absolutely closed if there does not exist a Hausdorff space Z and a
continuous function f: Z — Y such that X is proper dense subset of Z and
F| X = f. Correspondingly, a 6-continuous (resp. wf-continuous) function
f+ X — Y is defined to be 0-absolutely closed (resp. wh-absolutely closed) if there
does not exist a Hausdorff space Z and a 6-continuous (resp. wB-continuous)
function F: Z — Y such that X is proper dense subset of Z and F| X = f.
Without the Hausdorff restrictions on X and Z, then no continuous (resp.
0-continuous, w0-continuous) function with nonempty domain is absolutely
closed (resp. f-absolutely closed, w0-absolutely closed).

4.1) Letf: X — Y be 0-continuous (resp. wl-continuous) with X a Hausdor[f
space. The following are equivalent:

(@) fis 0-absolutely closed (resp. wB-absolutely closed).
(b) For each open filter base F on X, if f(F) ~»y € Y (resp. f(F) ~»ye Y),
then ad & # 0.

(c) For each open ultrafilter base U on X, if f(U)~»ye€ Y (resp. f(U) ~»
yeY), thenad % # 0.

Proof. The proof for both parts are very similar; so, we only present the
proof for the part not in the parentheses. Clearly, (b) implies (c).

(a) implies (b). Let & be open filter base on X. Suppose f(F)~ ye Y.
Assume ad & = 0. Let Z = X u {#} with the simple extension topology (see
[1]. Then Z is Hausdorff. Define F: Z - Y by F| X = f and F(¥) = y.
F is O-continuous and f is not 6-absolutely closed. This contradiction implies
that ad & # Q.

(c) implies (a). Suppose F: Z — Y is 0-continuous where Z is Hausdorff,
X is a proper dense subspace of Z, and F| X = f. So, there is ze Z\X. Let
9 be an open ultrafilter on X that contains the trace on X of the neighborhood

filter of z. Then f(%) ~» f(z) since F is 6-continuous, but ady % = 0 since Z
is Hausdorff.

(4.1.1) CoroLLARY. Let f: X — Y be O-perfect with X a Hausdorff space. If
f is continuous (resp. 0-continuous, wO-continuous), then f is absolutely closed
(resp. 6-absolutely closed, wO-absolutely closed).
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We now obtain two variations of Corollary 1.1 in [21].

(4.2) Suppose f: X —» Y is O-continuous where X is Hausdorff and Y is
H-closed and Urysohn. The following are equivalent:

(@) X is H-closed.
(b) fis 0-absolutely closed.
(c) fis O-perfect.

Proof. Clearly (a) implies (b). By 3.7.2, (b) implies (¢) and, by 3.1.1(c),
(c) implies (a).

Without Urysohn in the hypothesis of 4.2, it follows that (a) implies (b) and
by 3.1.1(c), (c) implies (a). However, for the spaces X and Y described in Ex-
ample 1.1, the identity function from X into Y is an example of a continuous,
absolutely closed, and 6-absolutely closed function from an H-closed space into
an H-closed space that is not f-perfect since f(cly X) = f(X) # clp f(X).

4.3) Iff: X - Y is continuous, X is Hausdorff, and Y is regular Hausdorff,
then the following are equivalent :

(@) fis O-perfect.
(b) fis absolutely closed.
(c) fis G-absolutely closed.

Proof. Clearly (c) implies (b), and by 4.1.1, (a) implies (b) and (c). We will
use 3.7 to show (b) implies (a). Let & be a filter base on X such that f(F) ~»
ye Y. Since Y is regular, f(¥) — y. Now

O(F) = {U < X: Uopen and U 2 F for some Fe #}

is an open filter on X. Since fis continuous, then f ~*(.4",) is an open filter base
on X and f~}(A,) & O(F). Thus, f(O(F)) - y. By (b) and Theorem 1.2 in
[21], ady O(F) # 0. It easily follows that aly F # 0.

It seems natural to ask if the list of equivalent conditions of 4.3 can be ex-
tended to: (d) fis perfect. A negative answer follows by considering a function
f: X > Y where Y is a one-point space and X is an H-closed, noncompact
space. Another natural question is whether (a), (b), and (c) of 4.3 are equivalent
if f is continuous, X is Hausdorff, and Y is Urysohn? We know by the proof of
4.3, that (c) implies (b), (a) implies (b), and (a) implies (c) with only Y Haus-
dorff. Let X and Y be the spaces described in Example 1.1, and define the func-
tion f: Y\{bo} — X by f|x is the identity function and f(b;;) = ¢;. This shows
that (b) implies (c) and (b) implies (a) are false, in general, even if f is continuous
and closed and the range is Urysohn. We have not been able to resolve if ()
implies (a) when Y is Urysohn.

Problem. Prove or disprove that a continuous, f-absolutely closed function
from a Hausdorff space into a Urysohn space is f-perfect.
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Since every continuous function from a Hausdorff space to a Hausdorff
space has an absolutely closed continuous extension by Theorems 2.1 and 2.2
in [21], then the next fact follows directly from 4.3.

(4.3.1) CorROLLARY. Every continuous function from a Hausdorff space into
a regular Hausdorff space has a 0-perfect continuous extension.

Recall by 3.7.2 that a f-continuous function from a Hausdorff space into an
H-closed Urysohn space has a f-continuous, 8-perfect extension. The common
denominator of this fact and Corollary 4.3.1 gives rise to the following problem.

Problem. Prove or disprove that a §-continuous function from a Hausdorff
space into an Urysohn space has a 8-continuous, §-absolutely closed extension.

For a Hausdorff space X, let kX denote the Katétov H-closed extension (see
[12]). A continuous function f: X — Y, where X and Y are Hausdorff spaces,
is a p-map [10] or said to be proper [13] if there is a continuous extension
kf: kX - kY. A p-map fis t-perfect if kf(kX\X) < kY \Y.

In [2], a subset A = X is said to be far from the remainder (f.f.r.) if each free
open ultrafilter on X contains an open set whose closure is disjoint from 4. A
function is regular-closed [6] if the image of every regularly closed subset is
closed. Blaszezyk and Mioduszewski [2] proved that a p-map is t-perfect if
and only if it is regular-closed and point-inverses are f.f.r. Dickman [6] noted
that a function is t-perfect if and only if it is absolutely closed and a p-map. By

4.1.1, a continuous, #-perfect function is regular-closed and point-inverses are
f.fr.

(4.4) Suppose f+ X —» Y is a continuous, 6-absolutely closed function where
X and Y are Hausdorff. Then:

(a) Point-inverses are 0-rigid.
(b) Foreach A < X, f (clg A) is closed (in particular, f is regular-closed).

Proof. Ad(a). Suppose y € Y and & is a filter base on X such that aly, & N
f7*(») = 0. Assume, by way of contradiction, that

¥ ={UnV:Uopen, U2 f~!(y), V open, V 2 F for some F € F}

is an open filter base. Now, by the continuity of f, f(&#) ~ y. By4.1,ad & #
0. Since f'is continuous, then f (ad &) < ad f(¥) < {y};s0ad & < f~ ().
Thus,  # ad & < f~1(») N aly &, a contradiction. So, there is an open set
U 2 f~!(y) and open set V 2 F for some F € &# such that U n V = 0. Thus
cdUnF=0.

Ad(b). We first prove f is regular-closed and use this fact to prove that
f(clg A) is closed for every A = X. Suppose p € cl f(cl U) where U is open.
Then & = {Un f~'(V): V € #,} is open filter base and f(&) —» p. In
particular, f(&) ~» p and since f is f-absolutely closed, ad & # 0. Since f is
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continuous, @ # f(ad &) < ad f(&) < {p}. Thus, ad & < f~!(p). But,
ad & = clU. So, f7'(p) ncl U # 0 implying p € f(cl U). This completes
the proof that f is regular-closed. Suppose 4 = X. Clearly, f (cly 4) is closed
if A=0. Suppose 4 # 9 and peclf(cly A). Since al /'y = ad /', =
cly 4, then f~1(p) N al &/, # @ would imply that f(p) e f (cl, A) and complete
the proof of the closure of f (cl, A). Assume, by way of contradiction, that
£~ Up) nal /', = 0. By 4.4(a), there is an open set U = f~!(p) and an open
set We A, such that c Un W =0. So, Uncl W = 0 implying f(p) ¢
f(cl W). But f(cl W) is closed; so, peclf(cly 4) = cl f(cl W) = f (cl W)
is a contradiction.

The results of 4.4 represent our furthermost position at characterizing
0-absolutely closure in terms of closedness-like and compactness-like properties
as Whyburn [22] did for perfect functions, Dickman [6] for absolutely closed
functions, and we did for 6-perfect functions in 3.4. We have had little success
in determining the compactness-like properties of point-inverses of 8-absolutely

closed functions. Also, we have not been able to prove or disprove the converse
of 4.4.

Problem. If f: X — Y is a continuous surjection where X is Hausdorff and
Y is Urysohn and if f satisfies (a) and (b) of 4.4, prove or disprove that f is
#-absolutely closed (such a function is necessarily absolutely closed by Theorem
21in [6] and 6.2.1 in Section 6.)

We complete this section by giving a characterization of regular-closed
continuous functions.

(4.5) A continuous function f: X — Y is regular-closed if and only if for each
y €Y and open set U 2 f~'(y) there is an open set V of y such that int ¢l U 2
7).

Proof. Suppose f is regular-closed, y € Y, and f~*(y) = U for some open
set U. Assume, by way of contradiction, for each open set W containing y,

I W) nc (X\cl U) # 0.
Then y e cl f (cl (X\cl U)) = f(cl (X\cl U)) = f(X\int cl U) implying
0 #f'W\intcd U s [T\,

a contradiction. So, for some open set W of y, f (W) ncl (X\cl U) = 0
implying f "}(W) < int cl U. Conversely, let V be an open set in X. Assume,
by way of contradiction, there is y eclf(cl V)\f(cl V). Since f~1(y) =
X\cl V, there is an open set W of y such that f~*(W) < intcl (X\cl V) =
X\cl V. Since yeclf(cl V), then W nf(cl V) # @ implying f~'(W) n
cl V # 0, a contradiction as f "}(W) < X\cl V. This completes the proof that
[ is regular-closed.
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5. wbl-p-maps and 0-p-maps

Corresponding to the definition of p-maps, we define a 6-continuous (resp.
wh-continuous) function f: X » Y where X and Y are Hausdorff to be a
0-p-map (resp. wh-p-map) if f has a -continuous (resp. wd-continuous) extension
F: kX — Y. D. Harris [10] defines an open cover to be a p-cover if there is a
finite subfamily whose union is dense, and he proves that a continuous function
between Hausdorff spaces is a p-map if and only if the inverse image of a p-cover
is a p-cover. By a similar proof, one can prove the next result.

(5.1) A woO-continuous function f: X - Y where X and Y are Hausdorff
spaces is a wO-p-map if and only if for every p-cover s of Y, {int f ! (cl (U)):
U e &} is a p-cover of X.

Using the concepts of p-maps, 6-p-maps, and wl-p-maps, it is straightforward
to obtain the following extension of Corollary 1.1 in [21].

(5.2) Suppose f: X — Y is continuous (resp. 0-continuous, w0-continuous)
where X is Hausdorff and Y is H-closed. Then X is H-closed if and only if f is
absolutely closed (resp. G-absolutely closed, wo-absolutely closed) and a p-map
(resp. 0-p-map, wl-p-map).

In the space Y described in Example 1.1, let C = {c;: i € N}; let h be the
identity function from C into Y\{a,}. A is a O-perfect, perfect, continuous func-
tion that is not a p-map (and hence, not t-perfect). We now give an example
of a p-cover o of Y\{a,} such that {h~(4): A € o/} is not a p-cover of C. Let

W,={c}uia,; ieN}u{b,,; ieN}
and

o = {W,: ne N} v {Uy(ao)\{ao}} L {V1(bo)}

where U,(a,) and V,(b,) are defined in Example 1.1.

For 5.2 to be an extension of Corollary 1.1 in [21], we must show that a
continuous (resp. O-continuous, wéb-continuous), absolutely closed (resp.
0-absolutely closed, wf-absolutely closed) function into a compact Hausdorff
space is a p-map (resp. 6-p-map, wf-p-map). The continuous and wl-continuous.
cases follow easily from the covering characterizations. The 6-continuous case
follows from 3.7.2. This illustrates the need for a covering characterization of
0-p-maps. We have been able to obtain a covering condition that is necessary
but have not been able to prove or disprove its sufficiency.

Before introducing the covering condition, we need to recall that a cover &/

of a space is a regular refinement of a cover 4 if for each 4 € &, there is a
Be % such thatcl 4 = B.

(5.3) A 6-p-map f: X > Y where X and Y are Hausdor[f has this property:
(*) if o is a p-cover of Y, then {f ' (c1 V): V € &/} has a regular open
refinement which is a p-cover.
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Proof. The proof of (5.3) is very similar to the proof of the corresponding
result in [10].

The degree that 5.3(x) is a sufficient condition for a #-p-map is indicated in
the result following this lemma.

(5.4 Lemma. If f: X — Y is a O-continuous function where X is Hausdorff
and Y is H-closed and f satisfies 5.3(x), then for every open ultrafilter U on X,

f@)~»pforpeY.

Proof. Assume f(%) does not almost converge to any point p € Y. Then
for each p € Y, there is an open set V, containing p with the property that cl V,
does not contain any member of f(%). Since {V,:pe Y} is a p-cover (Y is
H-closed), then {f~! (cl ¥,): p € Y} has a regular open refinement &/ which
is a p-cover. By a lemma in [10], thereis 4 € &/ N %. So, thereissomepe Y
such that cl 4 = f~'(cl V,). Thus cl ¥, contains an element of f(%), a
contradiction.

As a consequence of 5.4 and 4.1, it follows that a f-continuous, 6-absolutely
closed function is 6-p-map if and only if it satisfies 5.3(x). The best that we can
do toward proving that a f-continuous function satisfying 5.3(*) is a 6-p-map
is presented in the next result.

(5.5) If f: X > Y is O-continuous and satisfies 5.3(x¥) where X and Y are
Hausdorff, then there is a wO-continuous extension F: kX — kY with this property:
for each z € kX and open set U of F(z) in kY, there is an open set V containing z
in kX such that F (cl.x V) < cly cl.y U where 0-closure is relative to kY.

Proof. It is easy to show that f: X — xY is O-continuous and satisfies
5.3(%). By 5.4, for each free open ultrafilter  on X, f(%) almost converges to
some point in kY ; we denote one of these points as F(%). Extend the definition
of F to X by defining F(x) = f(x) for x € X. Thus, F is an extension of f. Let
z e kX and U be an open set of F(z) in kY. There is an open V containing z in
KX such that

F(ly (VX)) cclyU.
Since
cx V=cly (Vo X)ucly V\X,
then
F(clyx V) € cly Uu F(cl,x V\X).

Let % e cl,x V\X. Then V N X € %. Since f(%) meets N pq,", then
F@) e cly (f g (V A X)) € cly (cly U).

Hence, F (cl,x V) < cl, (cl .y U).
In general, the function F constructed in the proof of 5.5 will not be 6-
continuous; that is, the random selection process of obtaining F may not yield

a f-continuous extension even though some selection process might yield a
0-continuous extension.
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Problem. Prove or disprove if f: X — Y is f-continuous and satisfies 5.3(x)
where X and Y are Hausdorfl, then fis a 6-p-map.

6. 0-rigid and f.f.r. sets

In this section, we present some properties of O-rigid subsets (defined in
Section 3) and f.f.r. subsets (defined in Section 4) and compare these concepts to
compactness and quasi-H-closure.

(6.1) Disjoint 6-rigid subsets A and B of a Hausdorff space X can be separated
by disjoint open sets.

Proof. Letae A. For each x € B, there are disjoint open sets U, of a and

V, of x. There is a finite subset C = B such that B < int (cl (| {V,: x € C})).
Let

U,=N{U:xeC} and V, = int(cl (| {Vs: x e C})).

Now ae U,, B< V,, and U, n V, = 0. Repeating the argument for each
a € A, we obtain disjoint open sets containing 4 and B.

(6.1.1) CoroLLARY. If every closed subset of a Hausdorff space X is O-rigid
in X, then X is compact.

Proof. Since X is 6-rigid in X, then X is H-closed. By 6.1, X is normal.
Hence, X is compact.

(6.1.2) CorOLLARY. If A is 0-rigid in a Hausdorff space X, then every point of
X\A is contained in a closed neighborhood that misses A.

Our next result characterizes 6-rigidity in terms of open filters yielding a means
of comparison of the definition of f.f.r.

(6.2) A is0-rigidin X if and only if for every openfilter 4on X if A nady % =
0, there is an open U € 9 such that A ncl U = 0.

Proof. The proof follows from 3.3(b) and the fact that if & is a filter base
on X and O(F) = {U < X: U open and U 2 F for some Fe &}, then
aly F = ad, O(%).

(6.2.1) CoroLLARY. If A is O-rigid in X, then A is f.f.r. in X.

It is straightforward to show that a closed subset 4 of a Hausdorff space X
is f.fir. in X if and only if cl4* 4 = cl¥ 4 where cl§¥ (resp. clf) denotes the

O-closure in kX (resp. X). We now obtain a characterization of a concept weaker
than f.f.r.

(6.3) Suppose X is Hausdorff and A < X. A is contained in the union of an
H-closed subspace and a nowhere dense set if and only if for each free open ultra-
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filter U on X, there is U e U such that U n A = O, In particular, the latter
condition is equivalent to cly A = cl,.x A.

Proof. Suppose for each free open ultrafilter  on X, there is U € % such
that Un A = 0. Then U < X\cl 4 implying X\cl 4 € %. By Theorem 2.4
in [14], X\int (cl (X\cl A)) is H-closed. Hence, cl (int (cl 4)) is H-closed. Let
B = A\cl (int (cl 4)). Since cl B n int (cl 4) is empty and B < cl 4, then
int (cl B) = 0 and B is nowhere dense. The proof of the converse is straight-
forward.

(6.3.1) CoroLLARY. If A is f.f.r. in a Hausdorff space X, then cl (int A) is
H-closed and A is the union of an H-closed subspace and a closed nowhere dense
subset.

These concepts are related with compactness and quasi-H-closure in the
following diagram:

A compact
¥
/ A compact in X;
A quasi-H-closed )
A 0-rigid in X
v

A quasi-H-closed rel. to X A ffr.in X

Clearly, if 4 is a compact subspace of X, then A is quasi-H-closed and A4 is
compact subspace of X (see remark after 3.3). By 3.3(c) and the remark follow-
ing 3.3, if A is a compact subspace of X, then A4 is 6-rigid in X. By 3.3(c), if
A is 0-rigid in X, then A4 is H-closed relative to X (noted in the paragraph pre-
ceeding 2.1 in [15]). By 2.5in [15], if X is Hausdorff and 4 is H-closed relative
to X, then A4 is a closed subset of X; hence, for a Hausdorff space X, in all of
the concepts, A4 is closed in X. In general, the converse of each of the implica-
tions is false even if X is Hausdorff. If X is regular and A is quasi-H-closed
relative to X, then 4 is compact, and if X is H-closed, Urysohn and A4 is H-closed
relative to X, then by 2.8, 4 is a compact subspace of X;. If 4 = X, then the
concepts A is 6-rigid in X, 4 is quasi-H-closed relative to X, 4 is quasi-H-closed,
and A is f.f.r. in X are equivalent. In fact, for the space Y described in Example
1.1, Y is rigid in Y but Y is not a compact subspace of Y = Y,. In [2] it is
noted that the subspace X described in Example 1.1 is H-closed but X is not
for.r.in Y\{b,}. The subspace X = {c;: i € N}is f.f.r.in Y but Cis not H-closed
relative to Y.

(6.4) Suppose for each B < X, clyclg B = clg B. If A is quasi-H-closed
relative to X, then A is 0-rigid in X.

Proof. Let & be a filter base on X such that al, # n 4 = 0. For each
a € A, there is F, € & such that a ¢ cly F,. Hence, a ¢ cl, clp F, and there is an
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open set U, containing a such that ¢l U, n cly F, = 0. There is a finite sub-

fa
F

mily C = 4 such that 4 = () {cl U,: a € C}, and there is F € # such that
< () {F,: ae C}. Itfollows that 4 n cly F = . By 3.3(b), 4 is 0-rigid in X.

(6.5) Remark. Note that if X is a Hausdorff space such that for each open

subset B < X, cly cly B = cly B, then X is a Urysohn space.

10.
11.

12

13
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