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Introduction

Let D be a domain in the plane bounded by n + 1 analytic Jordan curves.
Garabedian [5] and Nehari [6] consider the following extrernal problem. Sup-
pose h is positive and continuous on OD. For ( D let S {f, fholomorphic
and bounded on D,f()=0, and ]f[ < h on cD}. What is supfs[f’(()[?

Within the framework of this problem certain functions arise naturally.
These are the "reproducing kernels" B(z, ’, h2), holomorphic in z e D which
satisfy

f() j/(rl)B(rl, , hE)h: Id, l

for f holomorphic on D, the closure of D.
It is the purpose of this paper to study these kernels from the point of view of

the Hardy class, HZ(D). The basic technique is to make simple changes in h 2

and calculate the resulting change in B(z, , h2). This amounts to varying the
inner product on HZ(D).
Our main results are Theorem 5.2 and 5.4. Theorem 5.4 may be regarded as a

generalization of the identity

2(1 --z) eiO + z e- + -iO(1) (1 -e’)(1 ze -’) ei 2 e

which holds for I1 < 1, z < 1.
This identity expresses a relationship between the H2 reproducing kernel and

the kernel

ei + z

eiO
Z

used in the integral representation of a singular inner function defined on the
unit disk. We recall that

s(z) exp
ei z
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is a singular inner function when cr is a positive measure on [0, 2n) which is
singular with respect to dO.
The identity (1) proves to be very useful in the work of Ahern and Clark [1],

in which an isometry of H2 @ sH2 and LZ(dt) is constructed, which is natural
with respect to the restricted shift operator on H2 @ sH 2. Forf H2 @ sH 2,
Tf= Pzf is the restricted shift. Here, P denotes orthogonal projection onto
H2 ( sH 2.

In particular, Ahem and Clark show that T is unitarily equivalent to multi-
plication by z plus a Volterra operator, on L2(d). Thus, Ahem and Clark give a
"concrete" example of the Nagz-Foias model theory.
Theorem 5.4, which generalizes (1), relates H2(D) reproducing kernels to a

kernel P(z, q) used in representing singular inner functions s(z) defined on a
multiply connected domain D. See [4]. Again,

s(z) exp {-j’eoP(z, rl) do(rl) )
where a is positive and singular with respect to arclength on the boundary of D.
Theorem 5.4 can then be used to construct an isometry of H2(D)@ sHZ(D)

and L2(da). This isometry gives a concrete example of the Abrahamse-Douglas
model theory. Once again, the restricted shift on HZ(D)@ sHZ(D) is unitarily
equivalent to multiplication by z plus a compact integral operator, on L2(dcr).
See [3].
The construction of the isometry and the study of the restricted shift will

appear in the Indiana Journal of Mathematics in a separate paper.

I. We begin by recalling some basic facts about H2(D). For details see
Rudin [8].
A holomorphic function f on D belongs to HZ(D)if If ]2 has a harmonic

majorant on D. Let L2(cD) be the L2 space of functions on the boundary of D
with respect to arclength measure, ds. In the usual way, H2(D) may be identified
with a closed subspace of Lz(tgD) and is therefore a Hilbert space.
We define equivalent inner products on HZ(D): let h > 0 be a continuous

function on OD and let dm= h2 ds. By HZ(D, din) we mean the space HZ(D)
with inner product

(f g)a,,, (f g)h .]’oofa am.
We also write

IIflIL Ilfll : joolfl h
The following special case will be important. Let G(z, p) be Green’s function

for D with pole at p. Define harmonic measure for p:

-c3G
(z, p)

ds
dm,= 3n 2n
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(As always, d/On denotes differentiation along the outward normal.)
Observe that

(1.1) f(p) <f l>d,,p, fe H2(D).
Finally, let h2 ds and h22 ds define two inner products. The following proposi-

tion is easily checked.

PROPOSITION 1.1. Letfe H2(D). Then Ilfll , < max

2. In this section we define the kernels B(., , h2) and prove they are
"continuous as a function of h 2’’.

Let e D. Then it is well known that Af =f() defines a bounded linear form
on any HZ(D, din). See [8]. This yields"

PROPOSITION 2.1. For e D there is a unique function B(., , dm) e H2 such
that f(() <f, B(’, , dm)>nm, for all fe H2.
We often write B(z, , din)= B(z, , h2) for h2 ds din.

We have the usual properties of reproducing kernels"

(a) ]B(., , dm)] ,, B(, , dm)
(b) B(z, , din)= B(, z, dm) for z, e D
(c) ForTe H2,

We need the following lemma relating the kernel functions for and the
different measures h 2 ds.

LEMMA 2.1. Let {h,} be a sequence of continuous positive functions on c3D
convergin9 uniformly to a positive h. Then B(., , h2,) converges in H2 to

B(., , hE).

Proof We show convergence in H2(D, h2) by proving that

sup I<f B(., , h,2) B(., , hZ)>n2

tends to zero as n tends to . Now,

<f B(., (, h,2) B(., (, hZ)>h2
<f, B(’, (, h,2)>h.2- <f B(’, (, h2)>h2
+ <f B(’, , h)>h <f B(’, , h)>

=f(()-f(() + <f B(’, , h)>h < f B(’, , h))h.:

j" fB(’, , h(h2 h2.) ds.
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Thus the modulus of this last expression is less than or equal to

max h h f ds B(

which by Prop. 1.1 is less than or equal to

max ]h2- h,[ max h-1 max h21[lB( ",

if Ilf]l --- 1. Clearly, we need only show that liB(., (, h,)ll remains bounded

For this, define

dpk(rl) B(rl, , h)/llB(’, , h2k)llh2.
Obviously Iltibk lib: 1. Now

-< IlOk lib: liB( ’, h2)[lh
--lIB(., (, h2)llh2.

So {14k(() I} is a bounded sequence. On the other hand

14)()1 B(, , h)/llB(. , h)llh liB(. hk

By Prop. 1.1,

liB(., (, h)llh _< max (hh 1)lIB(.,
Thus

or

dpk(()l >_ liB(’, , h)llhk/max (hh; 1)

liB(., , h2k)llhk2 <__ max (hh
The right hand stays bounded as k --, oo, completing the proof.

3. Lemma 2.1 showed that B(z, , h2) was "continuous as a function of h2’’.
This section will show that B(z, (, hE) is "differentiable in h E’’ in an appropriate
sense.

Let F denote dD and let F 1 w w 7,/ where ; is a component of F.
We suppose ,/ is the outer boundary. Let dm h ds be a measure on F as in
the previous section.

If A (21, ;L,/ 1) is an (n + 1)-tuple with > 0, 1,..., n + 1, then the
function hA(Z) 2/h(z), z , is positive and continuous on F.

DEFINITION. With dm h ds, and A as above, A dm is defined to be the
measure hA ds. That is, A dm is a perturbation of dm by the weight factor 2
on
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Suppose z and D. Define G(A)= G(2,, 2,+,)= B(z, , A dm).

LEMMA 3.1. G is differentiable. Precisely,

OG
(A) I (’’ ’ A dm)n(., z, A din) din.

Proof Let A’= (2, 2 + A2, 2,+ ). Then

(2)-’[G(A’)- G(A)] (2)-’[n(z, , A’ dm)- n(z, , A din)]

(2)-’[((., , A’ din), (., z, A dm))
((., , A’ din), (., z, A dm))A, ]

jB(., {,A’dm)B(., z’Adm)[2‘-(2‘+a2)a2 dm

f B(., , A’ din)B(., z, a dm) din.

As A2 O, h, h2 uniformly on F, and Lemma 2.1 gives the result. Observe
that the partial derivatives are continuous in A, again a conmquence of Lemma
2.1.
Lemma 3.1 prompts the following definition.

DEFINITION. Ki(z, , dm) I, B(’, , dm)B(’, z, dm) dm.

LMMa 3.2. K(z, , dm) is holomorphic in z and belonos to H2(D).

Proof Let T be the linear form Tf=,(’,,dm) dm, fH2. T is
bounded. So there is a unique 0 H2 such that Tf ( O)a,, for allf H. In
particular,

TB(’, z, dm)= (B(’, z, dm), g>dm,

or

o(z) f B(., z, din)B(., , rim) rim,
Yi

which proves the lemma.

This characterization of K(., , din) leads to the next result.

LEMa 3.3. Fix D. Let A’= (1,..., 1 + A2,..., 1), where 1 + A2 occurs
in the ith place. Then the functions

F(A2) (A2)-X[B(., (, A’ am)- B(., (, din)]

converoe in H2 to -Ki(. , dm) as A2 -, O.
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Proof. We show that

[(f F(A2)+ K,(’, , dm))amsup
Ilflldm

tends to zero as A2 goes to zero.
As in the proof of Lemma 2.1,

(f F(Zi))dm-- frjB(’, , A’ dm)
h2

Furthermore,

ds fr,. fB(., , A’ dm) dm.

(f Ki(’, , dm))am f fB(., , dm) dm.

Thus

F(A2) + Ki(’, , dm))dml If,f(B(’, (, A’ dm)- B(’, , dm)) dm

-< Ilfll  lln(, m’ dm)- B(., (, dm)[ld,,,.
Since A2 --, 0 implies A’ ---, (1, 1, 1), Lemma 2.1 gives the result.

4. Conformal mappings of D onto the unit disk with circular slits. Most of
the material in this section can be found in the books by Bergman [2] and
Nehari [6].

Recall that G(z, ) is the Green’s function for D with pole at (. Precisely,
G(z, )= h(z, )- log [z- ’[ where h(z, )is the harmonic function on D
whose boundary values equal log [z I, z cD. Set

H(z, -;- rl ds rl ),

where [z0, z] denotes a path in D from a fixed point z0 to z.
G(z, ) + ill(z, ) is holomorphic in z, but in general is not single valued.
Let wi(z) be the harmonic measure for 7i, that is, the harmonic function on D

which vanishes on 7j, j i, and is identically 1 on i. Denote by W/a (multiple
valued) holomorphic function whose real part is wi.
For i,j 1,..., n + let

Ji c3wds(4.1) Pit c3n 2n"

That is, pj is the period of wi around 2. The following properties of the p are
well known:

(a)
(b)

Pij Pji"
The n n matrix has non-vanishing determinant.
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If u is harmonic on D, then u will not necessarily have a single valued
harmonic conjugate. However, as a consequence of (b), for some choice of i,

1,..., n, u

_
iwi will have a single valued conjugate. This is the idea

behind the next definition.

DEFINITION. For a D and ( D,

L(, a)--exp (-G(, a)-iH(, a)-
i=1

,(a)W())
where i(a) are chosen so

(rl, a)2n (rl) ,(a) (rl)-2- (rl).
i=1

(This says that L((, a) is a single valued function of (; its periods around the 7j
vanish.) Formula (4.2) says

(4.3) wj(a) o(a)pi
i=1

where we have used Green’s formula. Thus

(4.4) wi(a)ri=(a) where [nij]=[pi] -1.
i=1

We state the following theorem which identifies the L(’, a)s as the "Blaschke
factors" for D.

THEOREM 4.1. L(’, a) is a conformal map ofD onto the unit disk with circu-
lar slits which sends a to the orioin, and maps 7,+ onto the unit circle.

Some further properties of the L(., a)s will be needed. It is known that as
a---, 7,+ 1, L((, a) 1 for fixed (, and as a- 7k, k 4: n + 1, L(’, a) converges
uniformly on compact subsets to a conformal map of D onto an annulus
centered at the origin with circular slits. (We denote this map by L(’, a*),
where a* 7k.) We also have the fact that ]L(z, a)] remains constant as z
ranges over 7. Precisely,

if/= + l,
(4.5) L(z,, a)I 2

exp (-2 =1 w(a),i) if/4: n + 1,

and these formulas are valid for a OD.
Finally, we remark that the choice of the outer boundary as 7,+1 is

irrelevant. Any boundary component may be taken as 7,+ and a conformal
map constructed as above will take 7,+ onto the unit circle.
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5. In this section we derive the fundamental identity that relates reproduc-
ing kernels for different measures to the maps L(., a). We use this to prove that

(a*, t),lim ({IB(., a, dm)]la2= a a*])- -2
where dm din, and a tends to a* e OD along a normal line to cD at a*. (We
say "a- a*e gD, normally".) We then construct P(z, a), the kernel used by
Coiffman and Weiss [4] and prove

B((, a*, dm)B(z, a*, dm)(-
B(z, , dm){P(z, a*)+ P(, a*)} + 2nqK (z, dm) c3wi (a*)

where dm dmt and a* OD. Most of the rest of the section is devoted to
removing the restriction dm din, and proving the correct results.

Let dm h2 ds. For a / we consider the following "special" perturbation
of din.

DEFINITION.

A(a) am(z) IL(z, a)l am(z),

That is, A(a)= (2,(a), 2,+ ,(a)) where

2i(a) {1exp (- 2 Z=I wj(a)nij)

By A(a)din, we mean the measure

for z e cOD.

ifi=n+ 1;

ifi#n+ 1.

Supposefe H(D). ByfH we mean {fg’g e H2}. ObviouslyfH2

_
H. We

have the following easy results.

PROPOSITION 5.1. Let a D. Then L(’, a)H2 {f: f H2 and f(a) 0}.

PROPOSITION 5.2. Let a c3D. Then L(’, a)H 2 H2.

Whether a D or OD we see that L(’, a)H2 is a closed subspace of H2.
The following observation is important.

PROPOSITION 5.3. Let a O and let M L(’, a)H2. Let P denote orthogonal
projection onto M in HE(D, dm). Then

PB(z, , dm) L(, a)L(z, a)B(z, , A(a) dm).

Proof First, let a e D. Since the right hand side belongs to M we need only
show it is the reproducing kernel for ( in M. Iff M then f(z)= L(z, a)o(z),
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where 0 H2" Thus

(f L(, a)L(., a)B(., , A(a)

t(, a)(L(., a)g, L(., a)B(., , A(a) dm))d,,

L(, a)(o, B(’, , A(a)
t(, a)o(a)=f(a)

as desired. If a gD, the same proof works, since anyf H2 may be written as

f L(., a)o, where O H2.
This leads to"

LEMMA 5.1. Let a and z, D. If a D then

(5.1 1) B(z, , din) L(, a)L(z, a)B(z, , A(a)dm) B(, a, dm)B(z, a, dm)
]In(., a, dm)llSm

If a dD then

(5.1.2) B(z, , dm)= L(, a)L(z, a)B(z, , A(a) dm).

Proof For the first part, observe that the left hand side is Ptl B(., ’, dm)
evaluated at z, where PMI denotes orthogonal projection in H2(D, dm) onto
H2 @ M where M L(., a)H2. This is a consequence of Proposition 5.3. On
the other hand H2 @ M is a one dimensional subspace spanned by B(., a, din).
Thus

( BB_(}.,a, dm) I B(z,a, dm)
PM B(z, , dm) B(., , dm), a-, d-)ia dm IIl-’ a- d--)i[d,,

B(, a, dm)B(z, a, dm)
liB(’, , dm)l[

This proves (5.1.1). (5.1.2) follows from Proposition 5.3, since for a cD,
M L(’, a)H2 H2, and P is the identity.

THEOREM 5.1. Let D. Set dm dmt and let a - a* 3D normally. Then

1

aa* liB(" a, dm) 112 ]a a*

Proof. By (5.1.1) with z ( we have

B(t, t, dm) [L(t, a)12B(t, t, A(a)din)= IB(t, a, dm)lZ/lln(", a,

Since B(., t, dm)= B(., t, dm,)= 1, we get

]L(t, a)]2B(t, t, A(a) dm)= {lIB(., a, dm)ll}-
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Thus

1 1 L(t, a)2B(t, t, A(a) dm)
n( a, dm) ,, a a* a a*

By (5.1.2), 1 L(t, a*)2B(t, t, A(a*) dm), so

lim
1

aa* liB( ", a, dm)l 2m a a*[

lim
L(t’ a*)]2B(t, t, A(a*) dm)- L(t, a)]2B(t, t, A(a)dm)

aa*

c3n---a {I L(t, a*)]2B(t, t, A(a*) dm)}

where we know the limits exist by the differentiability of B(t, t, A dm) in A.
By the product rule, the last expression equals

c3
.) 12

c3
B(t, t, A(a*) din).B(t, t, A(a*)dm)-n- IL(t, a + IL(t, a*)12n,

From equation (4.4) we see

]L(t, a)12 =exp (-2G(t, 0)-2 7ijwi(t)wj(a))
i=1 j=l

yielding

( )IL(t, a*)12 IL(t, a*)l 2 -2 (a*, t)- 22 tijwi(t)3wj (a*)

Since B(t, t, A(a*)) L(t, a*)l- 2, we have shown that

c3 3G
(a*, t) 2 rijWi(t) cWJ (a*).B(t, t, A(a*) am) -- L(t, a*) 2 n i,

Now observe that

c
B(t, t, A(a*)dm)=

c3
B(t, t, A(a*)dm).

c32,
-n i=, -2--i n-(a*)

i= Ti

by the chain rule, Lemma 3.1, and the fact that 2+ (a) 1. Since, for @ n + 1,

,i],i(a) exp wj(a)rtij
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we have

cn (a*)= exp -2 wj(a*)rtij -2 rti-ff (a*)
j=l j=l

c3w )L(zi, a*)12 -2= (a*)rt0

Using B(r/, t, A(a*) din)12 L(t, a*)l- 21L(r/, a*)l- 2, we see that

iL(t,a,)12 fin.n. (B(t, t, A(a*) dm))

L(t,a*)[2 [B(.,t,A(a*)dm)l2dm "-n(a*)
i=1

]L(t, a*)[ 2 i (--flL(t, a*)l-2lL( ", a*)1-2 dm)[L(zi, a*)] 2

i-" Yi

2
j=l

8w

=2 iwi(t)k n’a- (a*)
i= j=

where we have ud the fact that dm is harmonic measure for t. Adding this to
the result of the first calculation proves the theorem.

DEFINITION. Let a e 3D and z e D. Using the notation of Section 4 we
define the function

cG OH & c3wi(z, a)- (z, a)- L rtq l/V(z) (a).P(z, a) cn--, ana i,

For each a OD, P(z, a) is holomorphic in z. P(z, a) is the kernel used by
Coiffman and Weiss in [4]. In case D is the unit disk it is (e’ + z)/(e’- z).
The formula

[eiO + Z e -iO ++ -ioe

is easily checked and may be rewritten as

2B(, ei, dm)B(z, ei, dm) B(z, , dm){P(z, e’) + P({, ei)}

for dm dO/2r and z, { e U. A similar formula holds in general.
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THEOREM 5.2. Let z, D and let a a* c3D normally. Then if dm dmt,
lim B(, a, dm)B(z, a, dm)

a*

exists and is continuous as a function of a*. Precisely,
OG

(a*, t))(, .., gm)e(, *, m)t -8(, , g){P(, .*) + P(, .*)) + :"(’ , )’ (..),

Proceed as in Theorem 5.1.Proof
(5.2.1)

B(z, , dm)- L(, a)L(z, a)B(z, , A(a) dm)
a

Rewrite the left hand side as

B(, a, dm)B(z, a, dm)
B(’, a, dm)[Im a a* I"

L(, a*)L(z, a)B(z, , A(a*) dm) L(, a)L(z, a)B(z, , A(a)dm)

lim
a*

a a*l
B(z, , A(a*) dm) L(, a*)L(z, a*)- L(, a)L(z, a)

lB(z, , A(a*) dm) B(z, , A(a) dm)]+ a)Z(z, a)

Claim" the first term converges to B(z, , dm){P(z, a*)+ P(, a*)}. For this,
we note B(z, , A(a*)dm)= B(z, , dm)/L(, a*)L(z, a). Next,

L(, a*)L(z, a*)- L(, a)L(z, a)

--L(, a*)t(z, a)

L(, a*)L(z, a*)

-N(.*) + i(, a*)- Z ; (*)n() (z, a*)

iaOH (z, a*) Z g’ (a*)(z)}.
(, .*)L(z, .)
_

OG OH Ow OG
(. a*) + i (. a*) (a*)., ()x (z, a*)

l,J

H
(z, a*) Z ew,

(a*)., (z)-i ,,
L(, .*)L(z, a){P(, a*)+ P(z, a*)}.
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This proves the claim.
For the second term we must calculate

--B(z, , A(a) am)

and evaluate at a a*. By the chain rule this equals

"’ 69
B(z, , A(a*) dm)

,-i u. (a*)

i (a*).n(., , a(a*) am)n(., z, a(a*) am) am.
i=1

As in Theorem 5.1,

On (a*) L(z, a*)I (a*) where z e 7.

Using this, and again the relation

we get

B(z, , A(a*)am)= 13(z, , am)/L(, a*)L(z, a)

---B(z, , A(a*) dm)

---2," j[ B(., {, dm)B(., z, dm)
,.= L(, a*)L(., a*).L(z, a*)L(., a*)

C3WJ (a*)ijx IL(., a*)l 2 dm.

2
B(’, , dm)B(., z, dm) dm-fnnL(, a*)L(z, a*) i,j=l

2 cgWs(a,).
L(, a*)L(z, a*) ..,,J Ki(z, , dm)nij

Multiplying by t(, a*)L(z, a*) shows that the left hand side of (5.2.1)con-
verges to

B(z, , dm){P(z, a*) + P(, a*)} + 2noKi(z, , din)Ow (a*)

and the theorem follows by applying Theorem 5.1 to the right hand side of
(5.2.1).

This theorem has several implications. If a* e 7, then P(z, a*)is continuous
in z for z D7,. For dm= dm we define

B(z, a*, din)= lim B(z, a, din).
,normally
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Then:

COROLLARY 5.1. If a* ?k, then B(., a*, dm,)e L2(F\?,). By L2(F/?,)we
mean the L2 space with respect to ds on F\?a. Furthermore,

B(’, a, dm) B(., a*, dm) in L2(1-’\t,).

Proof For the first assertion we use Theorem 5.2 with t:

2B(z, a*, dm) -{P(z, a*) + P(t, a*)} + Z 2rqjKj(z, t, dm)Owi (a*).

OG(a*, t)/On never vanishes on F, and the right side is in LZ(F\,).
For the second assertion we use (5.2.1) with t:

B(z, a, din)
lIB(’, a, dm) 112 a a*

dm)L(t, a*)L(z, a*)- L(t, a)L(z,B(z, t, A(a*)

a)lB(z, t, A(a*) din)- B(z, t, A(a) dm)l+ L(t, a)L(z,

L(t, a*)-L(z, a*)- L(t, a*)L(z, a*)- L(t, a)L(z, a)
la-a*l

a)lB(z, t, A(a*)dm)- B(z, t, A(a)dm)t[+ L(t, a)g(z,

Now, the first expression converges uniformly on F, to {P(z, a*) + e(t, a*)}
as a a* normally. We deal with the second term:

L(z, a) L(z, a* uniformly for z s ,, i k.

Thus we need only show that the expression in brackets converges in H, as
a a* normally. In fact,

w (a*).2njK(z, t, A(a*) dm)
la-a*l

The proof of this is a straightforward adaption of the proof of Lemma 3.3, and
will be omitted.

Briefly then, for dm= din,, Theorem 5.1 implies Theorem 5.2. We want to
eliminate the restriction that dm dmt.

Suppose dm= h: ds. The correct result is:
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THEOREM 5.3. Let a a* OD normally. Then

lim (]IB(-, a, h2)llh22 a a’l)- 2h(a*).
aa*

Once we have Theorem 5.3 for a measure h2 ds, we can derive:

THEOREM 5.4. Let z, D and a a* c3D normally. Then B((, a, h2)B(z, a,
h2) converges to a continuous limit on F. Precisely,

2B((, a*, h2)B(z, a*, h2)h2(a*)
tW

B(z, , h2)(P(z, a*)+ P((, a*)} + 2rcijKj(z, , h2) -O-n-n (a*).
i,j

Proofof Theorem 5.3. Let a D. We prove the theorem for dm A(a) dm,.
By Lemma 5.1,

liB(" C, dm,)[lm, L(G, a)IZllB( , A(a) dm,)ll z n(’ a, dm,)I z
,a,,,- liB(., a, dm,)llX,"

Thus

In(c, a, dm,)l -21 L(, a)Iln( , , m(a) dm,)l,a)a, n(., a, dm,)[lff In( , dm,)l

Let ( (* F normally. By Theorems 5.1 and 5.2 the right side goes to zero.
Applying Theorem 5.1 to the left hand side gives the theorem for the measure
A(a) dm,.
Thus Theorem 5.4 is also proved for dm A(a) dm.
Now induction establishes Theorem 5.2 and Theorem 5.4 for any measure in

the form dm A{a )A(a2}"’A{am)dmt, for a, D.
To prove the result for the general h2 ds we need the following theorem.

THEOREM 5.5. Let 0 < h be continuous on F. Then there is a function
H H(D) such that H 2 h E on F, H(() Ofor a preassigned , and H has at
most n zeros on D. Further,

IH{z) exp . {r/, z)log h{r/) ds(tl}- i:li (J{z, ai)

where the ai are the zeros of H.

Indication ofproof H arises as the solution to the following extremal prob-
lem. Letf H(D), fl -< h on r, and f(() 0. Find f so that Y’()I is a
maximum. This matter is also dealt with in [8].

Observe that H is kind of a finite Blaschke product.
We finish the proof of Theorem 5.3 and 5.4:



294 WILLIAM S. COHN

Let M H(z)H2 {f: f H2,f(a,) 0, where the a,are the zeros of H}. The
m It is easy to check thatsubspace H2(D, dm) M is spanned by {B(. a, d )},= 1.

if

B(z, ak, A(al)"" A(ak-1) dm) k(_lll)k(Z dm)= 7 m(al)  )11 ,=1
L(z, ai),

then {k}= is an orthonormal basis for H2(D, din) M M. LetP denote
orthogonal projection onto Mz. Then

PM B(z, , dm)= (, dm)O(z, dm).
k=l

On the other hand,

Pu B(z, , din)= B(z, , dm)- H()U(z)B(z, , h2 dm),
which may be verified along the lines of Proposition 5.3. Thus, letting z and
dm dm we have

lln(., , dm,)l L,- lu()l [ln(., , h d )l
k=l

Divide both sides of this equation by B(., , din,)] Jm," Apply Theorems 5.3
and 5.4 to the right side and deduce that it tends to zero as (*e 8D
normally. This gives the desired result for a measure h2 dm, and hence for any
measure h2 ds.
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