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UNIFORM FILTER CONVERGENCE AND
POINTWISE FILTER CONVERGENCE

FOR FUNCTION SPACES

BY

J. W. BRACE AND J. D. THOMISON

Let G be a vector space of scalar valued functions on a set S and let X
denote the formal linear span of S. It was shown in [4], [5] that every
pseudonorm topology on G is equivalent to the topology of convergence on
a filter of subsets of X.

In the present paper we introduce 4 notions of convergence on a filter,
viz. uniform, subuniform, pointwise and subpointwise convergence and
investigate spaces (G, ) where convergence on implies convergence of
any of these four types. The notion of completion of (G, ) with preserva-
tion of the latter property is also studied.

Section I contains the basic definitions and discussion of relations between
various notions of convergence, Section II gives characterizations of spaces
with various convergence properties, Section III is devoted to examples, and
Section IV examines completions.
We use the notation of [5] and [8].

I. Several notions of convergence

In the following definitions is a filter in a set S. The functions are scalar
valued and have S as their common domain; G is a linear space composed
of such functions. A filter in a linear space X will always be assumed to
possess a basis consisting of balanced and convex sets.

1.1. DEFINITION. A sequence {fn} converges to f0 uniformly (pointwise)
on when there is a set F in such that {/n} converges uniformly
(pointwise) to fo on F. A sequence {,} converges to fo subuni[ormly
(subpointwise) on when every subsequence o {f,} has in turn a subsequ-
ence converging to fo uniformly (pointwise) on .

1.2. DEFINITION [3]. The topology on G with subbasis at the zero func-
tion given by the sets U(e,)={gG: there exists Fg such that
Ig(x)l < e if x Fg} will be referred to as the topology of convergence on .
A sequence {fn} is said to converge to fo on the filter if {fn} converges to f0
in the -topology. The space G equipped with the -topology will be
denoted by (G, ).
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1.3. Remarks. (i) The -topology on G is linear if and only if for any g
in G there exists F in such that g is bounded on F [3].

(ii) Every seminormed topology on G can be obtained via convergence
on a filter in X, the formal linear span of S [4].

(iii) If the sequence {fn} converges to fo uniformly or subuniformly on
then it converges to fo on .

(iv) The -topology on G coincides with the topology of uniform
convergence on the set A {e(F): F}. Here e: X---G* denotes the
natural evaluation and the closures are taken with respect to the tr(G*, G)-
topology, G* denoting the algebraic dual of G [4].

1.4 DEFINITION [5]. Consider filters 1 and 2 in a linear space X. We
write 1>2 when there exists a number r-> 1 such that 1 is a refinement
of r,E={rff: F,2}. We say is equivalent to ,2, when >:2 and
;2 1

1.5. PROPOSITION [5]. Let (G, p) be a seminormed space consisting of
linear forms on a linear space X, and let ; be a filter in X such that
(G, )=(G, p). The collection of all F belonging to of the form F=
{x: If(x)l<a} for some f in G and a >0, is a subbasis for a filter in X
inducing the p-topology on G. Moreover, if is any filter in X satisfying
(G, )= (G, p), then >. We will refer to as a minimal filter.

Defining via a given filter is for convenience only: All filters inducing
the p-topology on G will give rise to the same minimal filter (up to
equivalence).

II. Uniform and pointwise filter convergence spaces

Throughout this section (G, ) is a pseudonormed space consisting of
linear forms on a linear space X. The pseudonorm is p; is the minimal
filter determined by p; p-convergence is equivalent to convergence on ; all
filters are composed of subsets of X. Proofs appear at the end of the section.

II.1. DEFINITION. (G ) is a uniform (subuniform, pointwise, subpoint-
wise) filter convergence space when convergence on implies uniform
(subuniform, pointwise, subpointwise) convergence on . These are ab-
breviated as u.f.c., s.u.f.c., p.f.c., and s.p.f.c, spaces respectively.

11.2. THEOREM. (a) (G, :) is a u.f.c. (s.u.f.c.) space if and only if there is a
filter 9<: such that (G,)= (G, :) and for every sequence {H,} from
and sequence {b,} of reals, b,>_ 1 and lim,__.oob=, it follows that= b,Hn belongs to (there exist subsequences {Hk} and {bk} with the
property that

__
bkHk belongs to :).

(b) The following are equivalent:
(i) (G, ) is a p.f.c. (s.p.f.c.) space.
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(ii) There is a filter <; such that (G,)=(G,) and for every
sequence {H,} from and sequence {b,} of real numbers, lim,__.oo b, oo, it

follows that I.J__ I")=, bHk belongs to ; (there are subsequences {Hk} and
{bk} with I.J o_ i")-, bkHk belonging to ;).

(iii) For each sequence {f,} in G converging on ; to a function fo in G
there is a nested sequence {D,,}, D, c D,,+, of subsets of X (and a
subsequence {f}) such that the sequence (the subsequence {f}) converges
uniformly to fo on each Dm and I..J= D,, belongs to .

II.3. COROLLARY.
is a u..c, space.

If is closed under countable intersections then G, ;)

II.4. DEFINITION. Let ’ be a filter in a linear space X. By u() we
denote the filter with subbasis consisting of all sets of the form ("l= b,H,
with H, in 3, b, >- 1, and limb, o.

II.5. THEOREM. (a) The set of all filters Y( such that (G, )= (G, p) is a

u.f.c. (p.f.c.) space has, when nonempty, a unique (within equivalence)
smallest element. In the u.f.c, case this smallest element is u().

(b) If (G,;i)= (G, p) is a s.p.]:.c, space, i= 1, 2, 3,..., then there is a

filter ;, ; <;, 1, 2, 3,..., such that (G, ;)= (G, p) is a s.p.f.c, space.

II.6. Remark. We do not know if II.5 (b) can be extended to an
arbitrary family of filters. A related open question is found in the theory of
functional spaces (see [1], pages 140-141).

II.7. Proof of Theorem 11.2. Only the u.f.c, and p.f.c, cases will be
examined. First we will establish the necessity of the condition in (a) and the
implication (i)::), (ii) of (b) by showing that we can take t. It suffices to
consider a sequence {M,} from vg where each M, is of the form M,
{x X" [g, (x)] < a,}, with g, in G and a, positive. Let f, (b,a,)-lg,,, and
note that the sequence {f, (b,a,)-g,} converges to the zero function on
In the u.f.c, case this implies that there is a set F in and a positive integer
ko such that f(x)l < 1 for each x in F and k-> ko. Thus Fc bkMk for all
k -> ko and it follows that = b,M, belongs to
For the p.f.c, case observe that liml, sup Ifk(x)l >--1 for all x which do not

belong to =x=bkM. Next we prove the sufficiency of the condition
in (a) and the implication (ii): (iii) of (b). Let f,-0 on as n--, f, in G.
Let

M. {x X: If. (x)l <
Then there exists r-> 1 such that rM, belongs to for each positive integer
n (see Section 5 of [5]). Let b, (rp(f,))-1/2 and choose no such that b, >- 1
whenever n>-no. By assumption the set f"l=,o b,rM, belongs to .
Observing that {f,} converges uniformly to zero on this set establishes the
u.f.c, result. The sets 1"1=, b,rM,, m 1, 2, 3,... provide the nested
sequence required for the p.f.c, case. The implication (iii)=), (i) is immediate.
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II.8. Proof of Theorem II.5:u.f.c. case. It suffices to prove that
u(u(t))= u(t). This identity is, in fact, valid for any filter in X. Let
Hk =1 bk,Hk, where the bk,’s and Hk,’s are as stipulated in 11.4. The
set f’)--1 bHk can be shown to belong to the subbasis for u() by
enumerating the coefficients

{bb,: k 1, 2,... ;n 1, 2,...}

as follows:

I,I 1,2 1,3 1,4

2,1

3,1

11.9. LEMMA. Let (G, p) be a seminormed space and a filter with a
basis consisting of linear subspaces of X. If every function which vanishes on a
member of has zero seminorm, then (G, p)= (G, v).

Proof. By 1.3(iv) it suffices to show that

A c I"){e(MfqB): M, B} where A {e(M): M}.

Consider arbitrary M /, B , Xo A, and r(G*, G)-neighborhood V of
Xo. Without loss of generality we may assume M=e-l(e(M)),
e(M) e(X)= e(M), and e(M) a r(G*, G)-neighborhood of A. It follows
from the bipolar theorem that e(B)D A. Thus

e(Mf-IB)f’) V= e(M)f"le(B) V= e(M)fq Vf’)e(B) O.

II.10. Proof of Theorem 11.5: p.f.c, and s.p.f.c, cases. Let denote the
glb of the collection of all filters having a basis composed of the linear spans
of members of a filter where (G, )= (G, p) is a p.f.c, space. It follows
from the lemma thatv is the required smallest filter for the p.f.c, case.
Now let i denote the filter with basis consisting of the linear spans of
members of i, i= 1, 2, 3, Note that (G, v)= (G, p) where is the
glb of the . A standard diagonal argument shows that (G,v) is a
s.p.f.c, space.
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III. Examples

The following inclusions are immediate from II.1.

u.f.c. =:), s.u.f.c.

p.f.c. => s.p.f.c.

It may be inferred from the examples in this section that the four classes
are distinct. Our only explicit effort in this direction, 111.3, is to exhibit a
s.u.f.c, space which is not a u.f.c, space.

III.1. A seminormed function space not belonging to any of the ]:our
classes.

Let S- (0, 1] and let G be the space consisting of all real valued bounded
continuous functions defined on S. Equipv G with the topology r o uniform
convergence on/3(S)- S, i.e., the Stone-Cech compactification of S with the
points of S removed, and extend the functions in G to X, the formal linear
span of S. For each n N let

f,(s) 1 if s < 1/n,

= ns+2 if 1/n<-s<2/n,
0 if s -> 2/n,

and let f denote the function which is identically 1 on S. Let denote an
arbitrary filter in X inducing the r-topology on G. Since {fn} converges to f
in this topology it is clear that (G, r) cannot be a s.p.f.c, space with respect
to .

III.2. The u.f.c, space F and its subspaces. Let/x be a complete positive
measure defined on a tr-ring of subsets of a set S, and let F denote the
collection of all scalar valued functions f for which the following seminorm
is finite"

p(f) inf {M: tz{x" [f(x)l > M} o}.

(See [10], page 468.) As usual we regard F as a space of linear forms on X,
the formal linear span of S. Let 3 denote the filter with basis formed from
the convex balanced hulls of subsets whose complements have measure zero.
Since p(f)= lime inf 1[1 and 3 is closed under countable intersections, it
follows from II.3 that (G, 3)= (G, p) is a u.f.c, space. The subspaces L and,
when S is locally compact and / is a Borel measure, Co(S) are also u.f.c.
spaces with respect to 3. Of course, when S is compact the topology on
C(S) can be obtained from the coarser filter composed of all subsets of X
containing the convex balanced hull of S.
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III.3. A s.u.]’.c, space (G, 1) which is not a u.[.c, space. Let (G, I[) be
an infinite dimensional Hilbert space, X= G’, t the filter of tr(G’, G)-
neighborhoods of the unit ball in G’. The filter 1 is obtained using the
construction of 11.4 with the added condition b, >-n4. By II.2(b), (G, 1)=
(, II)is a s.p.f.c, space.

Let {/,} be an orthonormal sequence in G and let h > 1 be arbitrary.
Define D, ={x X:l(x’/’,)l<h}. We will invoke II.2(a) by showing that= riD, is not contained in . Let

be an arbitrary set from the basis for . This set may be expressed as

n% riE where j i+ (n- 1)m, r b,, E M, and each E is of the form
{x X: I(x" gi)[ < ai} where IIgll 1 and a > 1. Choose o so that j2 > hm4 when
j o, and let Uo be a unit vector in ft, fz, o) such that Uo belongs to the
kernel of g for j 1, 2,..., jo-1. Suppose that o. Then r (#m)4> h
and

I(h]uo g)l h] Iluoll’ IIgll h] < r
It follows that hjuo rE. Now suppose that

hjuo N.
and let c, (h]uo" [,). Thus c, < hn and

h]uo cfi + ch+’" + qoo.
But then

h] I[NUo[I c < h(1 + 2 + 3 +... + ])/ < h]/ <

a contradiction.

III.4. Pointwise and subpointwise lter convergence spaces. The Hardy
spaces Hp, lp<, are p.f.c, spaces since I1-110 implies pointwise
convergence at every point ol the open unit disk. (See [7].) Each Lp space
may be realized as a s.p.f.c, space as follows. Let N denote the filter in X
having as basis the linear spans of the subsets of S whose complements have
measure zero. Since every convergent sequence has a subsequence
converging pointwise on a member of N and any function which is
identically zero on a member of N has seminorm zero, we may infer from
II.9 the existence of a suitable filter .

IV. Cauchy sequences and completions

Proofs appear at the end of the section.

IV.1. THEOREM. A sequence {fn} in a u.f.c, space (G, ) is Cauchy (i.e.,
with respect to the seminorm p determined by 1) if and only if there is an F in
$; such that {f,} is Cauchy for uniform convergence on F.
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IV.2. DEFINITION [5]. C(X G, ) {f X*" lime f exists for each refine-
ment of ; such that lime g exists for all g in G}.

IV.3. THEOREM. If (G,;) is a u.f.c, space then C(X, G,;) is a
completion of (G, ;) and every Cauchy sequence converges uniformly to one

of its limits on a member of .
Theorem IV.3 may be regarded as a generalization of Grothendieck’s

completion theorem [8], [9].

IV.4. THEOREM. If {f,} is a Cauchy sequence in a p.f.c, space then there is
a nested sequence {D}, D D+, of subsets of X such that

{D" i= 1, 2,3,...}

belongs to ; and the sequence is Cauchy for uniform convergence on each D,
1, 2, 3,

IV.5. THEOREM. Let (G,) be a p..c, space. The [ollowing are
equivalent.

(i) C(X, G, ) is a completion o[ G and every Cauchy sequence in G
converges pointwise to one o[ its limits on a set F .

(ii) For each Cauchy sequence [rom (G, r) and every refinement ’ o[ F
for which lim g exists or each g G, the filter ’ converges on the (filter of
sections o) the Cauchy sequence.

IV.6. Proofs o[ IV.1 and IV.4. A sequence which is Cauchy for uniform
convergence on a set F in is clearly Cauchy in (G, ). Suppose {/} is
Cauchy with respect to p. Choose a subsequence {nk} of the positive integers
such that P(,k [,,) < 4-k whenever m > nk, and define (n) k, nk < n <-
Ilk+ 1. ff (G,) is a u..c, space, the sequence {26")(,,,.,-[.)} converges
uniformly to the zero unction on a set F in :. I (G, ) is a p.f.c, space the
convergence is uniform on each member o an increasing nested sequence
{Di} of sets such that i1 Di belongs to . Let e >0 and choose N, a
positive integer, such that

2-k < e/2, and 126")(f,,,.,- f,)l < 1
k=ff(n)

whenever n> N and x is in F (Di, in the p.f.c, case). The following
inequalities are valid whenever m > n > N and x is in F (D)"

If. ()-f(x)l-< If. (x)- f.,,.,(x)l + (If..,.,(x)- f..,...(x)
+"" + If,,,,.,,(x) f,, (x) l) <-- e/2 + e/2

IV.7. Remark. The completion theorems can now be obtained by
appealing to the ollowing results, reformulated or more convenient
application.
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(i) (Theorem 4.5, page 292 of [3]). Suppose 8, is a filter in G and is a
filter in G* such that 8, converges to fo G pointwise on some member o
and converges to a G* on some member of 8,. Then converges to a
on 8’ if and only if 8, converges to fo on .

(ii) (Theorem 1.3 of [5]). Let f belong to C(X, G, 1) and let f-, denote
its extension to

A f’){e(F)*’" F }, n 0, 1, 2,

Suppose {f,} converges uniformly to fo on A. Then {f,} converges to f0 on
1.

(iii) (Theorem 2.3 of [5]). C(X, G, 1) is the closure of G in (X*, 1).

IV.8. Proofs of IV.3 and IV.5. Let {f,} be a Cauchy sequence in (G, )
and let F be a set in on which {fn} converges, uniformly in the u.f.c, case,
pointwise in the p.f.c, case. Since each f, belongs to X*, the function
lim,_oo f, (x), x in F, may be extended to a function fo in X*. Theorem IV.3,
and the implication (i)--(ii) of IV.5, now follow from the remarks of IV.7.
Assume IV.5(ii) is true, and let ’ be a refinement of such that lime g
exists for each g in G. Remark IV.7(i) tells us that f is a member of
C(X, G, 9), and thus a member of C(X, G, ), since was arbitrary. A
standard argument shows that lim, f,,(a)= fo(a) for each a in A. Note that
{fn} is Cauchy for uniform convergence on A (I.3(iv)). Thus the sequence
{f,} converges uniformly to fo on A, and IV.7(ii) applies.
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