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1. Introduction

The task of enumerating plane partitions was first undertaken by MacMa-
hon at the turn of this century. With a remarkable instinct for form and
underlying structure, he was able to compute the generating function for plane
partitions of a fixed shape, among many other results. These are compiled in
the second volume of his Combinatory analysis [18].

Recently, new tools have been forged for working with plane partitions. One
of these is the Schensted correspondence between matrices and plane parti-
tions, as extended by Knuth [15], which was used by Bender and Knuth [3] to
obtain new results and to elegantly prove some of MacMahon’s old ones. This
work led to more results and more correspondences. In particular, a correspon-
dence of Burge, one of several presented in [4], is the basis for the work in this
paper. Using it, we can obtain, in fairly simple form, a variety of new or
extended generating functions.

Following a presentation of the basic definitions, the Burge correspondence
is given in a form that best serves our purpose. The characterization is nonal-
gorithmic, at least in comparison with the more usual and very constructive
“bumping” definition. However, in this form, the shape, symmetry and other
properties of a plane partition can be more easily determined from its asso-
ciated matrix.

Coming naturally from the Burge correspondence, we have the ability to
generalize the usual generating functions for the sum of the parts (the norm
generating function) or for the trace of a plane partition, and obtain ones,
called trace generating functions, that take into account the sum of the parts of
every diagonal of a plane partition. Such extensions have also arisen naturally
in [8] and [10], and it might be worthwhile to consider for what other generat-
ing functions for plane partitions can such extensions be made.

Rectangular plane partitions are dealt with in the above fashion in Section 4.
In Section 5, Burge’s correspondence is used to derive the trace generating
function for plane partitions of nonrectangular shape and, as a corollary, a new
form for the norm generating function. This is compared to MacMahon’s norm
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generating function in Section 6. It is shown that, in certain cases, our form can
be converted to MacMahon’s form. This leads to a conjecture of the existence
of a simple method for obtaining MacMahon’s generating function.

The correspondence of Burge also preserves symmetry. This allows us to deal
easily with symmetric plane partitions, both of square and nonsquare shapes, in
Section 7. Finally, in Section 8, we note the applicability of these techniques to
the enumeration of shifted plane partitions.

2. Definitions and notation

The study of plane partitions is a natural outgrowth of the study of the
number-theoretic partitions of an integer and, as such, many of our definitions
and concepts will be derived from the latter theory.

A shape A is a finite nonincreasing sequence A, > A, > - > A, of positive
integers. We let p(1) = k, the length of the sequence, and

o(A)=A4;+ + A

The numbers A,, 4,, ..., A, are the parts of A and o(4) in the norm of 1. With
each shape 4, we can associate the set I'(4) of all pairs (i, j) of integers such that
1 <i<p(d)and 1 <j < 4;. A shape 4 is nothing more than a partition of the
integer o(4), and the set I'(4) is the Ferrers graph associated with A.

Another notion we wish to borrow from the theory of partitions is that of
conjugacy. If 4 is a shape, let I'° be the set of all pairs of integers such that (i, )
is in '° if and only if (j, i) is in T'(4). Let A’ be the unique shape with T'(1') = T'°.
We call A’ the conjugate of A. If A = X', we say that A is symmetric.

Given a shape A, suppose that 4 has m; parts equal to i. We can then represent
A by the alternate notation (1™12™2 ---). In particular, if A is a constant sequence
with p(A) =rand 4; =-- = 4, = ¢, we denote A by (¢"). In this case, 1 is said to
be rectangular.

Let A be some shape. A plane partition of shape A is an array P = (p;;) of
nonnegative integers indexed by I'(4) such that p;; > p;;., and p;; > p;, ;. The
integers p;;, including multiplicities, are called the parts of P, and the norm o(P)
of P is the sum of all the parts in P. Below, we exhibit a plane partition of shape
(5,3,3,2,1) and norm 31:

S = W b

6
3
2
2
1

If I is an integer between 1 — p(A) and A, — 1, we define the I-diagonal of P to
be the sequence of parts p;; with j — i = [; the I-trace of P, denoted by t(P), is
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the sum of the parts in the [-diagonal of P. The 1-trace and (— 1)-trace for the
plane partition given above are 7 and 4, respectively. The function ¢, extends
naturally to shapes. Let P be the plane partition of shape A all of whose parts
equal 1. We then define t,(1) = #(P).

Let P = (p;;) be a plane partition of shape 1. We let TP = (g,;) be the plane
partition of shape A" where g;; = p;;. If P = TP, we say that P is symmetric.

It will be useful to extend the use of T and ¢ to matrices in the obvious way:
if M is a matrix, TM represents the transpose of M and o(M) represents the
sum of all the entries in M. In addition, if M = (m;;), the I-diagonal of M is the
sequence of all m;; with j —i =1L

3. The Burge correspondence

In order to give combinatorial proofs for a collection of Schur function
identities due to Littlewood [16, p. 238], Burge [4] devised several variations on
the well-known Schensted-Knuth correspondence [15, 19] between nonnega-
tive integer matrices and pairs of plane partitions of the same shape whose
parts strictly decrease down the columns. (More precisely, the correspondence
of Burge that is of interest to us is a variation on the “dual” correspondence of
Knuth.) By extending a construction of Frobenius on shapes to one which
merges two column-strict plane partitions into a single plane partition, we
extend Burge’s correspondence to a map from matrices to plane partitions.

The details for the construction of this map can be found in [9], where it also
shown that Burge’s correspondence is related to a correspondence of Hillman
and Grassl [13]. This relationship provides another, and simpler, method for
defining the correspondence. For our purposes, we will only need the character-
ization of the correspondence given in Theorem 3.1. Before we present that
theorem, we must introduce some additional notation.

Let M be an r x ¢ matrix, and let [ be an integer, 1 —r <l <c¢— 1. We let
M, be the largest submatrix of M with the I-diagonal of M as its O-diagonal.

Given an r x ¢ matrix M = (m;;), we define a chain in M to be a sequence

(15 J1)s (12 d2)s -5 (i Ji))
of pairs of integers such that
rxip2i 2221 and 1<j,<j, < <ji<g

with the additional property that the pair (i, j) can appear at most m;; times in
the chain. A cross chain in M is defined similarly, except we require instead

I1<ij<iy<i, << <.
For k > 1, define a,(M) (d,(M)) to equal the maximum of
|C1| + |C2| + -+ |Ck|’

where the maximum is taken over all collections of chains (cross chains) C,,
C,, ..., C; such that the number of times the pair (i, j) appears in all the C;’s
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combined is at most m;;. (| C,| is the number of terms in the sequence C,.) We
allow empty chains and cross chains. Let ag(M) = do(M) =0.IfC, C,, ..., C;
have the property that (i, j) appears exactly m;; times for all pairs (i, j), we say
that Cy, ..., C; cover M. If M is an r x ¢ matrix and k > min {r, c}, it is clear
that M can always be covered with k chains or k cross chains; thus
a(M) = dy(M) = o(M).

As an example of these definitions, consider the matrix

021030
_Jj1 00 110
M=11 1 1 021
110201
Then, M, is the matrix
10 30
0110
1 0 21
02 01

The longest chain in M, is

((4,2). 4, 2), (3, 3), 3:3), (2. 3), (1, 3), (1, 3), (1.3))
and the longest cross chain is

(1, 1), (1,3), (1, 3), (1, 3), (2, 3), (3, 3), (3, 3), 3, 4), (4, 4)).

Thus, a,(M,)=8 and d,(M,)=9. Similarly, a, =11, a3=12, d, =12,
dy =13 and a, = d, = 13 for all k > 4.

We can now describe Burge’s correspondence in the form that will be the
most useful for our purposes. To help clarify, in part, the relation between this
correspondence and the Schensted-Knuth correspondence, and for later use,
we also give the analogous description for the latter correspondence.

THEOREM 3.1. Let M be an r x c nonnegative integer matrix. Define two
r x ¢ matrices B(M) and K(M) as follows. For all | between 1 — r and ¢ — 1, let
the I-diagonal of B(M) (resp. K(M)) be given by

a(M,) — a;— (M) (resp. d(M)) — d;_(M,)), i=>1

Then B(M) and K(M) are plane partitions, and B and K are bijections from the
set of r X ¢ nonnegative integer matrices onto the set of plane partitions of shape

(¢")

Proofs for this theorem can be found in [9] and [7, Theorem 2.10]. Also, a
proof for B is essentially given in [14]. This characterization of these correspon-
dences makes manifest certain properties that are not at all obvious from their
original constructions. We list several of these properties below as corollaries in
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terms of B. The same results hold if B is replaced by K. Their proofs follow
easily from the theorem and are omitted.

COROLLARY 3.2. Let M be anr x c nonnegative integer matrix, and let | be an
integer, | —r <1< ¢ — 1. Then t(B(M)) = o(M,).

COROLLARY 3.3. If M is a nonnegative integer matrix, TB(M) = B(TM).

COROLLARY 3.4. B is a bijection from the set of all symmetric r X r nonnega-
tive integer matrices onto the set of all symmetric plane partitions of shape (r").

A variety of other properties of B and K can be found in the sources cited
above.

4. Plane partitions of rectangular shape

We now turn to the task of enumerating plane partitions, in the sense of
finding the generating function for the number of plane partitions that fulfill
certain conditions. The Burge correspondence gives us a potent tool for deriv-

ing fairly general generating functions. To begin, we have need of some new
notation.

For any pair (i, j) of positive integers, define a weight
j—1
w(i, j)= [] x.
I=1-i
With every plane partition P = (p;;) of shape A, we associate its trace weight

W(P) =[] x¥4,;
where the product is taken over all (i, j) in I'(4). Thus, the exponent of x; in
W(P) is t,(P).
Given an r x ¢ matrix M, it is simple, using Corollary 3.2 and the observa-
tion that, if M = (m;),

c—1
IT xx™ =TT w(, jy.
I=1-r 1<i<r

1<j<e

to evaluate the trace weight of B(M) in terms of the w(i, j).

LemMA 4.1. Let M = (my;) be an r x ¢ matrix. Then

WBM) = TT wliiy™.

1<i<r
1<i<c

If € is some class of plane partitions, the trace generating function for € is
defined as

G(%)= ), W(P)

Pe¥
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and the norm generating function for € is given by
g(®)= Y x"®.
Pe¥

Clearly, g(%) can be obtained from G(%) by replacing all x; by x. For a given
shape 4, let 2(A) be the set of all plane partitions of shape 4, and define
G(4) = G(2(4)) and g(4) = g(2(2)).

The easiest plane partitions to enumerate are those of rectangular shape, in
which we only restrict the number of rows and columns.

THEOREM 4.2. Let r and c be two positive integers. Then

G(c') = 1 IT @=w@ )
1555
Proof. We employ the Burge correspondence and Lemma 4.1. Let .# be the
set of all r x ¢ nonnegative integer matrices, and let A = (c"). Then
G()= 2 W(P)
PeP)
= Y I wjy™

Mes 1<is<r
M=(m;}) 1<j<c

I
—_—
—

I

=
—_

~

~
N—
~
-

To concentrate our attention on the norm and O-trace, we can replace x, by xy
and x;, | # 0, by x in G(c"). Thus, w(i, j) becomes x**/~1y.

COROLLARY 4.3. Let A = (c"). Then
z xa(P)yzo(P) — H (1- xiti= 1y)—1‘

PeP(A) 1<i<r
1<j<c

In particular,

g@)=TI (1 =x""1)7"
15550

The first part of the corollary is due to Stanley [22], though he presents the
result in a slightly different form. The second part of the corollary was first
given by MacMahon [18, p. 234]. Bender and Knuth [3] are responsible for the
matrix correspondence proof of this result.

To remove the restrictions on the number of rows, the number of columns, or
both, we simply let »r - o0 or ¢ — oo in Theorem 4.2 or Corollary 4.3. In
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particular, we have the following generating functions due to MacMahon [18,
p. 234].

COROLLARY 4.4. The norm generating function for plane partitions with at
most r rows is

ﬁ (1 _ xk)—min {k, r).
k=1

The norm generating function for all plane partitions is
[0}
n 1 —x¥)

It should be mentioned that a limiting argument is not necessary to obtain
the generating functions in Corollary 4.4. A closer look at Theorem 3.1 reveals
that B is a bijection from the set of all semi-infinite arrays M = (m;;),
1<i<oo,1<j< oo, with a finite number of nonzero entries onto the set of
all plane partitions (ignoring zero parts). Since a 1 in position (i, j) of M
contributes (i + j — 1) to the norm of B(M), the proof of Corollary 4.4 follows
immediately. Thus, the Burge correspondence provides a straightforward, con-
structive reason for the simplicity of these functions.

By a more careful use of Corollary 3.2, we can obtain a slight generalization
of the norm generating function g(c"). More generality can be obtained, at the
cost of much more work and a much uglier result. Perhaps the nicest extension
to be hoped for in this direction can be found in [5].

Let p and g be two nonnegative integers, and let r and ¢ be two positive
integers. By Corollary 3.2, Burge’s correspondence induces a bijection between
r x ¢ matrices M = (m;) such that

[4 r
Ym;=p and Y m,=gq
i=1 i=1

and plane partitions P = (p;;) of shape (c) such that p,; = p and p,, = q. We
also know that m;; contributes m;;(i + j — 1) to o(B(M)).

Thus, to enumerate the plane partitions described above, we need to consider
the set of corresponding matrices M = (m;;). We can choose m;;, 1 <i<r,
1 <j < ¢, arbitrarily. This will contribute a factor of

l—[ (1 _ xi+j-—1)—1

1<i<r
1<j<c

lj’

to the norm generating function.

Secondly, we can choose m,, to be any nonnegative integer less than or equal
to min {p, q}. Let m,, = k. Finally, we must spread p — k and q — k over the rest
of the positions in the rth row and cth column, respectively. Weighted by
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r 4+ j — 1, the possible choices for m,;, 1 < j < c, yield a term in the generating
function equal to

b1t e=2)be-1) — (=) x(1)b2+ 7+ (e~ )b 1)
by+-+be—1=p—k byt--+b—1=p—k

p—k
— xr(p—k) l_'[ (1 _ xc+l—2)(1 _ xl)—l‘
=1

The last equality holds by the well-known expression for the norm generating
function for shapes with at most p — k parts and whose parts are bounded by
c—2([18, p. 5]).

Similarly, the choices for m;,, 1 <i <r, yield the term

q—k
xc@—k I"[ (1 — xrti- 2)(1 _ Xl)_l.
1=1

Putting these remarks, and terms, together, we have proved the following
result.

THEOREM 4.5. The norm generating function for plane partitions P = (p;;) of
shape (¢") with p,y =p and p,. = q is

min {p, g} a—k p—k
( Z xcq+rp—k l"l (1 _ xr+l—2)(1 _ xl)—l ]._[ (1 _ xc+l—2)(1 _ xl)—l)
k=0 =1 =1
% ( 1—[ (l_xi+j—1)—1),

1<i<r
1<j<e

with the convention that [ [P~ a,= 1.

Summing this generating function over all g from 0 to co or using the same
analysis as in the proof of Theorem 4.4, but with no restriction on the sum of
the entries in column c of M, we obtain a theorem of Bender and Knuth [3],
given by them in a slightly different form.

COROLLARY 4.6. The norm generating function for plane partitions P = (p;;)
of shape (c") such that p,, = p is

M-

1

p

x'P H (1 _ xc+l—l)(1 _ xl)—l .

=1

1<
1

<j<c

Before leaving plane partitions of rectangular shape, it should be recalled
that Theorem 3.1 implies that all of the properties of B that we have used in this
section also hold for the Schensted-Knuth correspondence. Thus, all the results
that we have displayed could equally well have been derived using K. This will
not be the case for plane partitions of nonrectangular shape.
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5. Plane partitions of arbitrary shape

To get a plane partition of rectangular shape, we can pick any nonnegative
integer matrix of the same shape and apply the Burge correspondence. For
nonrectangular shapes, we no longer have this freedom. However, we can show
that the set of matrices that are associated by the Burge correspondence with
plane partitions of shape A can be partitioned into subsets of matrices such that
the matrices in each subset are freely generated. It is then an easy task to derive
the trace generating function for the plane partitions that correspond to the
matrices in a given subset. Adding these terms together, we obtain the trace
generating function for all plane partitions of the given shape.

Let A be a shape, and let r = p(4) and ¢ = A;. Theorem 3.1 tells us that every
plane partition of shape (c") is the image under Burge’s correspondence B of a
unique r x ¢ matrix. Hence, the same holds for every plane partition of shape 4.
Let .4 be the set of all r x ¢ matrices M such that B(M) corresponds to a plane
partition of shape 4, i.e., if B(M) = (p;;), then p;; > 0 only if (i, j) € T'(4).

It will be useful to place the natural partial order on I'(¢"), setting (i, j) <
(#,j)ifi <i and j <j'. Also, as we have already taken care of plane partitions
of rectangular shape in the preceding section, we may assume that A # (¢’).
Thus, letting I’ = I'(¢") and I" =T — I'(4), we have I # ¢.

We want to consider the finite set .# of one-to-one functions f: I" — I' that
satisfy the following two properties:

(i) Iff(s,t)=(,j)thenj—i=t—s;
(i) If(s, t) < (s, t), then f(s, t) < f(s, t).

Let b be the cardinality of &#. We then denote the functions in & by f;,
fas -+, f, where we take f; to be the identity function.

For afixed k, 1 < k < b, we can partition the positions in I into three classes.
The position (i, j) in I is of type I if (i, j) € fi(T"). It is of type II if it possesses
the following properties:

() ()¢ A);
(i) There exists (7, j') < (i, j) such that j — i =j — i’ and (¥, j’) € fil");
(iii) If (ip, jo) is the pair whose existence is guaranteed by (ii) with the
largest value of j' (or i'), say fi(x, y) = (io,jo), then for all (u, v) > (x, y),
Slw, v) > (i, j).

A position is of type I1I if it is not of types I or I1. Note that these types depend
upon a specific choice of f,.

It is easy to see that (i, j) is of type II if and only if there exist (x, y)in I and
1 # k such that

fk(s’ t) =f,(5, t) for all (S’ t) #* (x’ y) and ﬁc(xa y) <fl(x’ .V) = (i’ J)

If we think of the functions in % as specifying the placement of zeros on an
r x ¢ chessboard with certain restrictions, a position (i, j) is of type I if a zero
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occurs there and of type II if no zero occurs there but a zero occurs at some
position (k, I), with | — k = j — i and (k, I) < (i, j), and that zero can be slid to
position (i, j), disturbing no other zeros, and still leave an allowed placement of
ZEeros.

The functions in % can be used to define b classes of matrices. For 1 < k < b,
we let .4, be the set of all » x ¢ nonnegative integer matrices M = (m,;) such
that

=0 if (i, ) is of type I
my; 1> 1 if (i, j) is of type II
>0 if (i, j) is of type IIL

Although these definitions may seem complicated, they have an obvious
geometric significance, as suggested above, and the classes .#, are simple to
represent. We illustrate this in Figure 1, using A = (4, 2, 1) with its nine asso-
ciated matrix classes.

>0>0>0>0 >0=0>0>0 >0=0=0>0
>0>0=0=0 >0>0>1=0 >0>0>0>1
>0=0=0=0 >0=0=0=0 >0=0=0=0
>0>0>0>0 >0=0>0>0 >0=0>0>0
=0>0=0=0 =0>0>1=0 =0=0>0=0
>0>1=0=0 >0>1=0=0 >0>0>1=0
>0=0=0>0 >0=0=0>0 >0=0=0>0
=0>0>0>1 =0=0>0>1 =0=0=0>0
>0>1=0=0 >0>0>1=0 >0>0>0>1

FIG. 1. The nine matrix classes associated with A = (4, 2, 1)

Our main objective now is to show that .# is the disjoint union of .# ,
M, ..., M. That the 4, are disjoint is easy to demonstrate, for each matrix
in ), uniquely determines f,. If M = (m;;) € 4, then

filt,e)=(0, ¢c—r+1) where !=max{p:m,,_,,,=0}

Assuming that we have uniquely determined f,(s’, ') for all (s, t') > (s, t), we
then note that fi(s, t) = (I, t — s + [), where

I =max {p: m, ,—s4+, =0 and
(0, t —s+p)<fils, t) forall (s, t)> (s, t)}.
The next step is supplied by the following lemma.
Lemma 5.1. A, < M for all k, 1 <k <b.

Proof. Suppose we can cover I' — f;(I") with s = t,(A) nonintersecting paths,
each of which starts in the first column, moves only to the right or up, and ends
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in the first row. In addition, suppose that these paths begin in rows ry <r, <
--- < ryand end in columns ¢; < ¢, <+ < ¢, Where

cj=|{I:1>0, () >s—j+ 1},
ri={l:1<0,(d)>s —j+ 1}],

forj > 1.

Let M = (m;;) be an r x ¢ matrix such that m;; = 0 if (i, j) € £i(T"). It then
follows from Theorem 3.1 that the number of nonzero parts in the I-diagonal of
B(M) is at most

|{j:e;=1+1} for 1>0

and
[{i:ri>1-1| for 1<0.

Combining the suppositions and remarks from the previous two paragraphs,
we see that the number of nonzero parts in the I-diagonal of B(M), | > 0, is at
most

[{jr1<j<s and |{p:p>0 and t,(A)>s—j+1}| =1+ 1}|.

A closer look at this expression reveals that it is the (I + 1)th term in the
conjugate of the conjugate of the shape (to(4), £1(4), £5(4), ...), and therefore
equals f,(A). Similarly, we find that the number of nonzero parts in the I-
diagonal of B(M), I <0, is at most t,(1). Hence B(M) can be considered as a
plane partition of shape A.

To complete the proof of this lemma, we need to show that such a covering
by paths of I' — £,(I") exists for all k. It is easy to verify that " — f{(I") = T'()
can be covered (in a unique way) by t4(4) such paths and that c; and r; satisfy
the corresponding equalities for all j. These paths can be altered in such a way
as to yield t,(A) paths with the same end points that cover I' — f(I"") for any
k#1.

This alteration can be done recursively by noting that any I' — f,(T"') can be
derived from I'(1) through a sequence of stages

I(A), T —f(I"), T = f(I"), ..., T = fil(T),

where we pass from one stage to the next by deleting a position (i, j) and adding
on a position (i + 1,j + 1). In other words, we pass from I'(A) to I' — f(I"") by
moving zeros one space at a time down the diagonals such that the placement
of the zeros always corresponds to the positions in f,(I"') for some f, in #.
Suppose we have managed to cover I' — f,(I"") with paths as desired, and that
we can obtain I — f,(I") by deleting (i, j) from I" — f,(I") and adding (i + 1,
j+1). Then (i + 1, j) and (i, j + 1) must belong to I' — f,(I""). Otherwise, we
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would have, say, (i + 1, j) in f(I"') as well as (i + 1, j + 1). This would imply
that f7'(i+ 1, j)<f3'(i+ 1,j + 1), so that

()< G+ 1) =5 122G+ 1) <5 S5+ 17+ 1) = ),
a contradiction.

It is then an easy observation that one of the paths in the given covering of
I' — f.(T"’) contains the positions (i + 1, j), (i, j) and (i, j + 1). We get an appro-
priate covering of I' — f(I") by using the same paths employed to cover
[ — f(T"), except in the path containing (i, j), we use (i + 1,j + 1) instead. This
finishes the proof of the lemma.

All that we have remaining to show is that ./ is contained in the union of the
M. We do this by using a given M = (m;;) in ./ to define a functionf: I" - T’
such that f=f; for some k and M e .#,. If there are no zeros on the
(c — r)-diagonal of M, we need min {r, ¢} chains to cover M. This implies, by
Theorem 3.1, that t,_,(A) = min {r, ¢} and thus, A = (¢"), contrary to assump-
tion. So, some entry on the (¢ — r)-diagonal is zero. Let

f(r,c)=(,c—r+i) wherei=max{l:m, ., =0}

Let (s, t) e I, (s, t) < (r, ¢), and assume we have defined fon all (s, ') in I,
(s, t') > (s, t). We then let f(s, t) = (i, t — s + i), where

i=max {l:m, o, =0 and (Lt—s+1)<f(s,t) forall (s, t)> (s t)}.

For f to be defined at (s, t), we need to know that the set over which we
maximize to find i is nonempty. This want is supplied by the next result.

LEMMA 52. Let (s, t) e I, and suppose we have defined f at (s, t): f(s, t) =
(i, j). Let M' = (my,) be the r x c matrix obtained from M by letting

,=jmk, ifi<k<r and j<l<c
“ o otherwise

Then we need at least s — i(= t — j) chains to cover M.

Proof. We first note that, since f (s, t) is defined, f(s', t') is also defined for
all (s, t') > (s, t). If £ (s, t) = (s, t), then f(s', t') = (5, t') for all (s, ¢') > (s, t) and
M’ = 0. Hence, the lemma holds.

So, we assume that f(s, t) # (s, t). We will show by induction that we can
find a set

{(Xp p) 1 <t<s—i; i<x;<X,<' <Xy <T,
J<Yi<ys <<y myg, #0),
the existence of which implies the lemma. This clearly holds if (s, t) = (r, ¢), for

{i+1L,j+1),3G0+2j+2),...,(rc)
1s such a set.



THE ENUMERATION OF PLANE PARTITIONS 545

We can now assume that (s, t) < (r, ¢). If t = ¢, let (u, v) = f(s + 1, t). Then,
either (u, v) = (s + 1, t) or, by induction, we have x’s and y’s such that

u<x1<x2<”'<xs+1—usr7 v<y1<y2<'”<ys+l—ugc
and
my, #0 forl<t<s+1-u

The definition of f (s, t) tell us that f(s, t) < (u — 1, v)and m; # O fori+ 1 <
k<u—1andl=1t— s+ k. We thus have

i<it+l< " <u—1<x; <" <Xg41-y<T
and
j<jtl<-<t—-s+u—1l=0v<y; < <Yi11-u<6

where the subsequences of the x’s and y’s are empty if u = s + 1. Hence, we have
the required set of cardinality (u — 1 — i)+ (s+ 1 —u)=s— i

If, instead, we have s = r, the proof is similar, using f(s, t + 1) instead of
f(s + 1, t). (Or, transpose M, apply the previous case, and transpose back.) In
the case where s < r and t < ¢, let

(u,v)=f(s+1,t) and (u, v')=f(s, t + 1).

If v' > v, then we must have f(s, t) < (u — 1, v) and the same proof used in the
preceding paragraph holds, without the assumption that t = ¢. If v < v, we can
use the same proof suggested at the beginning of this paragraph, without the
assumption that s = r. In either case, the proof of this lemma is complete.

To now see that f can be defined on all of I, assume we have (s, t) e I,
(s, t) < (r, ¢) and suppose we have defined f (s, ¢') for all (s', t') > (s, t). Then
(s+ 1,¢) or (s, t + 1) or both belong to I and the set

{L(Lt—s+1)<f(s,t) forall (s, t)> (s t)}
equals either
{L(Lt—s+D)<f(s+Lt)y or {l:(Lt—s+1)<f(s, t+ 1)

We can assume that it equals the former set, the proof for the latter case being
similar. Let (4, v) = f(s + 1, t). By Lemma 5.2, the submatrix of M consisting of
all my, with k > u and | > v requires at least (s + 1 — u) chains to cover it.

Suppose that ¢ > s. Then, if we cannot define f (s, t), we must have m; ,_ .,
1 < k <u — 1, all nonzero. Therefore, the submatrix of M consisting of all m,
with 1 <k <wuand t — s+ 1 <[ < v requires at least u — 1 chains to cover it.
Hence, M,_ (as defined in Section 3) requires at least (s + 1 —u)+ (u — 1) =
chains to cover it. By Theorem 3.1, this implies that the (¢t — s)-trace of 4 is at
least s since M € ./, and hence, (s, t) € I'(4), contradicting the fact that (s, t) €
I'=T — I'(A). A similar analysis holds if ¢t < s.

We have thus shown that f can be defined on all of I'". It is then clear from the
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construction of the function that f = f, for some k and that M € .#,. We have
now reached our objective.

LEMMA 5.3. . is the disjoint union of My, M4, ..., M,.

As suggested at the beginning of this section, this partition allows us to
compute G(A).

THEOREM 5.4. Let A be a nonrectangular shape and let F be the set of
functions associated with A as described above. Then

0= 2 (L) L u-wt)

Proof. Letr = p(A) and ¢ = A,. Then, by Lemma 4.1, we have
Y wpy= Y I wjym

P e B(Ay) Me#ty 1<i<r
M=(m;j) 1<j<c

= ]I ( iw(i,j)"“f) [1 ( > w(i,j)"‘ff)

@i, j)of \mij=1 @i, j)of \m;j=0
type 11 type II
-(Isea)( 11 a-weit)
(i, j) of (i, j) of
type Il type Il or 11T

From Lemma 5.3, we know that G(A) =Y/ .5 Y ,enuy W(P). This fact
combined with the previous computations completes the proof.

As before, to focus our attention on the 0-trace and norm functions, we let
xo = xy and x; = x, [ # 0, in G(4).

COROLLARY 5.5. Using the notation of Theorem 5.4, we have

Z xa(P)yto(P) — Z ( 1‘[ yxi+j—1)( l’l (1 _ yxi+j—1)—-1)‘
Pe2) feF \(,}J)of @i, j) of
type Il type Il or 11T

In particular,

o) = ¥ (I =) T -y
fe#F \(,j)of (i, j) of
type Il type Il or 111

and

) y‘°"”=( ) ( Hy))(l — ).
Pe P(R) SeF \(,J)of
type II
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Example. Referring to Figure 1, we can use Corollary 5.5 to give us the
following generating functions when 4 = (4, 2, 1). The norm generating func-
tion is

g(4) = (BN HI@PCrT " + 2x* @) @)
+x°[(Q)B)DEN ™" + x[B)*(4)°] " + (x* + x°)B3)4) ()]
+x°[(H)E)HO)] " + x"[(4)*(5)]™ 1}
where we have used the notation (n) for (1 — x"). The O-trace generating func-
tion is given by
Y VP =(1+5y+3y7)/(1 ~y).

Pe ()

Corollaries 4.3 and 5.5 imply that the number of plane partitions of a fixed
shape and O-trace has an interesting property. If A is a given shape, we find that
the O-trace generating function ) p. 5, y*? has the form r(y)(1 — y)~°®,
where r(y) is a polynomial. In the rectangular case, r(y) = 1. If A is not rectangu-
lar, the degree of r(y) is the maximum number of positions of type II taken over
all fin &, the set of functions associated with 4. It is easy to see that this degree
is less than o(4). In addition, r(1) = b, where b =1 if 1 is rectangular and
b= |#| if A is not rectangular. It is well-known (e.g,, [12, pp. 20-22]) that
these facts imply that the number of plane partitions of shape 4 with O-trace
equal to n is a polynomial in n of degree 6(4) — 1 with leading coefficient b.

6. Variations and MacMahon’s Theorem

The analysis carried out in Section 5 depended greatly upon the relation
between chains, shapes and Burge’s correspondence. If .#* is the set of all
p(4) x A; matrices whose image under K is a plane partition of shape 4, we do
not know of a partition of .#* analagous to the one given in Lemma 5.3 for .#.
However, for a certain class of shapes, such partitions do exist.

LEMMA 6.1. Let A be a shape of the form (q'p®), where p > q > s >0 and
t>0.Let My, My, ..., Mybe as in Lemma 5.3 for A and let M* be as defined
above. For 1 <k <b, let M} ={RM: M € .4,}, where R is the operator which
reflects a matrix about a horizontal axis. Then #* is the disjoint union of /%,
My, ., ME.

Proof. In light of Lemma 5.3, it suffices to show that .#* = {RM: M e .4}
Let M € ./ . Then, by Theorem 3.1, M,_; can be covered by at most s chains.
These chains, when reflected about a horizontal axis, yield s cross chains that
cover (RM),_;. Hence, again using Theorem 3.1, we see that the number of
nonzero parts on the (¢ — s)-diagonal of K(RM) is at most s, implying that
RM e H*.
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This argument can be reversed, telling us that, if M’ € #*, RM' € .4 and
hence, M’ € {RM: M e .#}. This completes the proof.

THEOREM 6.2 Let A be a shape of type specified in Lemma 6.1, and let
r=s+t. Let & be the set of associated functions for A as defined in Section 5.
Then

G(A)= ) ( [T wr—i+ l,j))( [T A-wr—-i+ l,j))‘l)‘
feF \G jyof G, j) of
type Il type Il or 11l
The proof can be obtained by an obvious modification of the proof of
Theorem 5.4, taking into account the reflection of the matrices. With this
approach, the norm generating function takes on a particularly nice form.

COROLLARY 6.3.  Under the same hypotheses as in Theorem 6.2, we have

gA)=h(x) [] (A —=x"""%) whereh(x)= Y ( IT x’”_i).

G, J)eT) SeF \G jof

type Il
Proof. As usual, we set every x; = x in G(4). This changes w(r — i + 1, j) to
x"*i7i To finish his proof, it suffices to note that regardless of the choice of fin
Z, there will always be the same number, t(4), of positions (i, j) of type II or III
with j — i = [, each yielding the same factor (1 — x"**)™1. Thus, for all fin &,

[T @=wr—i+1,j)*

(i, j) of
type I or 11l

becomes

-1
pl__[ (1 _ xr+l)—t1(,l) — l_[ (1 _ xr+j—i)— 1.
I1=1-r @i, )e(d)

The form of the norm generating function given in Corollary 6.3 leads us to a
theorem of MacMahon. Through a magnificent analysis of the problem [18,
pp. 213-234], he arrived at the following norm generating function for the plane
partitions of shape A.

THEOREM 6.4. Let A be a shape, and let r = p(1). Then

g(A)=h(x) [T (1—=x"7)7",

(@i, j)eI'(2)

where h(x) is a polynomial with integer coefficients. Specifically, h(x) is the deter-
minant of the r x r matrix whose (i, j)-entry is the polynomial

S (T
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where

i —j+ 1
ei,-=(’ L) i

and
A T
eij=(2 ) !fl<.]

MacMahon’s theorem gives the norm generating function in a very elegant
form as the quotient of two polynomials. However, the actual determination of
the coefficients of the numerator polynomial h(x) via the determinant can be
extremely tedious. In addition, huge amounts of cancellation take place.

We also note that, in the case covered by Corollary 6.3, h(x) has only non-
negative integer coefficients. The same can be shown to be true for a variety of
other shapes, and we conjecture that it is true for all shapes. In fact, we believe a
stronger result holds.

Conjecture. The set of all plane partitions of shape A can be partitioned into
a finite number of subsets such that the norm generating function for the plane
partitions in each subset has the form

x [] (1 —=x®rizh~t
(i, ) eT(2)

for some nonnegative integer ¢ depending on the subset.

The validity of this conjecture would imply that h(x) has only nonnegative
coefficients. A solution of the conjecture in the spirit of Lemma 5.3 would also
provide a very efficient means for computing h(x).

In proving the result given in Theorem 6.4, MacMahon was able to deter-
mine h(1), the sum of the coefficients in h(x). Indeed, it was the expression for
this value that led him to the form for his solution. MacMahon [18, p. 217]
discovered that the norm generating function for plane partitions of shape 1
has the form q(x) [[§) (1 — x')~ !, where g(x) is a polynomial with integer
coefficients such that g(1) equals the number of plane partitions of shape A
whose parts consist of all integers from 1 to (). (This result has been greatly
extended by Stanley [21].) Combining this with Theorem 6.4, we have

h(x)=q(x) [] (1 —x"*79) j]i) (1—xhH 1

(i, J) e I'(2)

Thus, letting x — 1,

h(1) = (g(1)e(D)) 1 (p(A) +j— ).

@i, )e'(A)
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MacMahon has evaluated g(1), but we invoke a more recent result of Frame,
Robinson and Thrall [6], who showed that
q)=o()! [1 hi-j+4—-i+1)""

G, ) el'(d)

Combining these last two equations, we arrive at the desired value.

COROLLARY 6.5. Using the notation of Theorem 6.4, we have
)= JI (A +j—i)A—j+4—i+1)"L

G, ) eT()

The terms (4; — j + A; — i + 1) used above are the hook lengths of 4, which
appear frequently in enumerative problems concerning plane partitions (cf.
[13], [20]). It is known [20, p. 263] that the value for h(1) given in Corollary 6.5
is the number of plane partitions of shape 4 whose parts strictly decrease down
the columns and are bounded by p(4) — 1. It is therefore conceivable that a
solution to the conjecture given above could involve these special plane parti-
tions in some manner.

7. Symmetric plane partitions

The technique that worked so well in the previous sections for plane parti-
tions can also be applied to symmetric plane partitions, thanks to Corollary
3.4. Once we have defined the appropriate weight function for the symmetric
case, we will see that almost all of the earlier results have symmetric analogues.
In addition, the proofs involved essentially mimic the earlier proofs, changing
only in the details.

Let A be a symmetric shape. We define a new weight function w* on I'(1),
letting

wiij)  ifi=j
w(i, w(j, i) ifi#j
Applying this definition and Corollary 3.4 to Lemma 4.1, we obtain the follow-
ing result.

w'(i, j) =

LEMMA 7.1. Let M = (my;) be a symmetric r x r matrix. Then
WBM)= T[] w.))

1<i<j<r

Let 2°(4) denote the collection of all symmetric plane partitions of shape 4;
then the trace generating function for P%(4) is

G*(4) = G(7°(2)
and the norm generating function is given by

g'(d) = 9(°(2)).
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The rectangular case is again the easiest to consider.

THEOREM 7.2. Let r be a positive integer. Then

G(M= I (1=wGi) "

1<isjsr

The proof is the same as the one given for Theorem 4.2, using, in addition,
the fact that the matrices involved are symmetric (Corollary 3.4) and Lemma
7.1. If we replace x, by xy and x;, | # 0, by x in w*(i, j), we find that

and w(i, j) = y*x2HiT) o

Applying this to G*(r"), we obtain the symmetric version of Corollary 4.3.

Wi i) = !

COROLLARY 7.3. Let A = ("), where r is a positive integer. Then
xd(P)yto(P) — H (1 . yx2i-' l)— 1 H (1 _ y2x2(i+j— l))—l‘

Pe 2s(2) 1<i<r 1<i<j<r

In particular, the norm generating function for 2°(1) is

g°r)= n (1 — x*~ 1)1 H a — x26+i=D)=1,

1<isr 1<i<jsr

The latter part of this corollary is also an easy consequence of a conjecture of
MacMahon that has recently been proved by Andrews [2] and I. MacDonald
[17, pp. 50-52]. Allowing r — oo in the above result, we obtain the norm gener-
ating function for all symmetric plane partitions, originally discovered by
Gordon [11].

COROLLARY 7.4. The norm generating function for symmetric plane partitions
equals

n (1- x2i—l)—l I‘I (1- x2(i+j—1))_.1.

1<i<ow 1<i<j<oo

To sharpen these results a bit, we can imitate the analysis used to obtain
Theorem 4.5, but restrict ourselves to symmetric matrices. In this manner, we
find that the norm generating function for symmetric plane partitions P = (p;;)
of shape (r") such that p,; = p;, = p is given by

l"[ (1 _ x2i—1)—1 n (1 _ x2(i+j—1})—l

1<i<r—-1 1<i<j<r-—-1
x((2r-1)b,-)+(2r)b1+(2r+ 2)by+ -+ (4r—4)b,- 1)

by+-+by=p

The third factor above can be rewritten as

X

x@r="1p Z x(B1+3b2t e+ (2r=3)br-1)
byt--+b,=p
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when r > 2, or as x? when r = 1. This summation is the norm generating

function for shapes A such that p(1) < p, the A; are odd and 4; < 2r — 3 for all i.
This is known to be
p

xF T (1= X2 2) 1 — x2)7! [18, p. 11]
i=0 1=1
Hence, we have the following strengthening of Corollary 7.3.

THEOREM 7.5. The norm generating function for symmetric plane partitions
P = (p;;) with at most r rows and columns such that p,, = p,; = p equals

n (- x2i—1)—1] H (1- x2(i+j—1))—1

1<i<r—1 1<i<j<r-1

X

x(2r—1)pixi I'l'[ (1 _ x2(r+l—2))(1 _ le)—l ,
i=o i=1
with the convention that [ [}, a, = 1.

Moving on to symmetric plane partitions with fixed, nonrectangular shape, it
turns out that the machinery developed in Section 5 can be applied here as well,
with a little modification. Given a nonrectangular symmetric shape 4, we let &
be the associated set of functions as defined in Section 5. Let #° be the collec-
tion of all fin & which are symmetric, i.e., if (i, j) € f(I'), then (j, i) € f(I"). It is
easy to see that f is symmetric if and only if f (s, t) = (i, j) whenever f (¢, s) =
(J, i). Letting b = | # | and a = | #*|, we can assume that #° = {f1, 1>, ..., f}.

Let 4, M ,,..., #,bedefined as in Section 5, and let #°, 43, ..., /3 be their
respective subsets of symmetric matrices. It is clear from the definition of .4,
that if f, is symmetric, .4} is nonempty.

Conversely, if f, is not symmetric, we can find a maximal (s, t) such that
Sils, ) = (i, j) but fi(¢, s) < (j, i). Since (s, t) is maximal with this property and
S8, ) > (i, j) for all (s, t') > (s, t), we have, for all (¢, s') > (t, s), fit, 5') >
(J, i). Hence, (j, i) is of type II while (i, j) is of type I. Then, if M = (m,,) € M,
we must have m;; =0 while m; > 1, so M cannot be symmetric. Combining
these remarks with Lemma 5.3 gives us the symmetric version of that result.

LEMMA 7.6. #° is the disjoint union of the nonempty sets M5, M5, ..., M5,

We can now compute the trace generating function for symmetric plane
partitions. The derivation is essentially the same as the one given for Theorem
5.4, using Lemma 7.1, and is omitted.

THEOREM 7.7. Let A be a symmetric shape, and let #* be defined as above.

e ¢i= 3 (1 wed) 11 0-wein)

(i, j) of type (i, j) of type
I,i<j Morlll, i< j

The symmetric plane partition version of Corollary 5.5 can be obtained in
the usual manner.
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8. Shifted plane partitions

Another type of plane partition that appears fairly frequently is the shifted
plane partition. Let A be a symmetric shape. A shifted plane partition P = (p;;) of
shape A is an array of nonnegative integers indexed by (i, j) in I'(4) with i < j
such that p;; > p;,,; and p;; > p;;+ ;. The norm, I-trace and trace weight of a
shifted plane partition are defined in the obvious way.

Having dealt with symmetric plane partitions, shifted plane partitions are
easily enumerated. Given a symmetric plane partition of shape 4, if we ignore
everything below the 0-diagonal, we get a shifted plane partition of shape A.
This defines a bijection between these sets of plane partitions. Thus, to obtain
the trace generating function for shifted plane partitions of shape 4, we only
need to replace x; and x_,, [ # 0, by x{/* in G°(A). Once we have the trace
generating function, we can restrict our attention to the O-trace or norm in the
usual manner.

For example, if r is a positive integer, we find, using the expression for G*(r")
given in Theorem 7.2, that the trace generating function for shifted plane parti-
tions of shape (1) equals

S )

The corresponding norm generating function is

[T -x)" [ @-x)

1<igr 1<i<j<r

The latter result is a special case (and in a different form) of a conjecture of

Bender and Knuth [3] that has been verified by Gordon (unpublished) and
Andrews [1].
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