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ON THE ASSOCIATED GRADED RING OF AN IDEAL

BY

CRAIG HUNEKE

Introduction

In this paper we study the graded ring of an ideal I in a Noetherian ring R.
By definition this is the non-negatively graded algebra,

R/ I/I ... I"/P/ ...,
which we will denote by gr (I, R).

Section one deals the connection between gr (I, R) and (I, R), the Rees
algebra of I, defined to be the subalgebra R[It] of the polynomial ring R[t]. We
note that "Rees algebra" is also used to describe the ring (I, R)[t- ]. However
we will always refer to this ring as the extended Rees algebra. We will show that
if R and (I, R) are Cohen-Macaulay (respectively Gorenstein) then gr (I, R)
is likewise Cohen-Macaulay (respectively Gorenstein.)(See Propositions 1.1
and 1.2.) We apply this to ideals of height two and projective dimension one,
giving a sufficient condition (Proposition 1.3) which implies the graded algebra
of such an ideal is Gorenstein.

If I p is prime then an important question is whether gr (p, R) is a domain.
Let pn)= p"Rp R be the nth symbolic power of p. If Rp is regular, then
gr (p, R) is a domain if and only if pt"} p" for all n > 1. These questions have
been examined by many researchers. (See [7], [9], [10], and [18]). If R is a
commutative ring, by Rred we denote the reduced ring of R, namely R/N where
N is the nilradical of R. In section two we find natural conditions which force
gr (p, R)red to be a domain. These conditions are intimately connected with the
concept of "analytic spread" first introduced by Northcott and Rees [16].

Let R be a local ring with maximal ideal m and let I be an ideal of R. Define
l(I) to be the Krull dimension of the ring

T Rim l/mI 12/mI2 ’".

Observe that T (I, R)/ml(I, R) and that T is also the homomorphic image
of gr (I, R) by the ideal generated by the image of m in the 0th graded piece,
R/I. We will always denote this ideal by rh. Since dim (gr (I, R)) dim (R), the
fact that T is a homomorphic image of gr (I, R) immediately shows 1(I) is at
most dim (R).
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122 CRAIG HUNEKE

L. Burch [2] proved a fundamental inequality concerning the analytic
spread:

l(I) < dim (R) inf depth (R/I"). (1)
Brodmann [1] has improved this recently by replacing "inf" by "lim inf".

Suppose I p is prime and p pt for all n. Then

depth (Rip) depth (Ript")) > 1.

Since (p)t) (pt")) for any prime q of R, we see that the equality p pt")
forces depth (R/p) > 1. By Burch’s inequality (1), this implies

l(I) < dim (R), for q = p. (2)

In Section 2 we show the condition (2) is equivalent to gr (p, R) being a
domain, under certain weak conditions on R. (See Theorem 2.1.)
When (2) occurs, one may readily give a precise description of pt’). Recall if I

is an ideal then the integral closure of i, denoted/’, is defined to be the set of all
elements r of R which satisfy a monic polynomial f(t)= + t-la +

+ a whose coefficients a are in I. In Theorem 2.1 we show condition (2) is
also equivalent to pt) p for all n.

It is simple to check that if we set T 1(I, R)[t- ], then T/Tt- , gr (I, R).
If the equivalent conditions of Theorem 2.1 hold then the nilradical of t- in T
is a prime Q, and we will show t-1 generates Q generically (that is, in Re).
Under these conditions we may apply a well-known lemma of Hironaka and
are able to show.

PROPOSITION 2.3. Suppose R is a universally catenarian Naoata domain and p
is a prime such that R is regular. If gr (p, R is an integrally closed domain,
then gr (p, R) is a domain.

We apply these results to several examples. If p is a height two prime of
projective dimension 1, then we give a simple criteria for gr (p, R) to be a
domain (Proposition 2.4.)
We further illustrate how from these methods one can deduce properties of

rings R which are isomorphic to gr (p, R) for some ideal p in R. These rings
often arise in determinantal loci.
A ring R is said to satisfy Rk ifR is a regular local ring for every prime q of

height at most k.

PROPOSITION 2.1. Suppose R is a commutative Noetherian universally caten-
arian rin[t and p a prime such that

l(pq) < max {dim (R), dim (Rq)- k} (#)
Suppose either R or gr (p, R) is Cohen-Macaulay. Then Rip satisfies Rk- ifand
only if gr (p, R) satisfies RR- .
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From this result it is clear that many properties (normality, reducedness, etc.)
can be determined in part by looking at the analytic spread.
Throughout the paper, ’ring’ will always mean commutative with identity.

When we refer to a theorem from another paper, we will always place an (A)
after it. We use the notation and terminology of Matsumura’s excellent book
[13].

1. Relationship of (I, R) and gr (I, R)
PROPOSITION 1.1 Suppose R is Cohen-Macaulay, I is an ideal of height at

least 1, and (I, R)is Cohen-Macaulay. Then gr (I, R)is Cohen-Macaulay.

Proof. Since gr (I, R) is graded, to show it is Cohen-Macaulay it is enough
to show gr (I, R) is Cohen-Macaulay for every maximal ideal Q containing

i/2 ... @// ....
See [8] and [12].)

If r is an element of R, then by r* we denote the leading form of r in gr (I, R).
If J is an ideal of R, by J* we denote the ideal in gr (I, R) generated by all the
leading forms of elements in J. The maximal ideals in gr (I, R) containing I*
correspond to maximal ideals tn of R which contain I. If we set W R m
then gr (I, R)o is a localization of

gr (I, R)w. , gr (Im, Rm).
Thus to show gr (I, R)o is Cohen-Macaulay, it is enough to assume R is local
with maximal ideal m, and that Q is the ideal of gr (I, R) generated by I* and r,
where ff is the ideal of gr (I, R) generated by the image ofm/I in the 0th graded
piece of gr (I, R). Let P (m, It) be the ideal in (I, R) generated by m and It.
Set S (I, R) and T gr (I, R). Then there are exact sequences,

O It S,- R-O (1)
and

0--} I Sv To. O. (2)
Let d=dim (R) so that depth (R)=d and depth (S)=d+ 1 by the
assumption.

Recall in general if S is a local ring with maximal ideal J and k S/J, then
the depth of a finitely generated S-module M is characterized by the least
non-vanishing Ext (k, M) [13]. Let K S,/P and apply Homs(K, to the
exact sequence (1). By the assumptions, we obtain Ext (K, It)=0 for
< d + 1. However, It I as S modules and so Ext (K, I) 0 for < d / 1. If

we now apply Homs (K, to the exact sequence (2), we find Ext (K, T) 0
for < d. Therefore depth Te is at least d; since it is also at most d, we see it is
Cohen-Macaulay as required.

Recall a local ring is said to be Gorenstein if it has finite injective dimension.
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If a local ring R is a homomorphic image of a local Gorenstein ring S, then R is
Gorenstein if and only if R is Cohen-Macaulay and

Extdsim s- dim R (R, S) , R.

We say a non-local ring is Gorenstein if it is locally at every maximal ideal
(equivalently every prime ideal).

PROPOSITION 1.2. Suppose R is a Gorenstein rint and I is an ideal ofheight at
least two. If t(I, R)is Gorenstein, then gr (I, R)is Gorenstein.

Proof. Since gr (I, R) is graded, it is enough to show gr (I, R)o is Goren-
stein whenever Q is a maximal ideal containing I* [12]. As in Proposition 1.1
we may reduce to R being a local ring with maximal ideal m, P (m, It) a
maximal ideal of S (I, R) and set T gr (I, R). By Proposition 1.1, To is
Cohen-Macaulay, and hence it is enough to show

Exts (To, Se) To,
since dim (Se)-- dim (To) + 1. It suffices to show Exts (T, S) T as this will
localize.

If x is an element of I which is a non-zero divisor, then as is well known,

Exts (T, S) Ooms (T, S/Sx) (x" I)/Sx.
(Recall T S/SI.) Therefore it is enough to show,

(x: I)/Sx , T S/SI (*)
for some such x in I.

LEMMA 1.1. Suppose R and I are as above and x is an element ofI such that
(a) x is a non-zero divisor,
(b) x is in I -12
(c) x* is a non-zero divisor in gr (I, g).

Then (x: SI)= (x, xt) and (x: xt)= I.

Proof We will first show the former equality. Observe that xt is in (x: SI)
since xt(I) It(x) is an equation that holds in S. This also shows I is contained
in (x: xt). Thus it is enough to show (x: SI) is contained in (x, xt). Since this
ideal is homogeneous we need only show this for homogeneous elements con-
tained in this ideal.
Suppose ct is in (x" SI). Since the height of I is at least two and R is

Cohen-Macaulay, we may choose a y in I such that x, y form an R-sequence.
We have

y(ctn) x(dtn),
and so
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Since x and y form an R-sequence, there is an element z in R such that

c=xz and d=yz.

Since ct is in S, c is in I"; by assumptions (b) and (c) we may conclude z is in
I"-1 and so if n is at least 1, zt is in S.

If n is at least one this shows ce’ (xt)(zt 1) and so ct is in (x, xt). If n 0,
then c xz shows c is in (x, xt). Thus we have demonstrated the first equality
of Lemma 1.1.
We have noted I is contained in (x" xt); to show the opposite conclusion

assume ct is in (x" xt). Then

(ct’)(xt) x(dt+

Since x is not a zero divisor, this shows c d and hence c is in I+ . This shows
ct is in IS as required.
We now finish the proof of Proposition 1.2. We have shown it is enough to

demonstrate (*). Since gr (I, R) is Cohen-Macaulay by Proposition 1.1, and

height (I)= height (I*)> 2,

we may easily choose an x in I 12 satisfying conditions (a)-(c) ofLemma 1.1.
Hence,

(" I)/(x) (, xt)/(x) (xt)/((x) (xt))
-(xt)/xt(x" xt)-- (xt)/xt(SI) S/SI-- T.

We now apply these results to ideals of height two and projective dimension
one. We use the result of [11].

THEOREM I(A). Let R be a Cohen-Macaulay Noetherian domain and M an
R-module having a finite free minimal resolution,

A

0 R g M 0, A (a,).
Let It(A) denote the ideal in R generated by the x minors of A. Then the
following are equivalent"

(1) SR(M), the symmetric algebra of M, is a domain.
(2) height (I,(A))> m + 2 for 1 < t < m.
(3) v(Mp, Rv) < n m + height (p)- 1 for all non-zero primes p in R,

where v(M, R) is the minimal number of generators ofM.

If any (and hence all) of the above conditions hold, then SR(M) is a complete
intersection in a polynomial ring R[T, T] over R. Hence Sg(M) is Cohen-
Macaulay and is Gorenstein if R is.

We recall some facts about S(M). It is a non-negatively graded algebra
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whose nth piece, S"(M), equals (M (R) ...(R) M)/N where N is the submodule
generated by elements of the form,

"(R)m(R)...(R)m’(R) (R)m’(R)...(R)m(R)....

If M has a presentation,

R R M O,

then M can be identified with the ring R[T,..., T,]/J where J is the ideal
generated by the linear forms, 7= ai T.

If M 1 is an ideal, there is always an onto homomorphism from SR(I) to
(I, R). In [14] it was shown this is an isomorphism if and only if SR(I is
torsion free over R. Thus, if SR(1) is a domain, it is necessarily isomorphic to

PROPOSITION 1.3.
height two having a minimal free resolution,

A

0 Rn, Rn+l

If either

or equivalently if

Let R be a Cohen-Macaulay domain and I an ideal of

I O, A (aij).

height(I,(A)) > n + 2 for 1 <_ <_ n,

v(Ip, Rp) <_ height (p)

for every non-zero prime p in R, then gr (I, R) is Cohen-Macaulay. Ifmoreover R
is Gorenstein, then gr (I, R) is also.

Proof By Theorem I(A), if the two equivalent conditions hold, then Sa(I)is
a domain, and the comments above show it is then isomorphic to the Rees
algebra. The conclusion follows immediately from the second statement of
Theorem 1 (A) and from Propositions 1.1 and 1.2.

Example 1.1. Let p be the prime in R k[X, Y, Z] defined to be the kernel
of the homomorphism from R onto kitnt, 2, n3] where the ni are positive
integers. Herzog [5] has shown p is generated by at most three elements. Since
height (p) 2 and R/p is Cohen-Macaulay, p has projective dimension one and
since R is a polynomial ring, has a free resolution of length 1. As Re is regular,
v(pt, Rp)= 2 dim (Rp) while if q contains p properly, v(pq, Rq) < v(p, R)=
3 dim (Rq). Thus Proposition 1.3 allows us to conclude that gr (p, R) is
Gorenstein.

Example 1.2. Let p be the prime in R k[X, Y, Z, U] defining the twisted
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cubic, i.e. Rip kit3, t2v, tv2, /)3]. It is known that p is defined by the 2 x 2
minors of the matrix

and has a resolution,
A

0 R2 R3 p 0.

The same reasoning as above shows gr (p, R) is Gorenstein.

Example 1.3. The "generic" ideal of projective dimension one is given by
the ideal defined by the exact sequence

x
0 R R+ I 0,

where X (xi) is a generic n by n + 1 matrix over a field k, and R k[xi]. We
may assume I is generated by the n by n minors of X. Since

height (I,(X))= (n- + 1)(n + 2- t),
we see the condition (b) ofTheorem 1 (A) is certainly verified. Hence gr (I, R) is
a Gorenstein ring. This appears in several papers.

2. The main theorem

In this section we wish to prove the theorem discussed in the introduction.
Before we begin the proof, we will discuss some facts concerning the analytic
spread. Most of these results can be found in either [2] or [16]. Throughout the
following remarks, R will denote a local Noetherian ring with maximal ideal m.
Recall the analytic spread, l(l), of an ideal I is defined to be the dimension of
the ring

T Rim I/mI ... I/ml ....
(1) We always have l(I) <_ dim (R). This was proved in the introduction.
(2) In addition, l{I) <_ v(I, R). If I has n generators, then T is a homomor-

phic image of RIm[Tt,..., T] which shows the inequality.
(3) The analytic spread can be characterized as the degree plus one of the

polynomial p(n) which gives dim (PIMP) for large n. This follows immediately
from the theory of the Hilbert-Samuel polynomial. In particular, l(I) l(P) for
every n > 1.

If I and J are two ideals of R, I is said to be a reduction ofJ if I is contained in
J and if IJ jn+ for all large n.

(4) If J is an ideal in R, then there exist reductions I of J minimal with
respect to inclusion among the set of all reductions of J. Any such minimal
reduction is minimally generated by l(J)elements. Here we assume Rim is
infinite.
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Recall elements a 1,..., an in R are said to be analytically independent if
whenever F(X,..., X.) is a homogeneous polynomial with coefficients in R
and

F(al, an) O,

then all the coefficients of F lie in m. Any system of parameters or any R-
sequence is analytically independent.

If I is a minimal reduction of J, then any minimal generating set of I is
analytically independent.

(5) Given an ideal J, there exists a unique ideal J’ containing J and maximal
under the condition that any reduction of J is a reduction of J’. In particular,
l(J) l(J-). This ideal ? may be described as the integral closure of J. (See the
introduction; the integral closure of an ideal is the set of all elements which are
integral over it.)

(6) If I contained in J is an ideal generated by l(J)elements which are
analytically independent, then I is a minimal reduction of J.

(7) If q is a prime ideal containing I, then l(I) < l(I). This follows from the
comments above. If k =/(I), and J (xl Xk) is a minimal reduction of I,
then I is integral over J and hence I is integral over J. Therefore l(I)=
l(J) < v(J, R) < k.

(8) Let R be a domain and I an ideal. Then the integral closure of(I, R) in
R[t] is R + it + ’t2 -b"" (see [19]). If/ denotes the integral closure of R, then
the ring

T =/ + I-t + f’zt2 +...

is integrally closed.

THEOREM 2.1. Let R be a universally catenarian Nagata domain and let p be a
prime ideal such that gr (p, R) is a domain. (In particular this holds ifR is
regular.) Then the following are equivalent"

(1) l(p) < dim (R)for all primes q strictly containing p.
(2) p= ptn for all n > 1.
(3) gr (p, R)red is a domain.

Proof. We will first show (1) implies (2). Let S be the Rees algebra of p, and
let T be as in Remark (8) above. Then T is an integral extension of S with the
same quotient field. Since R is Nagata, so is S and hence T is a finite S-module,
in particular a Noetherian ring. By 34.8 of [15], if m is an ideal of R,

height (mT)= height (mT c S),
and since mT c S contains mS we have

(a) height (mT)> height (mS).
Suppose (1) holds but (2)does not. Let m be a minimal prime ofR containing

p such that ()m (pn),.. Since (),. (p,)n and (p,)n (pn),., we may
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assume R is local with maximal ideal m. As gr (p,, Rp) is a domain, p, pnR,
and this shows p is contained in ptn). Hence it is enough to show the opposite
conclusion.
R is universally catenarian and hence so is S. In particular,

height (mS)+ dim (S/mS)= dim (S)= dim (R)+ 1.

However, dim (S/mS) l(p). The prime m strictly contains p since gr (p,, R,)
a domain forces the equality ofp and p". Hence, (1) shows l(p) < dim (R). We
conclude that height (mS)> 2.

Suppose s is in pt") but not in . By choice ofm there is a N such that rnN(s) is
contained in p". Therefore, the element st of the quotient field of T has the
property that mN(st) is contained in T. For if ctk is in raNT, then c is in mp- and
so st"ctk (sc)t/ k is in (smS)- which is contained in p--. We have shown that
st"(mT) is contained in T. By (a) above,

height (roUT)> height (m1S)> 2.

Since T is integrally closed by Remark (8), we see st must lie in T. This shows s
is in p", and this contradiction completes the proof of this implication.
Now assume (2) and we will show (3). Let N be the nilradical of gr (p, R).

Suppose a* and b* are homogeneous elements of gr (p, R) such that a’b* is in
N. It is enough to show either a* or b* is in N. Let a and b be liftings of a* and
b* respectively to R. We may assume a* is a zero divisor since otherwise b* will
be nilpotent. If W R p, then by assumption gr (p,, R) gr (p, R)w. is a
domain, and consequently either a* or (0" a*) goes to zero in this localization.
Therefore either a* or b* goes to zero and we may assume without loss of
generality that there is an s* in W* such that s’a* 0. Since s is not in p, this
implies a is in pt") for some n with a not in p".
By assumption, pin)= p and so

(b) aM + aM-b + + bM 0

with bi in p"i. Suppose a is in pk but not pk+ 1. Then (b) shows that aM is in
pRim-1)+n. This means a* is nilpotent.

Finally, assume (3); we will demonstrate (1). Ifm is a prime containing p and
W g m, then gr (Pm, gm) gr (p, g)w, and since condition (3) remains
true under localization, we see it is enough to assume R is local with maximal
ideal m and to show that (3) forces l(p) < dim (R).

Let r be the ideal generated by the image of m in the 0th graded piece of
gr (p, R). Then l(p)= dim (gr (p, R)/fn) and so since by Remark (1), l(p)<
dim (R), if l(p) dim (R) then height () 0. By assumption, gr (p, R)r’d is a
domain so there is a unique minimal prime, which is nilpotent. Thus r would
be nilpotent; this is obviously not the case and this contradiction finishes the
proof of the theorem.

There are other conditions under which (1) and (2) are equivalent which are
useful in some examples. We note one such case here.
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THEOREM 2.2. Suppose R is a universally catenarian Noetherian ring and p a
prime such that gr (pp, Rp) is a domain. Ifgr (p, R) is equidimensional, that is to
say, if dim (gr (p, R)/Q)= dim (gr (p, R)) for every minimal prime Q, then the
following are equivalent:

(1) l(pq) < dim gq for every prime q strictly containing p;
(2) gr (p, R)red is a domain.

Proof. We use the following easy observation.

LEMMA 2.1. Suppose R is a Noetherian ring and W a multiplicatively closed
subset ofR such that Rw is a domain, and such that ifw and w’ are two elements of
W, then ww’ O. Then there is a unique maximal proper ideal of theform (0: w)
and it is prime.

Proof. This is in any elementary textbook.

Now suppose (1) holds. Let W R p and let Q be the prime in gr (p, R)
determined by the set W* and guaranteed by Lemma 2.1. Let q be a prime in R
containing p which is minimal over the Rip torsion of gr (p, R). If there is none,
then gr (p, R) is a domain and there is nothing to prove. Since Rip is a domain,
the set of torsion elements is a prime, necessarily equal to q. Thus if s is not in q,
s* is not a zero-divisor in gr (p, R). Hence gr (p, R) imbeds in gr (p, R)w, and
consequently gr (p, R)red imbeds in gr (p, R)red. Thus it is enough to show this
latter ring is a domain. We may thus assume R is local with maximal ideal m
which is minimal over the Rip torsion in gr (p, g). By (1), l(p) < dim (R)and
since R (and hence gr (p, R)) is universally caternarian and equidimensional we
have

height (ff)+ l(p)= dim (R).
It follows that height (ff) is at least one. However by choice of m, it follows

that rkQ 0 for some k. Since Q is prime and the height of ff is at least one it
follows that Q is the unique minimal prime;therefore gr (p, R)red gr (p, R)/Q
is a domain.

Before we further discuss the relationship of the analytic spread to properties
of the graded ring, we need the following simple lemma.

LEMMA 2.2. Let R be a Noetherian local ring and p a prime such R is regular.
Suppose either R or gr (p, R) is Cohen-Macauly. If l(p)= dim (g,) then p is
generated by an R-sequence.

Proof. The case where R is Cohen-Macaulay is due to Cowsik-Nori [3].
However, we repeat the argument here.

Assume R is Cohen-Macaulay. Set n height (p) and let I be a minimal
reduction of p. Since I is generated by n elements (Remark (4)), height (I) n,
and R is Cohen-Macaulay, I is generated by an R-sequence. Thus, I_ is gen-
erated by a system of parameters in R,; since pp is integral over I,, I is a
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reduction of p. However, since R is regular, Remark (6) showsp is a minimal
reduction of itself. Thus I p. Remark (3) shows p is the only minimal prime
over I since p is contained in I for some n. Since R is Cohen-Macaulay, I is
unmixed. The fact that I, p, shows the primary component ofp in I is p itself
and together these remarks show I p.
Now suppose gr (p, R) is Cohen-Macaulay. We induct on dim (R) to show

that p is generated by a R-sequence. If the dimension is 0, we must show p 0.
Let m be a minimal prime containing p such that p #: 0. This ideal must
strictly contain p since R, is regular (and so is a field). Localize at m. By
Remark (7), l(pm) is at most l(p) and is always at least dim (R). Hence we still
have equality after localizing at m. In addition gr (Pm, Rm) is a localization of
gr (p, R) and so is still Cohen-Macaulay. Thus we may assume R is local with
maximal ideal m, and that p 0 for every prime in R containing p and not
equal to m.

Since gr (p, R) is Cohen-Macaulay,

height (r)+ dim (gr (p, R)/fn)= dim (R).
Since by assumption l(p) 0, the height of is equal to the dimension of R
which is at least one since m is not p. Choose an x in m but not p such that x* is
in no minimal prime of gr (p, R). Since gr (p, R) is Cohen-Macaulay, x* is not a
zero-divisor.
Our choice of q shows p 0 and so xkp 0 for some k. If p is non-zero,

choose an r in p"-p+ . Since xkr O, (x*)kr*= 0 and since x* is not a
zero-divisor, r* O. This contradiction shows p O.

If height (p) is at least one, let m be the maximal ideal ofR and choose a y in
p which is in no minimal prime of R and such that y* is in no minimal prime of
gr (p, R) nor in any minimal prime of r whose dimension is equal to
dim (gr (p, R)/r) which is at least one.

Let R’= R/Ry and p’= p/Ry. Since y* is a non-zero divisor, it is easy to
check that gr (p, R)/(y*)gr (p’, R’), and so this latter graded ring is still
Cohen-Macaulay. Further, since

height ((t, y*)/(y*))= height (t),
we see that l(p)= l(p’) + 1, and so l(p’)= dim R’p, dim Rp- 1 since y is in
no minimal prime of R. The induction shows p’ is generated by an R-sequence.
To finish the proof, it is enough to show y is not a zero-divisor in R. However,
the fact that y* is not a zero-divisor shows that (pn: y) is contained in pn-k if y is
in pk but not in pk+ 1. Since R is local Noetherian, p 0. Thus,

(0’ y)_ (p" y)_ pn-= 0.

PROPOSITION 2.1. Let R be a homomorphic image ofa regular domain and let
p be a prime such that Rp is regular. Assume either R is a Cohen-Macaulay
Nagata domain or that gr (p, R) is Cohen-Macaulay. Also assume

l(pq) < max {dim Rv, dim Rq- k 1} (#)
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for all primes q containing p. Then gr (p, R) satisfies condition RR if and only if
Rip satisfies Rk.

Proof First suppose Rip satisfies Rk and let Q be a prime in gr (p, R) of
height at most k. Set fn Q Rip and let m be the lifting of ff to R. As above,
gr (p, R)e is a localization of gr (Pro, Rm) and therefore since all the assump-
tions remain true under localization, we may assume R is local with maximal
ideal m, and Q is a prime ofgr (p, R) of height at most k such that Q contains ff.
This shows that height (fro < k.
We claim gr (p, R) is equidimensional. If gr (p, R) is Cohen-Macaulay, then

since it is the homomorphic image of a regular domain, it must be equidimen-
sional. If R is Cohen-Macaulay and a domain, then since it is also Nagata, the
conditions of Theorem 2.1 show that gr (p, R)red is a domain and consequently
gr (p, R) is equidimensional. Observe that unless k > 0 there is nothing to
prove and so

l(p) < dim (R)
for all primes q strictly containing p.

Since gr (p, R) is equidimensional and universally catenarian,

height ()+ dim (gr (p, R)/fn)= dim g.

Hence,

(c) height (fro dim R- l(p).
We claim dim R is strictly greater than dim (R)- k 1. If not,

height ()= dim (R)- l(p)> dim (R)- (dim (R)- k 1)

by # ), and so height (ff) > k + 1 which is a contradiction. Hence dim (R) is
greater than dim (R)- k- 1 and so (#) shows that l(p)= dim (R). Now
Lemma 2.2 shows p is generated by a R-sequence and consequently,

gr (p, R) R/pIT1,..., Tn] where n height (p).

In particular if Rip satisfies Rk so does gr (p, R).
Conversely suppose gr (p, R) satisfies Rk and let m’ be a prime of Rip of

height at most k. Let Q be a minimal prime of gr (p, R) containing the image of
m’ in the 0th graded .piece and such that

dim (gr (p, R)/Q)= dim (gr (p, R)/n).
Localize at m, the pullback of th to R. As above, height (th)= dim (R)- l(p).
Since height (fro is at most the height of m’, we see that k > dim (R)- l(p).
Hence l(p) >_ dim (R) k. Combining this with (#) yields l(p) dim (R). The
proof may now be completed as above using Lemma 2,2.

COROLLARY 2.1. Let R be a Noetherian ring which is a homomorphic image of
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a regular domain and let p be a prime such that Rv is regular. Assume gr (p, R) is
Cohen-Macaulay. Then:

(1) gr (p, R) is a domain if and only if
l(p) <_ max {dim (R,), dim (Rq)- 1}

holds for all primes q containing p;
(2) Suppose further that Rip is integrally closed. Then gr (p, R)is integrally

closed if
l(p) < max {dim (R,), dim (R)- 2}

holds for all primes q containing p.

Proof. Recall that ,a Cohen-Macaulay ring R is reduced if and only if R
satisfies Ro. [13] Since Rip obviously satisfies Ro, the assumptions together
with Proposition 2.1 show that gr (p, R) is reduced, and in addition show
gr (p, R) is equidimensional. (See the proof of Proposition 2.1.)
Assume (*) holds. Then Theorem 2.2 shows that gr (p, R)red is a domain.

Since gr (p, R) is reduced, this shows it is a domain. Conversely, if gr (p, R) is a
domain, then the discussion of the introduction shows that (*) must hold.
We now show (2). Assume that (**) holds. Then Proposition 2.1 shows that

gr (p, R) satisfies R1, Since gr (p, R) is also Cohen-Macaulay, this implies
gr (p, R) is normal [13]. As gr (p, R) is a domain by above, it is integrally
closed.

PROPOSITION 2.2. Suppose R is a universally catenarian Nagata domain and p
a prime such that R, is regular. Ifgr (p, R)red is an integrally closed domain, then
gr (p, R)is a domain (and hence is integrally closed).

Proof. Let S l(p, R)[t-1] be the extended Rees algebra. There is an
isomorphism, S/St-I, gr (p, R) and so the assumptions show there is a
unique minimal prime Q in S containing t-1.
We claim QSo is generated by t-1. To show this, it is enough to show that

gr (p, R) is a domain where q is the image ofQ in gr (p, R). However, since q is
nilpotent, q c Rip (0) and so gr (p, R) is a localization of gr (p, R)w, where
W R p. Since R, is regular, this is a domain.
We may now apply the following lemma of Hironaka:

LEMMA 2.3(A) (36.10 of [15]). Let R be a universally catenarian Nagata
domain and suppose a is a non-zero element such that

(1) Ra has only one minimal prime divisor p,
(2) aRp pRp,
(3) Rip is an integrally closed domain.

Then p (a) and R is integrally closed.
These conditions are satisfied with a t-1 and p Q. We may conclude

(t-1) Q and so gr (p, R)= gr (p, R)red is an integrally closed domain.
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PROPOSITION 2.3. Let R be a Cohen-Macaulay Noetherian domain which is
an imate of a regular domain and let p be a heioht two prime with resolution

A

0 R Rn+l p O.

If height (IA)) > n + 3 for 1 < < n 1, then gr (p, R) is a domain. If
moreover height (I,(A)) > n + 4 for 1 < < n 1, and R/p is integrally
closed, then gr (p, R) is integrally closed.

Proof. Proposition 1.3 shows that under either of these two conditions,
gr (p, R) is Cohen-Macaulay. In addition under these conditions, SR(p),
9(p, R) and so the analytic spread ofp at any prime q is just the dim (SRq(p)/q)
which is easily seen to be v(p R). By Corollary 2.1, to show gr (i0, R) is a
domain it is enough to show,

(d) l(p,) g max {dim (R,), dim (R,)- 1}
for every prime q which contains p. From the remarks above we may replace
l(p) with v(p, R). It is easily seen that v(p, R) < n- + 1 if and only if
I,(A) q.

Suppose at some prime q condition (d)does not hold. Then

v(p, R)> max {dim (R), dim (R)- 1}
and in particular, v(p, R) is greater than dim (R)- 1. Set

v(p, R)= n + 1.

Then I,+ I(A) is contained in q else v(p, R)< n + 1- (t + 1). As we may
assume q contains p, the minimal number of generators ofpis at least 2 and so

is at most n- 1. Thus the assumption shows

height (I,+ ,(A)) > n + 3 (t + 1)= n + 2 t.

Consequently, the height of q is at least this number. Thus the inequality

n + 1 t= l(p)> max {dim (R,), dim (R)- 1}
> max {dim (R,), n + 1 t}

gives a contradiction and so (d) has been verified. Therefore gr (p, R) is a
domain.
To show gr (p, R) is integrally closed, it suffices by Corollary 2.1 to show

(e) l(p).<_ max {dim (R), dim (R)- 2}
for all primes q containing p.
As above the analytic spread of p at q is equal to the minimal number of

generators of p. Assume q is a prime containing p such that (e) does not hold. If
q has height less than or equal to one over p, then since height (In- (A)) is at
least 4, we see that q cannot contain this ideal and so v(pa, Ra) 2. In this case,
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(e) is satisfied. Hence we may assume that the maximum on the left hand side of
(e) is given by dim (R)- 2. Set v(p R)= n + 1 t. As above, this shows
I+ (A) is contained in q and hence

dim (R)>_ n + 4- (t + 1)= n + 3 t.

From (e)we now obtain,

n + 1 l(p)> max {dim (R), dim (R)- 2}
>_ max {dim (gv), n + 1 t}.

This contradiction finishes the proof.

Example 2.1. Consider the example 1.2 of the prime p defining

kita, t2v, tv2, va].
Since height I2(A) 2 and height I (A) 4 we see that gr (p, R) is a domain.
However, we cannot conclude that it is integrally closed.
We now consider a generalization of a technique originated by Hochster [6]

and Samuel [19]. Both of these authors considered rings of the form

R[T1,..., Tn]/(a T +’"+ a. T).

In [6] Hochster showed:

PROPOSITION 2.4(A). Let R be a noetherian rin# and

S R[T,..., T]/(f) where f a, T.
Set I (a,

(1) If grade (I) > 2 and R is a domain, then S is a domain.
(2) If grade (I)> 3 and R is inteorally closed, then. S is inteorally closed.
(3) If grade (I) > 3 and R is a UFD, then S is a UFD.
One may perceive these results as phenomena connected with graded

algebras of ideals. We replace "grade" by "height" in the above proposition and
reach somewhat similar conclusions from which one can easily deduce Propo-
sition 2.4.A. The result relies upon the fact one can find a prime J in S such that
S gr (J, S).

PROPOSITION 2.5. Let R, S, and I be as above, and assume R is universally
catenarian.

(1) If height (I) >_ 2 and R is a domain, then Sred is a domain.
(2) If height (I) > k + 1 then Sred satisfies RR if and only ifR satisfies gk.

Proofi Let t, denote the image of T in S and set J (tx, t,). Let

D R[T1, T]
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and set J’= (T, T). It is clear that D gr (J’, D). Since f =f* is not a
zero-divisor on D, we see that

S D/Df, gr(J’, D)/(f) , gr (J’/(f), D/(f))= gr (J, S).
Now suppose R is a domain. We claim S is equidimensional. Every minimal

prime ofS corresponds to a prime in T minimal overf. Since R is a domain so is
T and hence every such prime has height one. However R and thus T are
universally catenarian and so the dimension of each of these primes is the same.
Thus S is equidimensional. This shows gr (J, S) is equidimensional since it is
isomorphic to S. If we are able to show that l(J) < dim (S) for every prime q
strictly containing J, then Theorem 2.2 shows that gr (J, S)red Sred is a
domain.
By assumption, height (J + I) _> height (J) + 2 n + 1. Hence if q contains

this ideal, then the above inequality holds as l(J) < l(J) < v(J, S) n. Thus we
may assume q does not contain I. In this case some a is not in q and then S
becomes the localization of a polynomial ring in n 1 variables over R, and J
becomes generated by n- 1 elements. This shows (1).
We now demonstrate (2). Suppose R satisfies Rk, and let Q be a prime in S of

height at most k. Since height (I) is at least k / 2, the height of IS is at least
k / 1 and so Q cannot contain I. As above this shows Se is a localization of a
polynomial ring over R and hence So satisfies R k; in particular it is regular. In
this case, So S2ed which shows Sred satisfies Rk.

Conversely assume Sred satisfies Rk and let q be a prime in R ofheight at most
k. Since the height of I is greater than this, q cannot contain I and sofis not in q
expanded to T. If Q is a minimal prime containing (q, f) and having the same
dimension, then the image of Q in S can have height at most k also. By abuse of
notation we call this ideal Q. As above So Sd is a localization of a polyno-
mial ring over R; since Se is regular, R must be regular. (Note that Sd Se
since Sed is a domain because it is regular.)

Finally we wish to illustrate how the representation of a graded algebra as
the graded algebra of some ideal can allow one to deduce some of its properties.

Example 2.2. Let k be a filed and X (xj) a generic r x s matrix over k
with r < s. Let p It(X).and set R k[x]/p. Set J equal to the ideal of R
generated by the images of x, x,x. Let X’ be the matrix X with the first
column deleted.

In [4], Eagon and Hochster showed that R is a Cohen-Macaulay integrally
closed domain. We wish to illustrate how the normality of this variety can be
deduced from the knowledge that it is Cohen-Macaulay and a domain.
As R/J sits in R in a natural way it is easy to see there is an onto map from R

to gr (J, R). Since these rings have the same dimension and we know R is a
domain, these rings must be isomorphic. By induction on the size of the matrix,
we may assume we know R/J is integrally closed. Now Corollary 2.1 shows
gr (J, R)and hence R will be integrally closed if,

(f) l(J,) < max {dim (gj), dim (g)- 2}.
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The height of J is t- 1, and J is generated by r elements. If we invert any
element of X’, we may reduce the size of the matrix and by the induction obtain

R is integrally closed, which will imply (f) for such q. Thus it is enough to show
(f) holds for m (x,). However, the

height m rs -(r- + 1)(s- t + 1)
and this is greater than r + 2, unless 1 in which case there is nothing to
prove. This shows (f) and finishes the example.
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