ON CHEN’S ITERATED INTEGRALS

BY
V. K. A. M. GUGENHEIM!

Introduction

In a series of papers, Kuo Tsai Chen has introduced his “iterated integrals™;
and in particular in [1] he has related them to the homology of the loop-space
of a “differential space.” Here, the notion of a “differential space” is very
weak-C ©-manifolds being a special case. For a differential space X there still
is a deRham complex A*X and a Stokes map p: A*X — C*X but one cannot,
in general, assert that p is a homology isomorphism. The path space PgX and
the loop space QgX—slightly restricted to ‘“‘smooth paths”—are again differen-
tial spaces; and the “iterated integrals’ can be regarded as a morphism

I: B*(A*X) —» A*PgX

where B* is the “bar construction.” Suppose now that 4* < A*X is a sub
DG A-algebra. Then denote the image of

B*(4*) — B*(A*X) —— A*PgX - A*QeX

where £ is the restriction, by | A*. [ A* turns out to be a sub DGA-algebra of
A*QgX and “Chen’s theorem” is roughly (for a precise statement see [1, 4.7.1]
or. 2.3 below) that if p | A*: A4* - C*X is a homology isomorphism, then
H*(f A¥) ~ H*(QX). Chen proves this by a pairing of | 4* with the cobar
construction, using the methods of [3]. This is fairly complicated and, at least
without considerable modification, restricted to simply connected spaces.

The present paper is intended to clarify the significance of the integration
map I. Also, in Chapter 2, we give a simpler proof of Chen’s theorem, avoiding
the use of the Adams construction, and arriving at our form of the theorem,
namely (roughly again): Chen’s theorem is true whenever the Adams-Eilenberg-
Moore theorem H*(QX) ~ H*(B*(C*X)) is true; it is known that this is so in
certain nonsimply connected cases. In some recent papers, €.g., [2], Chen has
tackled these cases by a different method. The main idea of our paper is to
relate iterated integrals to the category DASH of “strongly homotopy multi-
plicative maps,” cf. [4].

We observe that, using the proof in [5], the Stokes map p can be extended to
a map of DASH:

Pg: BX(A*X) > B*(C*X).
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Our form of Chen’s theorem then follows immediately from the fact that the
integration map induces a homology isomorphism B*(4*) — | A*, where A*
means the same as above; this last result is (essentially) contained in [1].

In Chapter 3 we explain that the Adams construction—not used in Chapter 2
—1leads to a second map of DASH,

P} BXA*X) —» B*(C*X),

which is homotopic (in DASH) to P; Chen’s proof can be approximately
described in our terms by saying that he uses Py instead of Pp.

In constructing the homotopy between P and Pj we use the method of
acyclic models. This forces us to prove the main results of Chapter 3 without
choosing base-points or “collapsing” C*X in any way; in particular, we are in
no way restricted to simply connected X. The interest of the map Pj lies in the
fact that it is given much more explicitly in terms of the underlying geometric
structure than Py (see 4.2 below). From the form of the map Pj it appears that
one should be able to factorize it through the cubical singular cohcain-complex
CU*(QgX) and the map introduced by Adams; this requires—as did, of course,
the work of Adams—the use of an associative multiplication on QX and the
complex CFX based on the use of the singular complex with collapsed 1-
simplexes.

Once one has such a factorization it follows easily that the isomorphism of
2.3 is an isomorphism of algebras if X is simply connected. There are, however,
some technical difficulties in this program, and we have not carried out the
details.

1. Review of Chen’s theory

A differentiable space is a Hausdorff space X together with a certain family of
continuous maps a: U — X called plots, where U is a convex subset of some
Euclidean space, the family being maximal subject to the conditions that with
a, ag is a plot if ¢: U’ - U is a C*-map between such convex regions; and
every map {point} — Xis a plot. A C*-manifold is a differentiable space in an
obvious way; so is a subspace of a differentiable space. If X is a differentiable
space we define the path-space PgX as the subspace of the usual path space con-
sisting of those paths I — X which are piecewise plots; PsX is a differentiable
space: We define a: U — PgX to be a plot if the adjoint map #u: U x I - X
has the property that, for some partition 0 = t, < ¢, <-+- < t, = 1 of the
unit interval I, #« | U x [¢;, t;+,]isaplotof Xfori =0,...,p — L.

A differentiable p-form w on a differentiable space X is the assignment to each
plot a: U — X of a differentiable p-form w, on U, this assignment to satisfy
O*w, = Wy if ¢: U - Uis C®. We define

(W + w’)a = W, + wa’n (W A w,)a = Wy A W;, (dw)a = dwa'

The differentiable forms thus can be regarded as a graded differentiable algebra
A*X with unit. A map f: X — Y is a map of differentiable spaces if fo a:
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U — Y is aplot of Y whenever a: U — X is a plot of X. Such a map induces a
map of differentiable algebras f*: A*Y — A*X. Note thatif X is a C*-manifold
(with the evident structure of a differentiable space), then A*X is the classical
deRham theory.

A" will denote the standard r-simplex which we shall regard as the subset

{@, .-t t; 20,8, +---+ 1, <1}

of Euclidean r-space R". We shall regard the coordinates as maps ¢;: A" — [
A<i<r).

Now, let w; € AP*X be a pform on X and «: U - Pg¢X a plot with adjoint
#oa: U x I - X. Then w;,, is a p;-form which is piecewise defined on U x I
and

(U X ti)*wi#uz = Wi

say is a p-form on U x A". We define

(1.0) (Jw,“-w,) =f Wig A0 A W,
a AT

which is a (p; + - + p, — r)-form on U, the integration being over the
“volume element” dt; A -+ A df,. The coherency condition is easily verified
and thus [ wy -+~ w,isap, + -+ + p, — r form on PgX. Note that we have
not assumed that p; > 0; it is clear, however, that [ w, -~ w, = 0if p; = 0 for
any i, so that, in particular, although p, + -+ + p, — r may be negative, in
that case | wy -+ w, = 0. It is also convenient to introduce the convention
that fw,---w, = 1 e A°X if r = 0. Our definition agrees with that of Chen,
as can be seen easily by evaluating (1.0) as an iterated integral.
Ifa: U —» PgXis aplot and U a bounded convex set, we define

ffwl"‘wr=f (fwl"'w,j) ifp, +---+p—r=dimU
a U a

=0 otherwise.

Also, we take [, fw, --w, =6 if r =0 and » = dim U. Notice that
fofw= 4o wforr = 1. We now give a summary of some properties of these
“iterated integrals”; for proofs see [1].

Let a: U » PX, o': U’ — PgX be plots such that there is a point x € X
with a(u)(1) = o'(w')(0) = x for all ue U, u' € U'. Then we define the com-
position plot

ax oa':Ux U - PgX
by

(o x o) (u, u')(t) = a(u)(2t) for0<r<i}

w2t —1) fort <r<1.

Il
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1.1. LeMMA Ifa x o is defined on a bounded closed convex set, then

[ fornm 2 ] feo ([ ) 1

To state further properties it is convenient to introduce the bar-construction
B*(A*) of a graded differential algebra 4* with a differential of grading +1.
This is not the “bar construction” of [4] for instance because A* is, at the mo-
ment, not augmented ; indeed, it need not even have a unit. We can introduce
the augmentation if there is one, as will be seen.

If M is a graded module, s: M — sM will be the “‘suspension,” i.e., sM is the
module M with grading increased by 1; if M is a differential module, so is sM
with differential given by d(sm) = —s(dm); similarly for s .

As a graded module B*(4*) is X7, B%(4*) where B%(4*) is the p-fold tensor
product ®” (s *4*)if p > 1 and B§(4*) = R, the underlying ring (i.e., the reals
in our case). The differential is d = dg + d, where dg is the tensor product
differential and d,: B% — Bj_, is defined as O for p < 1 and as

-1
,,; 1® ®@s'ds @)@ @1

for p > 1;in the formula the term with ¢ is in the ith position and denotes the
product A* ® A* —» A*. The “Koszul convention” for tensor products
automatically introduces the usual complicated signs. Note that in [1], the
differential is taken as dg — d,; we use dg + d, in order to be consistent with
the formalism of [4]. As usual, we denote s 'a; ® -+ ® s 'a,by[ay, ..., a,],
and observe that B*(A*) has the coproduct ¥ given by

r
@ s 0] ¥ (a0 a] © [a - a)

If £, g: B*(4*) —» C* are maps into an algebra C* with product ¢, we define
the “cup-product” fu g = ¢(f ® 9.

Let X be a differentiable space. We define the morphism of grading 0,
I: B*(A*X) - A*PX, by I[ ] = 1and

ITwy, ..., w,] =(—1)’fw1~-w, for r > 0.

By Il,, IT,: PX — X we denote the two ‘“‘end-point maps”; they induce
g, ¥: A*X —» A*PgX. It is convenient to introduce the morphisms
To, T4 : B¥(A*X) = A*PX, of grading + 1, namely 0 on B}(A*X) if r & 1 and
to[wi] = M§wy, 1,[w,] = Miw,. Then Dty = 14 U 19, D7y = 7, U Ty, Cf.,
[4] where, as usual, Dt = do 7 + 7od. Similarly we have the differential
DI =doI—1I-d

1.2 LeMMA. DI =101 — TuU 1,
For a proof, see 4.1.2 in [1]. The term with 7, is missing in Chen’s formula;
this is because he calculates in P(X; x,, *), the paths with a fixed initial point
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Xo; a slight difference in the signs arises from our different choice of the differen-
tial on B*(A4*).

It is interesting to remark, cf., 3.2.1, in [4] that according to 1.2, [ is a
homotopy in DASH between IT} and IT%.

Now choose a base-point * € X; then we have the augmentation & = i*:
A*X — A*(x) = R and we write A*X = ker &. Now we have the usual bar
construction, as in [4] for instance:

B¥(A*X) = BXA*X) < B*A*X).

By QX = PsX we denote the subspace of loops at * and observe that the
compositions

A*X 2 AP X L A% QX (1 =0, 1)

factor through the augmentation. Hence, if I,: B*(A*X) — A*Q¢X denotes the
composition

B*(A*X) —— B*(A*X) —— A*PX —" A*QoX
then 1.2 gives:

1.21 CorOLLARY. DI, = 0. In other words, 1, is a chain map.
If A* is commutative (i.e., “skew commutative’) then the “‘shuffle homo-

morphism” induces a product structure in B*(4*) with [ ] as unit, as is well
known.

1.3 LemMA. I: B¥(A*X) — A*PgX is a morphism of algebras.
This is 4.1.1 of [1], and is proved in [6].

1.31 CoROLLARY. [,: B*(A*X) — A*QgX is a morphism of DG A-algebras.
Let A* = A*X be a sub DGA-algebra such that d4° = 4' N dA°X. The
image I,(B*(4*)), i.e., the submodule of A*QX generated by integrals

{wy -+ w, where w; € 4*, is a sub DGA-algebra by 1.21 and 1.31. We shall
denote it by [ A*.

1.4 PROPOSITION. If the differentiable space X is plotwise connected (i.e. by
paths which are piecewise plots), then I,: B¥(A*) - [ A* is a homology-
isomorphism.

Proof. We filter B¥(4*) by @, B%(4*) and [, A* by the I,-image of this
filtration. By A* we denote 4* N A*X, and we define A* = s~ 1(4*/4° + dA°).
It is easily seen that A° + dA° is acyclic and hence A* — A**! is a homology
isomorphism. In the spectral sequence of the filtration,

EB*(4*) = ®° H(A*™') ~ ®° H(A*).

Now, in [1, 4.3.2] it is shown, by a geometric argument, that I, induces an
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isomorphism ®” H(A*) - E ([ 4%). (Note that our A, | A* are denoted by
A, A'in [1].) Hence E}(l,) is an isomorphism, and our result follows from the
completeness of the filtrations.

2. The Stokes map

Let X be a differentiable space; by C, X we define the subcomplex of the usual
singular complex generated by those singular simplexes v: A" - X which are
plots; in [1] these are called the “smooth” simplexes. The corresponding
cochain-complex Hompy (C, X, R) is denoted by C*X; the pairing is denoted by
{ >. We shall adhere strictly to the “Koszul convention” for signs; in par-
ticular a cochain x € C?(X) will be regarded as a map of grading —p so that
the differential is given by

<dx9 U> = (_1)p+l<x’ 60)
We define the “Stokes map” p = p(X): A*X —» C*X by

R e
AP
if w e APX. We shall also write {w, v)> for {pw, v)>. We easily verify that dp =
pd, i.e., Dp = 0, using Stoke’s theorem. We cannot, of course, assume that p
is a homology isomorphism; it is, classically, if X is a differentiable manifold.

2.1 PROPOSITION. There is a morphism P: B(A*X) — C**'X of grading +1
such that P[ |1 =0, P[w] = pwifwe A*Xand DP = P U P.

In the language of [4]—at least after we change to the augmented case—this
means that p can be extended to a map P of DASH; in the notation of [5],

P[Wla"~9wr] =P,(W1®"‘®w,)

so that p, has grading —r + 1.

The proof of 2.1 in [5] by the method of acyclic models applies, even though
A*X is neither of the deRham complexes considered in that paper. This is so
because the proof depends only on three facts:

(i) p is multiplicative when restricted to A°X.
(i) A* is acyclic on simplexes.
(iii) C* is “corepresentable.”

(i) is evident; (ii) follows because on simplexes, A* is the classical theory; and
(iii) follows because the identity map A" — A" is a plot.

P can be regarded as a morphism Pg: B(A*X) — B(C*X) which, in the
augmented case restricts to B(A*X) — B(C*X), as is easily seen. This is
explained in [4]. From the usual spectral sequence argument we obtain:
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2.2 PROPOSITION. Let A* = A*X be a sub DGA-algebra such that p | A*:
A* —» C* is a homology isomorphism. Then Py | B(A*): B¥(A*) - B*(C*X)
is a homology isomorphism.

Recalling 1.4 we thus obtain the following version of the theorem of Chen
[1, 4.7.1]:

2.3 THEOREM. Let X be a plotwise connected (cf. 1.4) differentiable space and
let A* = A*X be a sub DGA-algebra such that dA° = A* n dA°X. Suppose
also that:

(i) p| A*: A* - C*X is a homology isomorphism.
(ii) C*X is homology isomorphic to the usual (continuous) cochain complex so
that HC*X = H(X, R).
(ili) The Adams-Eilenberg-Moore theorem,namely H*(B*(C*X)) ~ H*(QX)
applies, where QX is the (continuous) loop-space.
Then H*(QX, R) ~ H*([ A*) as R-modules.

3. The Adams construction

Let us denote by I" the n-dimensional unit cube, by A} the face operators in
the cubical singular complex, by P(X, x,, x,) the paths (which are piecewise
plots) from x, to x,, by v, the ith vertex of the standard simplex, by 9, the face
operators of the simplicial singular complex, by

LA S AT, A A

the standard injections for the first and last i + 1 vertices, and by &: A"~! — A"
the adjoint of 0;, Adams and Chen have constructed maps 0,: I""! —
P(A", vy, v,) such that 0,7° is the identity path on A! and

M0, = P(EN0,—y, A0, = P(N0; x PUS_)0,-; (> 1)

where x denotes the composition product of plots introduced earlier, and =
means equality up to a reparametrization.

Chen’s modification was needed to make sure that all the maps are piecewise
C=. In [1] the roles of A7, A} are exchanged: We return to the formulas as
originally given by [3].

Suppose X is a differentiable space and v: A"*! — X a plot. We define the
plot c(v): I" — PgX as the composition

I On+1 P(An+1, Vo, vn+1) __E(_v)_q P(X, U(vo), D(U”+1))

and verify that
c(v)I°®

3.0 R )

v regarded as a path in X if n = 0,
c@p),  Ae) = @) x el il

(1 <i<n).
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We shall regard ¢ as a morphism ¢: C, X — CU,_,X where CU denotes the
(smooth) cubical complex, and where we put ¢ | CoX = 0. Now we introduce
the morphism of grading 1, o: A*PgX — C**1(X), by
W, 0y = (=1}, ewy = (— 1y [,
m

where W € A"PgX and v: A**! — X is a plot.
Next we define morphisms

1: B*(A*X) - A*PX and e: B¥(A*X) - C**1(X)
as follows:
I[ ]1=1eA°PX, 1|B%A*X) =0 ifp > 0;
e[w] = pw if w e A°X (cf. Chapter 2)
=0 otherwise;
e|ByX) =0 ifp + 1.
Next, we define

I: B*(A*X) > A*PgX and P’: B*(A*X) —» C**1(X)
by

I =1—1(f Chapterl), P’ =gl + e.
3.1 PROPOSITION. DP’ = P’ u P'.
Proof. A straightforward calculation using 3.0 shows that
D)W, v)y = KW, c(360)) + (=1)"* W, c(0y+20)>
8 (S, o) X el

where W € A"PgX, v: A"*? - Xisaplotand n > 0.

In this formula we substitute W = | w, -+ - w, where w, € AP X and p; + -
+ p, — r=mn,r > 1. From 1.1 and making due allowance for the signs we
have introduced, we get

<fw1 W (OfT7) X C(vlﬁii-i>

— (_l)in+n+i+1 20 <JW1 Crewg, C(Uf'il+2)> <jwj+1 ceew,, C(Ulzig—i)>-

Now, for j = 0 we get 8¢, ;— (<[ wy "+ w,, c(I71}_))> which is nonzero only
ifi = 1. Thenv(I"f2_,) = d,v and we get

<J~w1 ce W, c(aov)>
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and this cancels with the term {w, ¢(0ov)) in the formula. Similarly, the term
for j = r cancels with {w, ¢(d,+,v)) and we have

<(Dcr) fwl T W, v>

_ ni ’i (_l)in+n+l <fw1 ceew, c(vfin+2)> <ij+1 cew,, C(”’;’:I%—i)>-

i=1 j=1

The same formula is obviously true if | w, - - - w, is replaced by I[wy, ..., w,],
etc. For the moment, let us denote oI by P, so that P’ = P + e. We compute
Py P:

POP)w - wl = 3 O F @ Pw - w]® Doyer - w])

where the termsj = O and j = r are zero because P[ ] = 0. Thus
(P o P)[w, w] v

r—1 n+2
= Y X (=0"KIwy o wi], @)K W o W], eInEE o))

ji=1i=o0

which we obtain by evaluating the U-product by the standard Whitney formula.
The terms with i = O and i = n + 2 are zero. Hence, comparing our formulas

3.11) (Do)l = PU P

where we need merely add that both sides are zero on [ ]. Next, we prove the
formulas

(3.12) euP = —a(,ul),
(3.13) Pue=olurt

where 1,, 7, are as in 1.2. To prove 3.12, note that both sides are O on [ ].
Now, let w,e APX (i=1,...,r,r = 1). Both sides of 3.12 are zero on
[Wi, .., w]ifr = 1. Thus, letr > 1.

(ev P)[wy,....,w] = Ul ® P)Y([w,] ® [wa, ..., w,])
= (=D e[w,] U P[w, - w,],
o U (1o @ D([w] ® [Wys---5w,])
= o{to[wy] A I[wy ..., W]}
Now, if v: A"*2 — X where n = p, + -+ + p, — ris a plot, then
(of{ro[wi] A I[wy - - w ]}, v) = IT§wy A I[wy, ..., w,], cod)(=1)"FL,

Now, (IT§w,)ey = (W1)neeo and mycv is the constant plot at v(vy). Hence we get
0 unless p, = 0, as required by our identity. Thus, let p;, = 0. Then

Ka{to[wi] A I[wy, ..., w1} 0 = wi@I[Ws, ..., W], c@H(—1)"*.

o(to U D[wyg, ..., w,]
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Also, in this case

e v P)wy,...,w], v

—{pwy v al[w,, ..., w], v
—wi (W) [wa, ..., w], cw)X(—=1)"*!

and our proof is complete. The proof of 3.13 is similar. From 1.2 and D1 = 0
we easily deduce

(3.19) DI =t,ul—-Turt + 19— 14
We now calculate
DP = D(ol)
= (Do)l — oDI

=PuUP—-o(tpul —Tut + 15— 1)
by 3.11 and 3.14. Hence
DP' = DP + De=PuUP —o(toul —Turt, +1 — 1) + De
and
PuP =FP+e)uP+e)=PuP+euP+Pueteuve
and by 3.12, 3.13 it remains to prove that
(3.15) —0(1g — 1) + De = e U e.

Now, both sides of 3.15 are clearly zero on [wy,..., w,] unless r = 1 or 2.
For r = 1, note {ato[w,], v> = (—1)*'/<TT§w,, cv) which is zero unless p; = 0,
as before. Similarly for o7, and thus 3.15 is true for » = 1 unless p; = 0; and
in that case

dgwy, ey — Iwy, cv) = wy(c(vy)) — wi(v(vy)) = —{de[w,], v>

as required. Finally, we prove that de = e U e on [w,, w,], which is easy.
This completes the proof of 3.1.

Comparison of 2.1 and 3.1 suggests some relationship between P and P’.
Suppose w; € A”'X so that P[w,,..., w,] € C"X wheren = p, + -+ p, —
r+ 1.

3.2. LeMMA Supposer > 1.

i Plwy,...,w] =0ifp;, > nforanyi.
(i) P[wy,....w] =0ifp, +-+p <r
(i) Ifp, =" =p, =1, then

{P[Wy, ..., w], 0y = (=1) (J‘w1 ---w,)u
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where v: A' — X is a plot.

The proof of this follows easily from the inductive construction of P in [5].
The iterated integration in (iii) arises from the use of the chain homotopy S
derived from the standard contraction of A! to v,. We omit these details. It
was the discovery of the relationship (iii) which led to the present paper; it is
interesting to observe that the case p; = - -+ = p, = 1 is the only one arising in
Chen’s theory of the fundamental group.

3.21 COROLLARY. P |B™A*X) = P’ |B"(A*X) if m < 0.

Proof. With the notation of the lemma, m = p;, + -+ p, —r=n— 1.
Consider P, P' | B(A*X). For r = 0, the result is immediate from the defini-
tions. Now,letr = lsothatm = p, — 1. Forp, = 0, P = P’ by definitions;
thuslet p, = 1, m = 0, and let v: A' - X be a plot.

CP'[wi], v) = <ol [w,], v)
= I[wy], c®)>

(o)
().

= —J v*w, since c(v)I® = v
Al

[ m
v

{pwy, v
= <P[W1]’ vy

I

as required.

Now let r > 1. If m < 0, P is zero by 3.2(ii) and P’ is zero because p; = 0
for at least one i. If m = 0O either p;, = -+ = p, = 1, in which case the result
is 3.2(iii), or some p; is >1 and some p; = 0; and then, both P and P’ are zero,
by 3.2(1).

This completes the proof.

3.3 PROPOSITION. There is a natural morphism U: B(A*X) — C*(X) such
that U[ 1 =1land DU =PoO U - Uuv P

Apart from the fact that we are in the unaugmented theory, this means that
P and P’ a homotopic in the category DASH of [4]. Due to 3.21 we can define
U|BMA*X) = 0form < Oand r > 0.
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We continue the construction by induction on r, and for each r by induction
on m. The method is exactly that of [5]; once again, we use the fact that A*
is acyclic on models, and C* corepresentable, cf., the proof of 2.1 above. We
omit the details.

4. Augmentation and loop-spaces

We now return to the case of a differential space X with base-point » already
considered in Chapter 2. Again, QgX < PgX denotes the subspace of piecewise
smooth loops at %; we use the notations preceding 1.21. By Cyuo(X) = CiX
we denote the singular complex generated by those smooth simplexes having all
vertices at *; C§(X) = Hom (CyoX, R) is the corresponding cochain-complex
and

Co(X) = ker {e: C3(X) » Cy(%)}

the kernel of the augmentation;j: C*(X) —» Cg(X)is the restriction. We define
the morphisms

Py, Pi: BX(A*X) > C**1(X),  U,: B*(A*X) » C*(X)

by
P, = jPi (cf., 2.1)
P} = jP'i (cf., 3.1)
U, = jUi (cf., 3.3)

and obtain from 3.3 that
4.1) DU, = P, u Uy, — Uy U P

It is also easily verified that the images of Py, Pj, and U, are in C¥*1(X); since
B*(A*X) contains negative-dimensional elements this is not entirely trivial. It
follows that U, is a homotopy in DASH between P, and P}, so that the maps
Py, Py: B¥(A*X) —» B*(C*X) are chain-homotopic; cf., 2.2 above and 3.2 in
[4]. 1t follows that the proof of 2.3 can be based on P’ instead of P: This is,
essentially, Chen’s proof. Now let #: A¥*PgX — A*QgX be the restriction and
suppose W € A"PgX is such that AW = 0. That means W, = 0 if a: U —» PgX
is a plot such that a(u)(0) = a(u)(1) = * for all u e U. Now let v: A"*! » x
have all vertices *; then c(v): I" — PX satisfies c(v)(1)(0) = c(v)(w)(1) = * for
all u € I" and hence W,,, = 0. Hence

(oW, vy = +LKW, cv) = ;I-_j Wewy = 0.
I"l

Thus AW = 0 implies joW = 0 and we can insert o, in the commutative
diagram
A*PsX 2, C**(X)
| |/
A*QgX 5 CETY(X).



ON CHEN’S ITERATED INTEGRALS

Now, P’ = ol + e, cf., 3.1, and if w e A°X then w(x) = 0, whence jei

Hence

P = j(ol + e)i = joli = oohli = 6],
in the notation of 1.21.
Returning to the original notation we thus have:

4.2 PROPOSITION. The formulas P{[ ] = 0,

CPYWas s W], ) = (—1)<"<"+3>/2)+rj qwx“-wr>
m cv

715

= 0.

where w; € A" X, n = p, + -+ + p, — r and v: A"*' > X is a plot with all

vertices at *, define a map

P BXA*X) > CEHI(X)

of DASH homotopic to that of 2.1 above; hence this map induces a homology

isomorphism B*(A*) — B*(C&(X)) in the situation of 2.2 above.
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