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Let W" be a compact piecewise linear (P.L.) manifold with boundary. A spine
of W is a P.L. embedding b" M" Wm, where M is a closed P.L. manifold, that
is a homotopy equivalence.

THEOREM 1. Let M" be a closed orientable P.L. manifoM. Suppose that FIlM
has a quotient group that possesses a central subgroup offinite index with some
nontrivial abelian quotient (e.g., FIIM nontrivial abelian). Let n be even and
at least four. Then there are infinitely many non P.L.-homeomorphic man-

ifolds W"+ 2, simple homotopy equivalent to M, that have no spine.

This result asserts the existence of totally spineless manifolds. Naturally one
conjectures its validity for any nontrivial fundamental group.

In sharp contrast to Theorem 1, it was shown in [3] that for n odd or FIlM
trivial, any homotopy equivalence h: M" W"+2 is homotopic to a P.L.
embedding. Of course, a locally flat embedding usually will not exist.2 For
example, it is shown in [3] that the Poincar6 dual of certain Hirzebruch L-
classes must be carried by cycles in the set of nonlocally-flat points of any
embedding homotopic to h. Depending upon the normal invariant of a
homotopy equivalence M’ M, the size of the nonlocally flat points can
sometimes be reduced by replacing M by M’ (this may also change the L-
classes.) The results of Kato and Matsumoto on locally flat spines can be ob-
tained in this way. (But they follow most directly and conceptually from the
codimension two splitting principle of [2, Section 8].) In [3], examples are given
of P.L. manifolds, homotopy equivalent to T" S x x S x, so that any
spine has nonlocally flat points of dimension at least n 2.
The idea of the proof is to construct an invariant of a manifold W"+ 2, which

has the homotopy type of an n-manifold. An explicit realization result for this
invariant is given. The invariants that arise from W"+ 2 with spines will lie in
the image of a map from the bordism of a classifying space for P.L. regular
neighborhoods. The result follows by algebraically constructing obstructions
not in this image.
The special case of Theorem 1 withfinite fundamental group was announced

at a conference in Utah in February, 1974. An example of a spineless 4-
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2 In higher codimension all P.L. embeddings are locally flat and one has the existence
theorem of Browder-Haefliger-Casson-Sullivan-Wall. In codimension one there is the theorem
of Hollingsworth and Galewski [5].
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manifold homotopy equivalent to T 2 has been given by Matsumoto [10]. Our
invariants can also be used to show that there are 4-dimensional manifold
regular neighborhoods of S 2 with no locally flat spines. Galewski pointed out
that this gives a new type of example of the failure of Whitney’s procedure in
low dimensions.

1. An invariant

Let Wn+2 be a compact, oriented P.L. manifold, and let h" M" W be a
(simple) homotopy equivalence, M a closed oriented P.L. manifold. Let z(W)
denote the image in HZ(w) of the Poincar6 dual of h.[M], [m] in H,(M) the
orientation class. Assume that z(M) 0. Then by [3, 1.6], there is a map

f: (W, t3W) (M x D2, M x S x)

with the following properties"

(i) f has degree one and induces isomorphisms of homology groups with
local coefficients in the integral group-ring, ZH M, and

(ii)3 foh is. homotopic to the inclusion M M D2.

If h is actually a simple homotopy equivalence, then it follows from Poincar6
duality thatfis a simple homology equivalence over ZH1M (see [2, Section 1]).
Further, if HI(W; Z) Hi(M; Z) is finite, then the set of homotopy classes
of maps of M into SO(2) (denoted [M, SO(2)]) is trivial and hence, by [3, 1.6]
f is unique up to homotopy. In general fis unique up to composition with a
bundle map of the trivial SO(2) bundle over M to itself.
From the existence of the augmentation homomorphism from ZI-IM to the

integers Z, it follows that f induces an isomorphism of homology groups and
cohomology groups with integral coefficients, and so also an isomorphism
[M x D2; BSPL] [W, BSPL], BSPL the classifying space for stable
oriented PL (or block) bundles.4 Hence there exists a unique stable bundle map
b: Vw , Vw the stable normal bundle of W and a bundle over M x D2.

Let 1/2O2 Oz be the disk of radius 1/2. We may suppose that fis transverse
to M, and thatf If-(M x 1/2D2) is a bundle map. Write

(M x (D2 1/2D2)-,M x S’) (M x S’ x [0, 1],M x S x 0)

and let V =f-’(M x S’ x [0,1]). Then (fl V, blV) is a normal map [1]
from (V, O_V OW, #+V) to M x S x ([0, 1], 0, 1), whose restriction to
0_ V is a homology equivalence over ZH1M, and a simple one if h was a simple
homotopy equivalence.

Actually (ii) implies (i) by Poincar6 duality over ZIIxM for (W, OW) and M x (D2, SX),
assuming f has degree one.

* Compare with [2, p. 307] for example.
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Hence we may take the homology surgery obstruction of (f IV, b IV), by
[2, Chapter I.] More precisely, let O’ denote the diagram

z[n,(M s’)] ’-- z[n,(M s’)]

z[n,(M x Zn,M

where the unlabelled map is induced by projection on M. Then, by [2, Section
3], the homology surgery obstruction a(fl V, b IV)e F+(O’) is defined,
where if f is a simple homotopy equivalence and h otherwise. When
e. , we often omit it. Recall that a(fl V, b IV) vanishes if and only
(fl V, b IV) is orrnully cobordant, relative 3_V, to a normal map that
induces a (simple) homology equivalence over ZI1,M and, on the boundary
component disjoint from 0_V, a (simple) homology equivalence over
ZII,(M x S’).

Let H1W H. Let On be the diagram

z[n x z] i.__d Z[ll X Z]

z[n z]---- z[nl

the unlabelled maps induced by projection on H. Then h.’llM rl, W in-
duces a map from F,+ 2((i)’) F+ 2(On), also denoted h..
Any element z of Hi(I-I) Hom (H, Z) determines an automorphism of

H x Z given by az(x,y)= (x, z(x)+ y). Let F+2(On) be the quotient
obtained by setting (az).w w for all w in F,+ 2(On) and all z in HI(FI). For H
finite, r+2(On) Fen+2(On).

DEFINITION. Let e"(W) be the image of h,a(f[ V, b] V) in F+2(On).

PROPOSITION 1. The invariant (W) depends only upon W.

Proof. Since [M, SO(2)] H(M) H(HM), the fact that we passed
to the quotient ,+2(Orl) insures that e"(W) does not depend upon the choice
of f. Given a (simple)homotopy equivalence h’" M’ - W, let k be the com-
position of h and a homotopy inverse for h’. Then, using (k x ido2)of in the
definition, in place of f, one obtains by naturality the homology surgery
obstruction k,a(f[ V, b[ V). The result follows.

The invariant of Proposition 1 can be thought of as an obstruction to the
existence ofa locally flat spine, It is actually defined for W"+ 2 with the homotopy
type of an n-dimensional Poincar6 complex.

PROPOSITION 2. Let qb" M Wn+ 2 be a P.L. embedding of M as a spine

of W. Let W’ be a regular neighborhood of dp(M) in the interior of W. Then
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Proof Let T be the closure of W’ W, so that OT OW’ wOW. By
excision

Hi(T, OW’ ZH1W) - Hi(W, W’, ZI-I W),
and the second group vanishes as W’ c W is a homotopy equivalence. Thus
(T; OW ’, cW) is a h-cobordism with coefficients in ZH1W ZH M, and will
be an s-cobordism with these coefficients if W’ c W is a simple homotopy
equivalence, i.e., if b is, by excision for Whitehead torsion.

Let f’: (W’, OW’) -4 (M x O2, M S) be the canonical homology
equivalence defined above, satisfying (i) and (ii). Write

.f’(x) (fl(x),f2(x)), f(x) e M, f2(x) 6 S 1, for x OW’.

Since f’o b is homotopic to the inclusion M c M x D2 and since b is a
homotopy equivalence, it follows easily using the homotopy extension property
that fl extends to T. Since T is a homology h-cobordism, it follows from
obstruction theory that f2 also extends. Thus we obtain f: (W, OW)-4
(M D2, M S a), with f[W’ f’. Clearly property (ii) is satisfied by f,
andfis easily seen to have degree one, asf’ does, so thatfalso satisfies (i). Let
b be as above.
Now, .f] cT is a homology or simple homology equivalence over ZHaM;

hence by [2, Chapter I],

(f[ T, b[ T) e r+2(z[n(M x s’)] - Zn,M)

is defined. Let

j,: r. + ,.(z [n ,M x s 1] -4 ZHxM) -4 F,]+z(O’).

be the natural map. Then, in the notation of the definition of our invariant,
V V’w T, sothat

r(f[ V, b V) r(f’ V’, b’] V’) + j.ty(f] T, b[ T),

by additivity of homology surgery obstructions. But T is an h- or s-cobordism
over ZH1M; hence a(f T, b T) 0; thus (W) (W’).
To conclude this section, recall from [-3] the classifying space BSRN2 for

codimension two regular neighborhoods and the fiber G2/RN2 of the natural
map X: BSRN2 -4 BS02 for the associated SO(2)-bundle. Thus, a homotopy
class of mappings g: M -4 Gz/RN2 gives a concordance class of embeddings,
o" M2c Won+ 2 a representative, say, so that W0 is actually a regular neighbor-
hood ofMand x(W) 0. Thus e(W) is well defined, as well as e"(W). Further,
given a map z: M -4 K(H, 1), we may consider

Let fl, denote the oriented bordism functor.
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PROPOSITION 3. The assignment of (z. (bg)l)(a*(Wg)) induces a homo-
morphism, natural in H"

ah" fl,,(G2/RN2 x K(H, 1)) F,+2(On).

Proof. Suppose given g: K - G2/RN2 and z: K - K(H, 1), where K is a
connected smooth manifold with boundary components Mo and M1. Let
zi z lM,g =#lMi, b bg,, i= 0, 1. Then we wish to show that the
elements (z).(t#) l(cz*(W,)) are equal, 0, 1.
More precisely, let W Wg. For W, W we may choose disjoint regular

neighborhoods of M in the boundary of W; see [3]. By [-3, 1.6], there exists
a map,

f: (W, ((gW Wo W)-, Wi, - (K x D2, K x S 1, M x D2, Mi x $1),

of degree one, whose composition with bo is homotopic to the zero-section
(K, Mo, M1) c (g, Mo, M1) DE. Further, f will be a simple homotopy
equivalence over ZH1K and

f] W" (Wi, c9W3--, (Mi x D2, M x S 1)

will be a simple homology equivalence over ZI-I1M, 0, 1. In particular,
f will be an integral homology equivalence and so will be covered by a bundle
map b: vr - .
We may suppose that f, f] Wo, andf W are transverse to the zero-sections

K, Mo, and M1, respectively, and that

flf-’(Kx 1/2D2)

is a bundle map. As above, let

V =f-l(K x S x [0, 1]),

and let V =f-l(M S [0, 1]). Then (fl V, b V) is a normal co-
bordism of (fl Vo, b Vo) and (f] V1, b] V1). Hence it follows from cobordism
invariance of homology surgery obstructions [2] that if o and t are the
respective images of (f[ Vo, b lVo) and (fl V, b lV) under the inclusion
induced maps of F+ 2((I)ii1M,) to F+ 2((I)iitK), then x o. By functoriality

z.i (z3.a(fl Vi, b[ V,), 0, 1.

By definition, the right side represents (z3. (bi)l*(W) in F+2(On) as
desired.
Thus trh is a well-defined map. Additivity of homology surgery obstructions

over disjoint unions [-2, Section 3] implies easily that trh is a homomorphism.
Naturality follows from naturality of homology surgery obstructions.
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Let +2(On) denote the cokernel of the natural map

I"n+ 2(Oe) ---+ I-’n+ 2((I)i-l)

by naturality, rh induces

n" n(G2/RN2 x (K(H, 1), pt)) ,+ 2(On).

PROPOSITION 4. If l-I isfinite, D,(G2/RN2 x (K(H, 1), pt)) is a torsion group.

Proof. To any finite skeleton, apply the Kunneth formula for homology and
the spectral sequence relating homology and bordism.

2. Construction of spineless manifolds

The spineless manifolds will be constructed using the next result.

THEOREM 2. Let M", n > 4, be a closed, orientable P.L. manifoM. Let
F,+2(On) be an element whose image in L,+ I(H x Z) is trivial, under the

natural connecting homomorphism 2, Section 3]. Then there is a compact
orientable P.L. manifoM W"+2, of the same simple homotopy type as M, with
z(W) 0 and (W) , the image of in F, + 2

Notes. (1) There is a similar result for elements in
(2) The condition on the vanishing of c3V is sufficient to insure that any W

with z(W) 0 has the homotopy type of an n-manifold. It could be replaced
by a necessary and sufficient condition.

Proof of Theorem 2. By [2, Section 3], we have the exact sequence

/(n z)--- r./(z[n z]-- zn)
i*

F,+ 2(On) L,+,(]-I x Z).

Hence ? i,?1. Let j," Fn+2(Z[H x Z] -* Zl-I) L+2(H) be the natural
map. Since the natural map of L,+2(H x Z] to L,+2(H) is functorially
surjective, we may suppose that j,71 0. Hence 71 1Y2, by [2, Section 3],
where c3 is the connecting homomorphism

r + (oh) r.+ 2(z In x z] z n),

for Oh the diagram

z[n z] zn

ZH - ZH

By the realization theorem [2, 3.4], 2 can be realized as the homology surgery
obstruction a(F, B) of a normal cobordism (F, B) of the identity of 3//x D2 to
a simple ZH-homology equivalence

f: (W, OW) (M x D2, M x $1),
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which induces isomorphism of fundamental groups. In particular, h induces a
simple homotopy equivalence of W with M, so that ct(W) is defined.
Write F: U1 - M x D2. We may assume that F is transverse regular to
M 1/2D2, in a way that respects boundaries, and that F/F-I(M x 1/2D2) is a
bundle map. Let U be the closure of F- (M x 1/2DE). Then (FI U, B U) is a
normal cobordism whose boundary is the union of the identity map on

M x (D2 1/2D2) w M x t(1/2D2) I;

the normal map (F C3o U:, B c3o U1), where F c3oU oU1 -o M x S x I;
and, in the notation of Section 1, (f[ V, b IV). Hence, by additivity and co-
bordism invariance of surgery obstructions, we see that (W) is represented by
i,691y2 y.

To complete the proof of Theorem 1, one has the next result.

PRO,OSITIOq 5. Let H be a nontrivial finite group, and let H’ -+ H be a
surjective homomorphism. Assume that H has a central subgroup with nontrivial
abelian quotient. Let n be even. Then there is an element y in F+2(<I>n,), with
cy 0, whose image in F+ 2(On) has infinite order.

Assuming Proposition 5, we may prove Theorem 1. For H’ we take HM.
Let H" be a quotient of H’ with a central subgroup, =4 say, of finite index, as
provided by the hypotheses of Theorem 1. Let A/B be a nontrivial finite abelian
quotient of A. Then H"/B will serve as the finite quotient of H’ required for
Proposition 5.
Now, by Theorem 2 we may construct W,+ 2, of the same simple homotopy

type as Mn, with Z(Wk) 0 and with a(Wk) the image k of ky in n+2(()l-i,),
k an integer. Here H’ is identified with H Wk via the inclusion of M in Wk.

If Wk had a spine, then by Proposition 2, the image ofk in +2((I)ii,) would
be in the image of try,. By naturality the image of ky in i*+ 2((I)ii) would lie in
the image of t and hence would have finite order. Because H is finite,
i+ 2(rl) is just the quotient of F+ 2((I)rl) by Fn+ 2(Oe). It follows easily from
[2, Appendix I] that the natural map of+2(n) to+2(n) is an isomorphism
modulo 2-groups. Thus the image of y in +2((I)rl) would have finite order, a
contradiction if is as in Proposition 5.

Proof of Proposition 5. Recall the exact sequence

L+(n Z) G+dz[n z] zn)
i*
G+(o)- L+(n x z)

and let d, be the natural map from the middle group to Ln+2(H). We will
construct p F+2(Z[FI x Z] ZH) with the following properties:

(i) p has infinite order,
(ii) j.p O,
(iii) fl.p 0, and
(iv) p is in the image of the natural map from F+2(Z[H’ x Z] -+ ZH’).
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Here fl. is induced by the obvious map fl’ n - e. To prove Proposition 5,
it suffices to see that i.(p) has infinite order modulo r’n+2((I)e). Suppose that
i.(kp) does lie in ln+2(tI)e), viewed as a subgroup of l?n+2(tI)n), k a nonzero
integer. We have the following commutative diagram’

0 0

z)

The rows are exact and the maps from top to bottom are induced by the in-
clusion Z c H x Z and, in the other direction, by projection. Now, fl’.i.(kp)
i’.fl.(kp) 0. Since fl is the identity on ln+2((I)e), we have i.(kp)=0.
Therefore kp itself comes from an element of Ln+ 2(lI Z); by (ii), this element
maps trivially to L+ 2(l-I) under the natural map. By [7], the kernel of this
natural map is the image of the map L+x(rI) Lsn+2(I] x Z) given by
crossing with a circle. But Lh+ :(H) is a torsion group for n odd ([9], for
example), contradicting (i).
To construct p, we consider two cases"

Case I. n 2 (4). We first assume that H actually has a homomorphism
co onto a cyclic group Zp of order p # 0; this will be the case if rI has nontrivial
abelian quotient. Let be primitive pth root of unity, and consider the (multi-
plicative) homomorphism " H x Z - C so that [H is obtained by com-
posing co with a map sending a generator of Zp to , and (t) for a
generator of Z. This induces a homomorphism co" Z[H x Z] - C which
actually factors through the semisimple ring Q[II x Zp]. Using semisimplicity,
it is quite easy to show that a Hermitian form over Q[-rI x zp] on a free
module that has a presubkernel [-2, Section 1], with respect to the augmentation
Q[H x Z] - Q, actually has a presubkernel that is a direct summand. From
this, and using the natural map Z[r/-] Z, r/a primitive pth root of unity, to
compute ranks, we easily obtain an induced homomorphism

o.: r./  (z[n z] zn) -.

where I(C) denotes the Witt group (using orthogonal sum), of nonsingular
Hermitian forms over C, reduced by requiring hyperbolic forms to be trivial.
Let I: I(C) - Z be the signature homomorphism (diagonalize and subtract
the number of negative entries from the number of positive ones.)

Let g H with (g) , and consider the matrix

N(t + - 2) 1
1 g+g-X

where N is an integer with ( + - 2)2N > 1. This matrix represents an
element p of In+2(Z[lI x Z] - Z[1-I]) that obviously satisfies (ii) and (iii).
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Since H’ - H is onto, (iv) is also satisfied. Clearly I09.(p) -2. Hence p
has infinite order.

In case H has only a central subgroup FI" c H with some abelian quotient,
let p F,+2(Z[Z x H"] --. ZH") satisfy (i), (ii), (iii). Suppose that p also
satisfies (iv) with respect to the inverse image of H" in 1"I’. Then the image of p
in F,+ 2(Z[Z HI ZH) under the natural map obviously satisfies (ii)-(iv).
However, because H" is central the composition consisting of this inclusion,
followed by the transfer homomorphism back to F,+2(Z[II" x Z] Z), is
just multiplication by the index of H" in H. Hence (i) is also satisfied.

CaselI. n 0(4).
use a form of the type

For p : 2, the argument is essentially the same. We

(g g- )N 1 )-1 t-t -The homomorphism then gives a skew-Hermitian form over C, which be-
comes a Hermitian form, upon multiplication of all entries by x/-1; whose
signature will be nonzero for suitable N. In the general case we again appeal to
the transfer.

For p 2, we use

N(9 g- a)(t t) 1
-1 t- -a]

In this case, one uses the homomorphism H x Z --. C sending g to (-1) and
to cos 2rr/3 + sin 2n/3; the map on group rings factors through the semi-

simple ring Q[Z6]. We leave the details to the reader.
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