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ASYMPTOTIC BEHAVIOR FOR THE FREE BOUNDARY
OF PARABOLIC VARIATIONAL INEQUALITIES

AND APPLICATIONS TO SEQUENTIAL ANALYSIS

BY

AVNER FRIEDMAN

We consider a solution of a parabolic variational inequality in one space
variable. The obstacle is the minimum of two functions, and the inhomoge-
neous term has a singularity as O. It is shown that the free boundary
consists of two curves initiating at a point on O; their behavior as t 0 is
studied. An application is given to problems in sequential analysis with two or
three hypotheses.

1. Introduction

Consider a parabolic variational inequality

(1.1) u < q a.e. in x R, 0 < < T,

tu 1/2u fu ’tO o

with the initial condition

(1.2) u(x, O) 0 (x R ),

where

P min (,, ,}

andf, g, are non-negative functions. The functionftends to as t--} 0, and

(1.3) (o, o) g,(o, o) o, (g, g,)(o, o) < o.
We shall prove, under suitable conditions, that the free boundary consists of

two curves F (u g, on F) initiating at (0, 0), and we shall study their
behavior as 0.

Received January 14, 1981.
This work is partially supported by a National Science Foundation grant.

1982 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

653



654 AVNER FRIEDMAN

In Sections 3 and 4, we deal with the case where, as 0,

(1.4) f(x, t) - ( > O, p > 1/2),

(1.5) (1 ’2)x -1, -Ct’ <_ (Pl 2), -< 0, (C > 0).

We shall prove (under some additional conditions on i) that Fi is given by
x i(t) and

p t

(1.6) l(t) -, 2(t) 4--"
In Sections 5-8 we take, for simplicity,

(1.7) f(x, t) g/t

and prove, under somewhat stronger assumptions on the , that if p > 1 then

(1.8)

and

(1.9)

(’x (t) Pt-
4 + O(t3/- 2)’

(’2(t) Pt-
4

t- O(t3t- 2)

pt3p
(l(t)

4g 96g2 - O(t)’

pt3p
(2(t)=--4---t- 962 + O(t4P).

The problem of studying the asymptotic behavior of the free boundary under
conditions such as (1.3)--(1.5) arise in some models of stochastic control with
partial observation. In Section 2 we introduce such a model, taken from
sequential analysis with two or three hypotheses, and show how the estimates
(1.8), (1.9) can be applied.

Knerr [12] has considered the variational inequality (1.1), (1.2) in the half-
space x > 0 with q 0 and a Neumann condition ux 0 on x 0. He
proved, under certain assumptions onf, 0 (similar to (1.4)) that

(t)
c (c constant)

where x ((t) is the free boundary.
Breakwell and Chernoff [1] have considered a special case of ql, 2 (with

q l(x, t) q2(-x, t)) andf /t2 and established an asymptotic series for (1(0
(here (2(t)= -(l(t)).
The methods in both [1] and [12] do not provide any estimates on ’(t) as

t--. 0. In Section 2 we shall give more information on the results of [ 1].
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2. Applications to sequential analysis

2.1. Two hypotheses. Let z(t) be a one-dimensional stochastic process given
by

(2.1) dz(t) y dt + a dw(t), z(O) O,

where w(t) is a normalized Brownian motion, a > 0, and

Y=#o+;

is a normal variable N(0, (r)) independent of the Brownian motion and #o is
a real number. Denote by t the a-field generated by z(2), 0 < 2 < t.
We impose two composite hypotheses"

H. Accept that y > 0.
H. Accept that y < 0.

Let 6 be a variable taking values 6 1 if H is accepted and 6 2 if H is
accepted. We define the risk function

k[#[ if S=l,#<0 or if5=2,#>0,
W(#, ) l0 in all other cases,

where k is a positive constant. We assume that the cost of observation of the
process z(t) is c, per unit time (c > 0). Then the total cost of observation and
accepting a hypothesis is

(2.2) J.o,o0(, )= [c + w(, (o))]

where z(og) is an ’t stopping time and 6 6(09) is - measurable. The
sequential analysis problem is to find *, 6* such that

(2.3) J,o, oo(Z*, 6*) min J,o,,o(, 6).

Set

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

e-U2

O(u) k(v) dv,

ck(u) + uO(u)
q(u)

(ok(- u) uO(- u)
if u < O,
if u>0,

1
s

t/r2 + l/"r" =- p(t),

e(x, s) ,/s O(x/,/s).
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As shown in [ 10], if u is the solution of the variational inequality

(2.9) u(x, s) < ktP(x, s)

ca’(u kte) 0u, 1/2u 7]

a.e. in x 6 R1, s > 0.

with

(2.10) u(x, 0)= 0, x 6 R1,

then

(2.11) U(#o. o’)= inf Jo..o(Z. 6),
(,)

and the optimal decision (z*, di*) is given as follows:
Denote by S the stoppino set (or coincidence set)

s {(x, s); u(x, s)= W(x, s)}

and by C the continuation set (or non-coincidence set)

c {(x, s); u(x, s) < V(x, s)}.

Then z* is the hitting time of S by ((s), s) and 6" 1 if (s) > 0, 6" 2 if
(s) < 0, where

(s) (t) (recall (2.7))

and

is the filter of y.
The filter satisfies

(t)

d(t) p(t) dCv(t), (0) #o

where v(t) is a certain Brownian motion adapted to -t.
If we set

0(x, s)= 0.(-x, s)= W(x, s)

and replace u by ku, then the variational inequality (2.9), (2.10) reduces to the
variational inequality (1.1), (1.2) with a ca2/k. The present functions i
satisfy

Li=O, (qJ,-2)x= -1, (l-qJ2), -=0.
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Since it is not practical to carry out the sampling of the process ((s), s) for
arbitrarily small s (i.e., for arbitrarily large times t), it is important to know the
error incurred when we arbitrarily stop sampling at some small value of s. This
error can be determined in terms of the error incurred in the computation of
u(x, s), or in the computation of the location of the free boundary for small s.
The asymptotic formulas to be derived in this paper (Theorems 7.4, 8.1)

require much weaker assumptions on tp than in the present case. Conse-
quently, if we specialize those theorems, taking also p 2, we conclude that

s2 s
(2.12) (s)

4 482 t- 0(88),

s
(2.13) (’(s) 2-- + O(s’)"

For this problem of sequential analysis Breakwell and Chernoff [1-1 have
derived an asymptotic series

(2.14) (s) 1 + ,
j=

and computed the first five y. Their method, which is entirely different than
ours, is based on comparison with problems having suitably perturbed cost
functions J; they employ specific solutions of the heat equation adapted to the
special form offand .

It is reasonable to expect that our method, which is based on repeated
bootstrap arguments, can yield additional terms of an asymptotic expansion
than already derived in (8.18.4), but the calculations become rather compli-
cated. The method of Breakwell and Chernoff yields more easily the terms in
the asymptotic expansion (for special choices off ). On the other hand that
method does not provide any information on the derivative of the free bound-
ary.

Remark 2.1. The proof in the appendix in [1] relies on probabilistic con-
siderations involving discretized stochastic control problems, and can be sim-
plified by appealing to the maximum principle. Thus, setting

Low kwx + 7 wx +

it suffices to prove for v,, D, that

v, gD,, Lov,+120, and v,<D, between p,.

Only the last inequality is not immediate. One can prove it by applying the
maximum principle between x 0 and p, to (v, D,) (since L(v, D,) 0 in
this region) to deduce that (v, D,) < 0 and, consequently, that v, D, < 0
between x 0 and p, (the proof between x 0 and -p, is the same).
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2.2. Three hypotheses. We shall now consider a case where the are not
symmetric. We take the same process (2.1), but introduce three hypotheses:

H. Accept that y > a.
H2. Accept that -a < y < a.

Ha. Accept that y < a.

Here, a is a given positive number.
Let 6 be a variable taking the value j if Hj is accepted. We define the risk

function for accepting the wrong hypothesis"

W(y, 1)= k(a- y)

IV(y, 3)= k(y + a)

W(y, 2) k(y a)

W(y, 2) k(-y a)
and

if y < a,

if y> -a,

ify>a,

if y< -a,

W(y, j) 0 in all other cases;

here k is a given positive number.
We take the cost of observation of the process z(t) to be c per unit time

( > 0). We are interested in the cost function (2.2) and in the problem (2.3).
As in 2.1 this problem can be reduced (see [10]) to a variational inequality

(2.9), (2.10), but now
q’(x, s)= min ,(x, s),

lj_3

where

Ol(X, s) x/sdp(a-x)x/s +(a--x) x/s,
03(x, s)= s),

O2(x, s) x/s g)(x a) (x; a)4S + (x a)
s

+x+s(as )_(a+x)( a+x,
and , are defined by (2.4), (2.5). The relations (2.3) and (2.11) are valid, z* is
the hitting time by ((s), s) of the set {u }, and 6" j if ((s), s) lies on

One verifies that L0 0, 0(a, 0) 0(a, 0) 0, and

O a+x)/4t
(2.15) x ( 2) + e /2 d2,

1 1
(2.16)
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Since the problem is symmetric withrespect to the t-axis and u(x, s) u(-x, s),
it suffices to study the variational inequality in x > 0, adding the boundary
condition ux(0 + 0, t)= 0. We recall [10] that the free boundary does not
intersect the curves where k ’j for :p j; in particular, it does not intersect
the t-axis. For this reason it suffices to verify the conditions (3.4), (3.5) uni-
formly in x > 0 (rather than x R1); these conditions follow immediately from
(2.15), (2.16).

All the other (local) conditions of Theorem 8.1 are satisfied about the point
(a, 0) (instead of (0, 0)) with p 2 and r, q, tr and v being any positive numbers;
in fact, the powers of in (5.1)-(5.5) can be replaced by O(e -b/t) for any
0 < b < 2a. We conclude that

S2 S5 S2 S5

(l(s) a -t
40 48z2 - O(sa)’ (2(s) a + 48z2 + O(sa),

$

+ o(s"), + o(s’).

The curve x ,(s) (where kl k2) is monotone decreasing in some interval
0 < s < s*, and

0, < < 0,

as easily verified. The curve x 2(s) is montone decreasing in some interval
0 < s < s** (s** < s*) and 2(s**)= 0, and the curve x l(s) is monotone
increasing for s in some small interval 0 < s < . We do not know whether
l(s) is monotone increasing for all s > 0.

Remark 2.2. The methods of this paper should extend to the case where

(1 2)x --Ixlk(1 + O(1)) as t-,0,

where k > 0, i.e., the obstacles $1, k2 are "weakly separated" near the set
{1 ’2}. The asymptotic behavior of ((t) will now depend on both p and k.

Remark 2.3. The reader will find in [5! references to several other prob-
lems in sequential analysis which lead to variational inequalities with singu-
larities at s 0 or s . The methods of this paper should be useful in
studying the asymptotic behavior of the corresponding free boundaries.

3. Properties of the solution of the variational inequality

Set
t9 1 2

L=-.
Throughout Sections 3 and 4 we impose the following conditions"

(3.1) fix, ) is a positive, bounded, continuously differentiable function in
R X (0, T], and

tVf(x, t)--, if t--, 0, uniformly in x ( > 0, p > 1/2);
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(3.2) J(x, t) (i 1, 2) is a nonnCgativ, bounded, continuous function in
R x [0, T], and its first three derivatives are bounded continuous functions in
every strip R x [e, T], e > 0;

(3.3) g,(0, 0) g,2(0, 0) 0;

(3.4) (’x ff2) 1 + o(1) where o(1)-o 0 ift 0, uniformly in x;

(3.5) (g/ ), _< 0, I( ),1 <- ct (c > o).

The next set of conditions are imposed in a rectangle

S={(x,t); --cS,<x<cS,,0<t<
with some t/, > 0"

(3.6) tL2 0 if 0, uniformly in S.

(3.7) (LJ -f)x _< 0 and (LJ2 -f),, _> 0 in S.

(3.8) (L2 -f) _> 0 in S;

(t)
(3.9) (L -f), >_ -- in S, f(t) c it’ t 0.

For any e > 0 denote by u the solution of the variational inequality

Lu <f
(3.10) u < P a.e. in x 6 R, 0 < < T,

(Lu f)(u /) o

with the initial condition

(3.11) u(x, e)= P(x, e),

where

P min (,

One can easily show that u > 0. By general regularity results [3], u, ux, ut
are locally bounded by a constant independent of e. Hence we can take a
sequence e 0 such that u(x, t)--o u(x, t) uniformly in compact subsets of
R x (0, T-l, and u is a solution of the variational inequality (1.1); (1.2) follows
from Lemma 3.3 below; cf. (3.24).
The uniqueness of u in the class of bounded functions can be proved either

by a standard variational inequality technique [12] or by the usual stochastic
representation of the bounded solution of (1.1) [9].
From (3.3)-(3.5) it follows that the set

{(x, t); el(x, t) (x, t)} r {t < t*}
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is given by a curve

(3.12) x (t), (0) 0, ’(t) _< 0, I’(t) O(t);

here, and in the sequel, t* is a sufficiently small positive number.
The curve x y(t) must lie in the non-coincidence set of both u and any

solution u of (1.1) (see [10]). It follows that the set {u x} lies to the right of
x ,(t) whereas the set {u 2} lies to the left of x ,(t) (for 0 < < t*).
We denote by F the free boundary of u where u

LEMMA 3.1. For any 6 > 0 there exists a small number to independent of e,
such that, if 0 < < to, u(x, t) < tP(x, t), then

(1 + )t
(3.13) x <

4a

(1 + di)tp(3.14) x > -.
4a

Proof Suppose u(xo, to) < W(Xo, to) and set

u v- tS (x- Xo)

u and 0 < 0( < 0. In the open setwhere v qx
6 {(x, t); < < to, u(x, t) < (x, t)},

the function U satisfies
U, 1/2Ux < 0

provided to is sufficiently small (depending on - ’). Hence U must take its
maximum in (7 on the parabolic boundary of G; this maximum is positive
since U(xo, to) > 0. Notice now that U(x, e) < 0 if x > y(e), U < 0 on F], and
U(x, t) -o if x + oo. Hence U must take positive values t some points
(, ) of OG which lie either on F or on e (with < y(e)). In either case we
have

’( Xo)2
v(, 0 > tg

and
v(, 0 q,(, 0- q(, ).

Recalling (3.4), (3.12) we get

v(, l)- -(1 + o(1)) + o(tP).

Hence

(3.15) -(1 + o(1)) > Dt-: (Xo Yc) + o(tP).
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Setting

we obtain

so that

It follows that

B2-v A2t) --=(2< 1),4g’’ Xo- 4g’ to

(1 + o(1))4B2v >_ (a2 + B2Av)2 + o(1),

A2 + B2v
_

2Bv/2(1 + 0(1)) + 0(1).

0 <_ (B2v/2 (1 + 0(1)))2 B22v 2BAy + 0(1)) + (1 + 0(1))2

_< 1 A2 + o(1).
Consequently

that is

A2 _< 1 + o(1),

Xo < t’-v- (1 + o(1)).
40(

This gives the assertion (3.13). The proof of (3.14) is similar.

LEMMA 3.2.

(3.16)

(3.17)

(3.18)

Thefollowing inequalities holdfor x R1, 0 < < t*:

(’ )x <- o;
(,. u) >_ o;
(2 Ue)t O.

Proof. The function w ’2 u satisfies the variational inequality

W,- 1/2Wxx >_ L02 f
(3.19) w>ff a.e. inxeR1,e<t<T,

(wt 1/2Wxx (LO f))(w ) 0

and

(3.20) w(x, e)= (x, e),

where 2 F. In view of (3.4), (3.5),

,>_o, = >_ -Co (Co > o),

where x is taken in the sense of distributions (since x has a jump across
x (t)); Co may depend on e.
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Let be a smooth function in (x, t) (for each 6 > O) satisfying

ff ff pointwise (as 6 0),

d t2
>- 0, >- -Co.

Let fl(t) be C functions in satisfying

fl(t)- ift<O, 6O,

fl(t) O ift>0,6O,

(t) o,

(0)=Ao-{Co (Ao inf (LO2 f)(x,

Notice (by (3.1) and (3.6)) that Ao 0 if e is small enough, so that (0) 0.
Consider the penalized problem

(3.21) {Wxx + flo(W ) L2 f (x e Rx, 0 < < T),

(3.22) W(x, ) o(x, ) (x Rx).
Then Z OW/Ot satisfies

Z,- }Zxx + fl ;(W 6)Z fl;(W ) + (L$2 --f), k 0

where (3.8) was used. Also, by (3.21) and (3.22),

1 2
Z(t, e) + Ao fl(O) O.

We can therefore apply the maximum principle to conclude that Z(x, t) O.
Taking 0 the assertion (3.18) follows.

The proofs of (3.16) and (3.17) is similar.
From Lemmas 3.1 and 3.2 it follows that there exist two curves

x **(t) (e < < t*; l, 2)

such that 2(t) is monotone decreasing, and

u*(x, t) $(x, t) if and only if x > ,(t),

u*(x, t) $2(x, t) if and only if x < 2,(t).

These curves lie in a parabolic region

6(t)t
xl < (6(t) if 0)

4a

and 2,(t) < ,(t) < ,(t).
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LEMMA 3.3. If(2,(t) < X < (x,(t), 0 < < t*, then

2tv
(3.23) 0 _< - u, <.

Proofi Observe that

{(b U*)xx ( u*)t +f- L$

(Or 02), + (02 u"), +f-- LOt
>0

by (3.18) and (3.1), (3.5), (3.6). Also, since

(01-u%,:0 onx:

(01 Ue)x (01 02)x --1 + o(1) on X

we deduce that

](1 u%,l < 1 + o(1).

Combining this with Lemma 3.1 and the fact that $1 -u* 0 on x (1,(0,
we obtain

kl u* -< (1 + o(1)),

Observing that (for (2,(t) < x < (1(0)

Ik2 01J N (1 + o(1)),

we then also get
p

02 u* _<- (1 + o(!)),

and the proof of the lemma is complete.

We now let e- 0. Then we obtain for u lim u" the inequalities (3.16)-
(3.18). It follows that the free boundary in a strip 0 < < t. consists of two
curves

x (t),

2(t) is monotone decreasing and (0)= 0. Since (3.23) holds also for u, we
conclude that

(3.24) u(x, t) is continuous as 0; u(x, O) O.

We can therefore duplicate the proof of Lemma 3.1 for u.
We summarize the results obtained so far for u.
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THEOREM 3.4. The free boundary for u, in 0 < < t*, consists of two curves
x (i(t), where (2(t) is monotone decreasing, and the followin9 inequalities hold
for (2(t) < x < (l(t),O < < t*:

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(g’x u)x <0,

(02 U)x> O,

(2 u), > O,

2tv
O<-u<,

v
t) <_ + o()),

v
2(t) _> (1 + o(1)).

The strict inequalities in (3.25)-(3.27) follow by applying the strong maxi-
mum principle to each of the nonnegative functions (u-ffl)x, (k2- u)x,
(Oz u),.

Using (3.25), (3.26) we conclude, by well-known results on variational ine-
qualities (see, for instance, [4]), that the (i(t) are Ck / 2 / a curves (for 0 < < t*)
provided f is in Ck +tJ and the ff belong to Ck/ 2 /a; here k is any nonnegative
integer and 0 < fl < 1.

4. Monotonicity of (l(t); lim (i(t)/tp exists.

THEOREM 4.1. lf(t) < X < (l(t), 0 < < t*, then

(4.1) (if1 u)t > 0;

consequently (t) is monotone increasin9.

(4.2) p(t) (t), P2(t)= --2(t).

First we prove:

LEMMA 4.2. For any 0 < Oo < 1,
p

(4.3) p2(t) >_ 00 4-
if is sufficiently small.

Proof. The function w 02 U satisfies

wt 1/2Wxx L02 f

Set
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if (2(t)< X < (l(t). Integrating this equation over (x, t) and recalling L/2
-f, t-’ and (3.29), (3.30), we get

, w(x, t) clx --5 wx((s), s) as

As x-, l(S),
wx--, (-) 1 + o(1).

Also

w(x, s) <_ 2s/, (t)- ,.(t) <_ t’/.

Using these facts we obtain

(o(s) + o(s)) as + o(t,) + o(0- + o(t) (since p > 1/2).

In view of (3.29)we also have

o(s ds <_ - + o(0.

Hence

t
(4.4) - Pz(S) > - + o(t).

Next we write, for any Oo < 0 < 1,

(4.5) - p(s) ds - p(s) ds + p(s) ds

In view of (3.30),
os Ot

I <_ ds + o(t)= - + o(t).

Since p2(t) is monotone increasing,

ds 1 0 1
12 < p2(t) g gp2(t)

O t,_ .
Substituting these estimates into (4.5) and comparing with (4.4) we find that

Ot
p(t) > + o(t),

and (4.3) follows.
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Proof of Theorem 4.1. Consider the function

(q l u),

in a domain G defined

2(t) < x < l(t), 0 < < to (to small).

By (3.5) and (3.27) we have

(4.6) W (1 qJz), + (2 u), > (qJx qJz), > -Ct.

Also

W((t), t) O, W, 1/2Wo, (L$ f),.

Consider the function

Z Mt-(x y(t))2

in the same domain G. On x ,.(t),

Z -Mt-(z(t)- ,(t))2 <_ -cMt’ (c > O)

by Lemma 4.2 (where c is independent of M), so that Z < W on x 2(t) if M
is large enough (we use here (4.6)).

Also

Z<0=W onx=(t),

lim inf (W Z) >_ 0.
t0

Finally, with M fixed, we have

Z,- 1/2Z, M{pt--’(x ;(t)) + 2t-(x- (t))’(t) + -}
<_ M{Ct--t2 + -}
<_ 2Mt-’ (C>0).

It follows, by (3.9), that

if is small enough.
We can therefore apply the maximum principle to conclude that Z < W in

G and, in particular,

W(/(t), t) > O.

In the domain Gt {(x, t); (t) < x < (t), 0 < < to} we then have

w,-1/2w  > 0;
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also
W>0 onx=y(t),

W=0 onx=((t),

lim inf W _> 0.
t-0

Hence, by the maximum principle, W > 0 in G, and (4.1) follows.
Having proved that ((t) is monotone increasing for 0 < < to, we can

apply the proof of Lemma 4.2 to pa(t), instead of p2(t), and deduce that, for
any 0 < 0o < 1,

Oo t’
(4.7) pa(t) > if is small enough.

4

Combining (4.7) with (4.3) and (3.29), (3.30), we obtain:

THEOREM 4.3.

(4.8) lim
.(t) 1

lim
z(t) 1

t--o tP 4 t-.o t’ 4

The assumption p > 1/2 is essential for the validity of (4.8).
To show this we first prove the following result, which is of intrinsic interest.

THEOREM 4.4. Let w be a solution of the variational inequality

w,- 1/2Wxx >_ f,

w>_O,

(wt 1/2w, --f)w 0

a.e. in x > O, 0 < < T, and

wx(O, t) O(t) for O < < T,

w(x, O)= 0 for x > 0;

w is continuousfor x > O, > O. If
-Cx <_f(x, t) <_ -cx, -C2 < O(t) <_ -c2

where C, c are positive constants, then thefree boundary lies in a reoion
(4.9) (t log 1/t)1/2(1 + o(1)) < x < (t log Ill)X/2(1 + o(1))

for all sufficiently small; o(t) 0 if O.

Estimates on the free boundary for the Cauchy problem for parabolic vari-
ational inequalities in n-dimensions were obtained by Brezis and Friedman
[2]. Simpler proofs were given by Evans and Knerr [6]; we shall adapt their
method to the present case.
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Proof. Let v be the solution of

vt 1/2vxx 2C1 if x > 0, > 0,

vx(O,t)=-C2 if t>0,

v(x, 0) 0 if x > 0.

It is well known that

(4.10) wt 1/2wxx < 21fl
(this can be shown using a penalized problem

w,- 1/2Wxx + fl,(w) f
and proving for the solution w w, that fl(w)l _< fl (by the maximum
principle).)

It follows, by the maximum principle, that v > w if x > 0, > 0. Hence

(4.11) w(x, t) _< v(x, t)- 2C2 fo e-X2/2S/s ds + 2Cit.

Suppose now that

and consider the function

in

Since

w(x, ) > 0

W w .Cl(X x)2

a {, <.x < oo, o < < } c {w > o}.

Wt-1/2Wxx’-f+c <0 in G,

W cannot attain local maximum at any point in G. Further, since W(x, t)--+
-oo if x --. , and since

W(x, o > O, W(x, O) < O, W < O on0{w>0},
W must attain a positive maximum in (7 at a point on cG : {x e}, say at
(e, l)where 0 < 1 < . Thus

8 X01 - [w(8, )31/2, 1/C x.

Recalling (4.11) and choosing e x/2, we obtain

I 4C2 fx e-2/2 11/2(4.12) 1/2 x < 2Ct +
o/(,o)x/2

22
d2 1/2

where the substitution 2 x/x//s has been used.
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Suppose now that x M x/t, for a sufficiently large constant M. Then
(4.12) yields

or

C _M2[2<_ e (c > 0),

M < (log 1/t)1/2(1 + 0(1)) as o 0.

It follows that the free boundary of w lies in the region

x < (t log 1/01/2(1 + 0(1)).

To prove the reverse inequality (with a suitable 0(1)) we compare w with the
solution of

t-x2xx=-Cx ifx>0, t>0,

x(0, t) -c2 if > 0,

(x, 0) 0 if x > 0.

By the maximum principle, w > if x > 0, > 0, i.e.,

w(x, t) _> (x, t) x/2c2 fo ,e-’/2x/s Ct.

Taking x m x//t, small, we get

w(m x/t, t) > 0

m /t ff e-
2

d2- Ct >_ O (C > O),

m _< (log 1/t)/2(1 o(1)I).

Hence the free boundary for w lies in the region

x > (t log 1/t)x/2(1 --I o(1)1).

Consider now the case where the conditions (3.1)-(3.9) are satisfied with

(x, t) if2(-- x, t), f a/t.
In this case, u(x, t)= u(-x, t) so that ux(O, t)= O. Consequently, the function
w J u satisfies

wx(O + o, t)= C/ix(o, t)= (t)

where g(t) is a bounded and strictly negative function for 0 < < T. The free
boundaries G(t) satisfy (t) -2(t); we designate a(t) by ((t; p) in order to
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indicate its dependence on p. By a standard comparison theorem for vari-
ational inequalities (see, for instance, 1-10]), if p decreases then w increases.
Consequently

(4.13) l(t, 1/2) < l(t, p) < l(t, 0) if 0 < p < 1/2.
Next, if we take pl P2, P 1/2 in the proof of Lemma 4.2, we get

/2(’)
-2 ds __J(l(t) W(X,, t)dx - + o(t) > - + o(t).

Since p2(s) is monotone increasing, we obtain as before,

0/2tl/2
pe(t) _>

8
(0o < 0 < 1).

Using this and Theorem 4.4 in (4.13), we obtain"

COROLLARY 4.5. If I(X, t) 2(--X, t) and f /t then, for 0 < p < 1/2,

(4.14)
tl/2
8--" (1 + o(1)) < (l(t, P) < (t log 1/01/2(1 + o(1)).

This complements Theorem 4.3 for 0 < p < 1/2, for the symmetric case
ffl(x, t)= ff2(-x, t). The non-symmetric case can be treated in a similar
manner; at least for (2(t, p).

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

5. The functions z
In Sections 5-8 we require additional local conditions in S, on the functions. These conditions are"

(1 2)x --1 + O(t’), r > O,

(1 I]/2)t O(tq),

,), o(t),

(1 I]/2)xx O(t- n),

( ),, o(t),

with suitable powers of r, q, a and v; here O()1 < C where C is a constant
independent of x. Notice that (5.2) with q p is included in the condition (3.5)
already assumed.
As forf(x, t) we shall henceforth take, for simplicity,

(5.6) f= /tv (p > 1/2, > 0).

Notice that (5.2) implies

(5.7) (t) O(tq+ 1).
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LEMMA 5.1.

(5.8)

(5.9)

(5.10)

If(5.1)-(5.3) hold, then

(qJ ff2)(((t), t) -((t) + O(t"+ + + ),

(-1) [t’(, -2)]((t), t)= -pt-((t)+ O(t+2’- + t’+),

Ox Ot [t’(’ -ff2)](((t), t)= -pt- + O(t+- + t’+’);

/f(5.5) also holds, then

(5.11) (t(qJ qJz))(,(t), t)

_< O(t2t’-2 + t-x+q + +) + ’(t)[O(U+ + t-x)[.

Proof The assertion (5.8) follows by (5.1) and (5.7); (5.9) follows from (5.2)
and (5.8); and (5.10) follows from (5.1) and (5.3). From (5.8) we have

(5.12) (qJ qJz)(,(t), t)= O(t).

Using this and (5.3), (5.5), the assertion (5.11) easily follows.
In this section we require"

Condition (a). The conditions (5.1)-(5.4) and (5.6) hold with

p> 1/2 andr>p+l/2, q>2p-3/2, a>p-1/2.

We now introduce the functions

(5.13) w=-u,

(5.14) zi (t’w,)

in a rectangle So {(x, t); Ix I< 60, < to} with dio, to small. In the subset
where (2(t) < x < ((t),

(5.15)

where

(5.16)

One can easily compute that

(5.17)

and

(5.18)

O 1 02

oz 2c0x2z=f

c pz
fi - (Pt- *wi) ptt,- 2Wi

zi(i(t), t) O,

Ox z,((t), t)= -2a;(t).
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We also have

(5.19)

and

z(’2(t), t) - (tP(qJx I//2))(’2(t), t)

_pt- x2(t + O(t,+ 2p- .. tp+q),

(5.20)
z2((t), t) (tn(2 , ))( (t), t)

pt- xx(t) + O(t"+ 2p-
__

tp+q)

where (5.9) was used. Next,

OX Zl(2(t), t) (t’(@ -2))(2(t), t)- 20(t),

so that, by (5.10),

(5.21) cox zx(C2(t), t) -pff- 2(t) + O(t"+p-x + t’+’).

Similarly,

tx z2(’l(t)’ t)= pt’ 2(t) + O(t"+- + tn+).

Since

(5.23) z2 pt- lw2 + c3w2
c3t

it follows from (3.27) that

(5.24) z2 > 0 if 2(t) < x < l(t), < t*.

Similarly, it follows from Theorem 4.1 that

(5.25) z > 0 if y(t) < x < l(t), < t*.

Orientation 5.1. The formulas derived for the z show that the functions
(-1)z may roughly be viewed as the temperatures of ice and water in the
classical Stefan problem. Our present problem however is substantially more
complicated because the "ice" and "water" occupy the same space and because
there are two free boundary curves. Nevertheless the analogy with the Stefan
problem will be instructive and a guiding line throughout the estimates which
follow in the rest of this paper.

Orientation 5.2. It is well known that the one phase Stefan problem is
equivalent to a variational inequality. Each of the two formulations has its
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own advantages. Until now we have worked only with the variational in-
equality approach (for u). From now on we shall work mainly with the "Stefan
problem" formulation, that is, with the z.

Orientation 5.3. For the one phase Stefan problem one can obtain asymp-
totic estimates on the free boundary by using "conservation (of energy) laws".
By this we mean that one multiplies the parabolic equation by 1 or by x and
then integrates over the entire domain in x and over t, for 0 < < a. The
resulting equation gives an expression for the free boundary ((a) in terms of
quantities which are then estimated up to some error terms. We shall adopt
this procedure here. Since however z may have a singularity at (0, 0) we must
first proceed carefully to estimate z. This will be done in Lemmas 5.2-5.4.
Then, in Theorem 5.5, we shall use the "conservation of energy" procedure and
establish a preliminary estimate on ((t).

LEMMA 5.2. IfR and To are sufficiently small,

forf?R, foranyl<2<.(5.26) z dx dt <

Proof. Consider the function

It satisfies

W tPw2

W 1/2Wx - + ptn- lw2 if (2(t) < x < (l(t),

and the right hand side is a bounded function. If x > (x(t), then

W 1/2W I-t’(ff, )],- 1/2t’( )x,

and the right hand side is again a bounded function (by (5.2) and (5.4)). If
x < (t) then W 0.

Notice next that Wx is continuous across the curves x (t). Hence, setting

W, 1/2W g (x 4= ((t), g bounded)

we can represent W in the form

W(x, t) t; y, z)#(y, z) dy dz + t; y, e)W(y, e) dy + J

where

1 { (x y)2(5.27) K(x, t; y, z)=
x//2n( z)exp -([--),



PARABOLIC VARIATIONAL INEQUALITIES 675

Ro is any small positive number, and J, consists of boundary integrals, on
y + Ro, e _< z < t, of KWy- KyW. Since W(y, e)-- 0 if e-- 0 (by (3.28)), we
obtain

f f_taoK(x,W(x, t) t; y, z)#(y, ) dy dz + Jo

and Jo is a bounded function in xl < Ro/2, 0 < < To. We now use the/Y
estimates for the parabolic equations (in fact, all we need is a special case of
[11]) to deduce that

y ?al Wtl dr dt <_ Cx for any 1 < 2 < c,

provided R Ro/3 (we needed here just the fact that / La). We have thus
established (5.26) for 2; the proof for 1 is similar.

LEMMA 5.3. There is a sequence hm 0 such that

’l(h)

(5.28) z,(y, h) dy---, 0 if h h. ,L O.
tJ2(h)

Proof. Consider the integral

1 f fdjl(t) z(y, t) ldy dtIh - ddj2(t)

<
h zil 1

The last integral is bounded by

dt Ch+ 1.

It follows, after using Lemma 5.2 with 2 > (p + 1)/p, that

( I )+-=1.
#

C
h(p + 1)/p 0Ih <-- - if h--, 0.

The assertion of the lemma now follows immediately.
The next lemma gives a sharper estimate on

LEMMA 5.4. If (2(t) < X < (l(t), 0 < < t*, then

(5.29) z(x, t) < Ctp- 1/2.
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Proof.

(5.30)

Set

We can represent z2(x, t) in the form

2(x, t)- g(x, t; (), ),A(),

+(-fhtK(x,t;(2(z),z)z2x((2(z),z)dz}

(ih(t) sup zi(x, s) l.
2(s) < < (s)

h<s<t

If 2(t) < x < ),(t), then, by Theorem 4.3,

x I(T‘) > Co tp if t/2 < T‘ <

Using (5.20) also, we get

(5.31) 13--Ct2p_lIt/2

L3o t--T‘_
Ct2p 1 + dy

otp- y

(Co > 0).

e-Ctp/(t-O }+ dT‘
2 t--T,_

Cet2p 1-e for any e > 0.

(Co > 0)

(c > 0)

Next,

(5.32) I2
since Z2x(2(T‘), T‘) --2a(z(T‘) >_ 0. Also

I K(x, t; (I(T‘), T‘)Zlx((l(T‘),

+ K(x, t; (I(T‘), T‘)(Z2x- Zlx)((I(T‘)’ T‘)

+ K(x, t; (t, t(- t((t, t

I + I.
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Since zlx(:(z), z) -2a(z) < 0 (by Theorem 4.1)we have

I:: < 0.

Noting, by (5.10), that

(5.33) (2 :)((t), t) x t’(0 0) (,(t), t) O(t’-),

we get I Ct- /, so that

(5.34) I

Next, by (5.16) and (3.28),

I4 P2h(t) ff K(x’ t’ y’ O dy
d
+ Ct2p 2 K(x, t; y, z) dy dz

dz

and thus

(5.35) 14 <_ Ctp- 1/2(2h(t "F Ct3(p- 1/2).

Substituting (5.35), (5.34), (5.32) and (5.31) into (5.30), we obtain (recalling
(5.24))

(h)

(5.36) 0

_
z2(x t)

_
Ctp- 1/22h(t 4- Ctp-:/2 -F C g2(X, h) dx

d2th)

provided (2(t) < x y(t).
Similarly (using (5.25)),

(.) 0 (, 0 c-/() + C-/ + C I(,’)1
()

provided 7(0 x (x(t).
By the proof of (5.9) we also have

(5.38) ZI(X t) Z2(X t) - [tP(II(X, t) //2(X, t))] O(t2p-1).

From this inequality and from (5.37) we deduce that (5.36) is valid also if
7(0 < x < (:(t). We now take h hm 0 in (5.36), hm as in Lemma 5.3, and
obtain the inequality

2(t) _< Ctp- 1/2t2(t h- Ctp- 1/2

where

2(t) lim (])2h(t)-- sup Z2(X ").
h-O 2(z) <x < I(T), 0 <t
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This gives (5.29) for 2 (and t* small enough). The assertion (5.29) for 1
then follows by (5.38).
As an application of Lemma 5.4 we prove"

THEOREM 5.5. If(a) holds then

(5.39) p(t) -’ -" O(t2p- 1/2).

Proof. Integrating (5.15) for i= 2, over (x, t) and using (5.17), (5.18) and
(5.22), we obtain

(5.40) | z2(x, t) dx Jo z2(x’ ? l(x)) dx
]2(t)

+ g(Pl(t) + P2(t))- 1/2t" + O(t"+’-1 + "+#)

where

f’)pt- lw2(x, t) dx p(? l(x))’- lwz(x, ? l(x)) dx
d2(t)

(/-l(x) if x (,(t).

Using Lemma 5.4 and condition (a) (which implies that p + r- 1 > 2p- 1/2,
p + cr > 2p 1/2) we get

t,

(5.41) pl(t) + p2(t) + O(t2p- 1/2).

To derive another relation between Pl, Pz we multiply both sides of (5.15),
for 2, by x and then integrate over (x, t). We obtain

(5.42) | xzz(x, t) dx xzz(x, ? l(x)) dx
d2(t)

l f: 1;: lfo’" I(S)Z2x(I(S), S) as -. - 2(s)Z2x(2(s), s) ds dr. - z2(l(S), s) ds

pxtp- 1W2(X t) dx px((? I(X))P- 1W2(X (- l(x)) dx.
d2(t)

Using (5.17), (5.18) and (5.22), we get

l f/ lfo lfo(5.43) I(S)Z2x(I(S), S) ds + " 2(S)Z2x(2(S), s) ds + " z2(l(S), s) ds

I’(l(s)’(s) z(s)’(s)) cls + O(ff + z, + :+ + 2p _. tp+q+ 1).
do
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By (3.28) and Lemma 5.4, each of the remaining integrals in (5.42) is bounded
by

O(3-
It follows that

(5.44) 2(t) (t) O(t3- /2),
where the inequalities (ensured by condition (a))

r+2p>3p-1/2, a+l+2p>3p-1/2, p+q+l>3p-1/2

have been used.
Dividing both sides of (5.44) by 1 2 and using (5.41) we get

(5.45) pl(t)- p2(t)= O(t2’- 1/2).
Finally, comparing (5.45) with (5.41), the assertion (5.39) follows.

6. Additional estimates on z
In this section and in Sections 7 and 8 we replace the condition (a) by the

stronger condition"

Condition (b). The conditions (5.1)-(5.6) hold with p > 1 and r > 2p,
q> 3p-2, a>2p- l,v>p-2.

Orientation 6.1. In order to obtain sharper estimates on (t) and in order
to estimate ’(t) we need to obtain better estimates on z near (0, 0). This we
can do using results derived in Section 5. In Lemma 6.1 we give a sharp lower
bound on cOz/t3t which leads (in Lemma 6.2) to an upper bound on p’a(t)
+ p’2(t). This in turn enables us to estimate (in Lemma 6.3) cOzdcOx, using the
integral representation for z (a representation which is very useful also for the
classical Stefan problem). Finally, the "conservation of energy" method coup-
led with the new estimates on z gives an improved version of the estimates on
p,(t), p;(t).

LEMMA 6.1.
0 < < t*, then

There exists a positive constant C such that if 2(t) < x < (1(0,

(6.1) 3- Zi(X, t) >__ --Ct2p-2.

Proof. For any h > 0, introduce the finite difference quotients

z(x, + h)- z(x, t)
Zn(x, t)=

h
z z2,

(tp- 2w)(x, + h)- (tp- 2w)(x, t)
Wh(x,t)=

h w=w2.
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Since

(6.2) z (tVw) ptv-w + tvw,

it follows from (3.27) and Lemma 5.4 that

z C
(6.3) 0 _< w, _< t- < x/t
provided 2(t) < x < (t). The estimate w, < C/x/t remains valid also if x >
l(t) (w @2 @1) and if x < z(t) (w 0). From (6.3) we find that

(tv- 2W) g Ctv- 5/2.

Hence,

1 tt+h

(6.4) Wh - (Sv- 2W(X, S))s ds < C(t- 5/2 + (t + h)- 5/2).

By Lemma 5.4 we also get

pz
(6.5)

t(t + h)
< CtV-5/2.

Taking the finite difference quotients with respect to in the parabolic equa-
tion (5.15) for z z2, we obtain

0 1 t2
(6.6) c3- Zh 2 tX2 Zh P Zht+h

where

pz
pWh.

t(t + h)

By (6.4) and (6.5),

(6.7) (h C(tp- 5/2 .. (t -- h)p- 5/2).
Since 2(t) is monotone decreasing it follows from (5.24) that

(6.8) Zh > 0 on x Cz(t).

Next, on x (t),

I(6.9) Zh [zx]h + (tv(’2 ’x))
n

where [v]h designates the finite difference quotient of v with respect to t.

Using (5.1), (5.2), (5.5) we find that

c2
(6.10) (tP(q2 q)(x, t)) O(t2p-2 + p+- + p+) O(t2v-2).
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Recalling that p > 1, we obtain

(tP(02 d/)) O((t + h)2n-2).
h

Since ((t) is monotone increasing and (5.25) holds, we also have

[zx] > 0 on x (t).

We thus conclude from (6.9) that

(6.11) Za >_ --Co(t + h)2v-2 on x (t(t) (Co positive constant)

We shall compare Z with the function

(6.12) U Cx2(tv- 5/2 + (t + h)v- 5/2)_ (t + h)2p-2

where > 2Co and C is as in (6.7). Clearly

U, Ux C(tn- s/2 + (t + h)n- s/2) + (p )Cx2(tp- 7/2 + (t + h)- 7/2)
--(2p- 2)(t + h)2n- 3

< C(t- 5/2 + (t + h)n- 5/2)

since x2 t2n/(3)2 and p > 1. Hence

U,- U= < .
Next, on x i(t), x t/(4) so that

C
U

(4)z ([#-s/2 + t,(t + h),-s/)_ (t + h)2p-2 < -{d(t + h)2p-2.

Comparing with (6.8) and (6.11) we see that

U<Zh onx=i(t).

Noting finally that

lim inf [Zh(x, t)- U(x, t)] > O,
(x, t) (o, o)

we can apply the maximum principle to Z U and conclude that

Zh(x t) -(t -F h)2p-2

if (2(t) < x < (t(t), 0 < < t*. Taking h---} 0, the assertion of the lemma follows
for 2; the proof for 1 is similar.

LMUA 6.2. There exists a positive constant C such that, ifO < < t*,

(6.13) p’(t) + p’(t) <_ Ptn-t
2 + Ct2p 3/2.
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Proof. Integrating the equation (5.15) for Z2 with respect to x, 2(t) < X <
1(0, and setting z z2, w w2, we get, after using (5.22),

(6.14) a(p’(t) + p’2(t))
pt

2

_
O(t,+,- + t,+) [(pt- lw) zt] dx.

Now,

(PtP-lw) ( tPwl P- z - tpW O(tp -3/2)

by Lemma 5.4. Also -z <_ Ct2p-2, by Lemma 6.1. It follows that the right
hand side of (6.14) is bounded above by Ct2p-3/2, and (6.13) follows.

LEMMA 6.3.

(6.15) z,(x, t) O(t- ).

Proof For x > l(t) or x < 2(t) the estimate (6.15) is a consequence of our
assumptions on the ,j. Let 2(t)< x < l(t) and take h--* 0 in (5.30), noting
that 15 0. After differentiating the resulting relation with respect to x, we get

2Z2x(X, t) gx(x, t; 1(’), 17)Z2x((l(’IT), ") dz

(6.16)

+ JoKxx(x, t; (1(), "/7)z2((1(’i7), dz

+ 2 Kx(x, t; y, z)f2(y, "r) dy d

J + J2 + Ja + J,.
From (5.18) and Lemma 6.2 we have

Z2x((2(), *)1 ct- .
Using the inequalities 0 p(z) Cz-, we can deduce as in [8; p. 219,
formula (1.16)] that

(6.7) f/lKx(x, t; (2(), )ld, C.

Hence

IJ2l -< Ctp-1.
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Similarly, z2,c(((z), z) -< Ct’- and

IJl -< Ct-x.
Next, by Lemma 5.4. and (3.28),

A C[p-3/2.

Therefore

J,l -< Ct-3/2 y lK l dy dz <_ Ctp-3/2

We now restrict x to lie in the interval (2(t) < x < y(t). Then, by (5.20),

IJ31 < Ct2t’- f IKxl d

{/d ft/’e -’/’’-, }Ct2p-
(t- )/ + (t- )/

d

for some c > 0; in obtaining the exponent in the last integral we have used the
relation p t(t) t’/(4). Thus

ijsl <_Ct2-1{ 1 jeo c, }+ - x/Y e- dy <

Substituting the estimates on the J into (6.16), the assertion (6.15) follows
for 2 and (2(t) < x < y(t). The proof for 1 and y(t) < x < (l(t) is similar.
Finally, since

(Z1 Z2)x X (t (t( qJ2)) O(t- ),

the proof of the lemma is complete.
We can now use Lemma 6.3 in order to bootstrap previous inequalities for

z and p. Indeed, writing

zx(x, t) z x(Y, t) dy
(t)

and using Lcmma 6.3, we get

Izx(x, t)l _< Ct- Ix (x(t)l _< Ct2’-.

A similar inequality holds for z2. Using these estimates in the proof of Theor-
em 5.5 and noting that

p+r- l > 3p-1, p+a>_3p-1,
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we obtain
p

(6.18) pl(t) + p2(t) + O(t’- )

instead of (5.41); similarly, since

r+2p>4p-1, tr+l+2p>4p-1, p+q+l_>4p-1,

we obtain

(6.19) ((t)- (22(t) 0(#p- 1).
We can therefore state:

THEOREM 6.4.

(6.20)

and

If the condition (b) holds then

z(x, t) < Ct2- (C constant),

p

(6.21) p,(t) - + O(t3- 1)

for 2(t) < x < l(t), 0 < < t* (t* small enouoh).

We conclude this section with an improvement of Lemma 6.2, which will be
needed in Section 7:

LEMMA 6.6. For all 0 < < t*,

(6.22) p’(t) <
pt-

+ Ct3- 2

4

where C is a positive constant.

(6.23)

Proof We shall prove (6.22) for 1; the proof for 2 fs similar. Multi-
plying the equation (5.15) for 1 by x (2(t) and integrating over x, (2(t) <
x < (l(t), we obtain (cf. (6.14))

a(pl(t + pz(t))p’(t)- 1/2zl(2(t), t)

d2(t)

By (5.9),

(6.24) Zl(2(t)) ptt’- lP2(t) -4- O(tr+ 2t,- -4- tP+q).

From (6.2) with w wi, z zi and (6.20),

(6.25) - wi < Ct- 1.
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Using (6.24), (6.25) and (6.1) in (6.23), we obtain

(6.26) (pl(t) + p2(t))p’(t) < ptn- lp2(t) + Ct4-2.

Substituting p(t) from (6.21) and using the inequality p(1) O(ff-1) (Lemma
6.2), the assertion (6.22) follows (for 1).

7. The integral equation for

In this section we continue to assume the condition (B).
Orientation 7.1. In order to improve our estimates on pi(t) we must work

with p(t), p’(t) together. In the classical Stefan problem this can be done by
working with a nonlinear Volterra type integral equation satisfied by ’(t).
Here we shall have a system of two equations. The nice thing about working
with such integral equations is the possibility of bootstrapping the estimates
step-by-step. The initial estimates needed to begin the process were already
derived in Section 6. We shall now start with a preliminary estimate on p;(t)
(Lemma 7.1) and a corresponding estimate on Oz((t), t)/Ox (Corollary 7.2).
Next we use again the integral equation in order to obtain better estimates on
p’(t) (Lemma 7.3, Theorem 7.4). The procedure can probably be continued
step-by-step, but because the calculations are tedious and increasingly lengthy,
we shall not pursue this further.

We let x---} (2(t) + 0’in (6.16) and use a standard jump relation [7] [8]. We
get

z2,(2(t), t)= I’Kx(2(t), t; l(z), d

(7.1)

+{-[Kx(2(t),t;2(),z)z2x(2(z),z).dz}

Set

Then

(t) z((t), t), 4,(t) Cdt)- C,(t), p(t) pl(t) + p(t).

,(t) -2;(t), (t)= 2op’(t).
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LEMMA 7.1.

(7.2) (t) ptv- O(t2v 3/2).

Proof Since, by Lemma 6.6,

(7.3) dp(t)- pt- Ct3p-2 (C > 0),

it remains to prove that

(7.4) dp(t) ptv- >_ Ct2V 3/2.

Using (6.20) we find that

f2(x, t) _< Ct2- 2.

Hence

t2p

t; y, z)l dy dr,
2(r)

K(x, t; y, z) ldy dz
2p

The first integral on the right hand side is bounded by

dr, () 2p

Jl,. p() dr, < C -- Cd’,
(t

and the second integral is bounded by

ge -z2/2 dz <_ Ctv.

It follows that

(7.5) IZ, I-< Cf3t’-2.

Next

K(2(t), t; x(r,), r,)Z2x(l(r,), r,) d’l

K(’2(t), t; l(t), r,)Z2x(X(t), r,) dr, + O(t2v-3/2);
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the proof uses (6.15) and the same argument as in [8; p. 218, formulas (1.11)
and (1.12)]. We can then write

I 2(t)- l(t)
g(2(t), t; l(t), 17)Z2x(l(’), "17))

do
(7.6) + j + O(t2- 3/2),

K(2(t), t" (t), )z2(x(), ))
1()

d.

By Lemmas 6.2, 6.3,

111 Cf2- 3/2.(7.7)

Since

we also have

J"2 f 2(t)/7_,17-2(17) K((2(t), t; (2(17), ")Z2x((2(’), ") dl,

(7.8) lY21 -< Ct2p- 3/2.

As for Y3, we can use Lemma 6.2 to write

(7.9)

_If F(’2(t) 1(T))2s=.- k -)

f’ F(2(f_) l(f))2

o L (t- )

+ O(t2’-x)
t-

1 I K(’2(t)’ t; (z), "1)z,2(1(), ’) dT

t-- ’ K(2(t)’ t; 1(), ")z2(l(’), T) d’

K((2(t), t; (z), "i)z2(l(’), 1)

The last integral can be estimated by O(t’- 1), using the same calculations as in
the estimate of J3 (in the proof of Lemma 6.3).

If in the middle integral in (7.9) we replace

K(2(t), t; 1(z), "0
by

K(2(t), t; l(t), z),

then the resulting error (ef. (7.6)) is bounded by the last term on the right hand
side of (7.9). Thus

j-a= ff [((2(t--(l(t))2 1 ,1(7.10) z t- z

x K((2(t), t; ’l(t), z)z2(’l(z), z) dz + 0(ts’-2).
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We now replace z2((l(z), z) by z2((l(t), t) in (7.10); by (5.19) and (5.11), the
resulting error is

Thus

(7.11) Y f I((t)(t))(t"c) t-1 1"
K((t), t; (), )z,((O) a + o(t’-/).

We now substitute the expressions in (7.11), (7.8), (7.5) and (7.6), (7.7) into

(7.1) and obtain

K(p(t), t; O, z)(pz- 2xp(z)) dz

(7.12)
+ Fp2(t)l(--’)2 t--l]K(p(t)’t’O’z)pt-tp(t)dzz

Similarly, we get

(7.13)

+ O(t-/).

p(t)
t" O, z)(pz- + 2p(z) d’cdp(t) -""z K(p(t),

;V p2(t) 1 l K(p(t), t" O, z)pt-Ip2(t) dzL(i_-) -_
O(t2P 3/2).

Consequently

Substituting

(7.14)

K(p(t)t; O, z)(dp(z)- pz- ) dz

K(p(t), t; O, z)pzv- dz

1 ,] K(p(t), t; O, z)pt- p(t) dz

.+. O(t2P- 3/2)

=- H + H2 -I- H3 -I- 0(t2-3/2).
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we derive the formulas

(7.15)
t-

K(p(t), t’, O, ) d 1 + O(t- x/2),

03(0
(7.16)

(t- )2 K(p(t), t; O, ) d 1 + t3-3/2).

Now, in view of (7.3) and (7.15),

Next, by (7.15) and (7.16),

Hx >_ -Ct3p-2.

H31 C2p-3/2.

Finally, since

H2 + <_ Ct2- ,
2

we can easily verify that

H2 t p(t)
K(p(t), t; 0, z)pt- dz + O(t2p-3/2) pt- + O(t2p-3/2).

3o

Substituting the estimates for the Hj into (7.14) we obtain the assertion (7.4).
From Lemmas 6.6, 7.1 we deduce"

COROLLARY 7.2. We have

(7.17) p;(t)
pt -1

4a
d-O(t2p-3/2)

and, consequently (by (5.21) and (5.22)),

0 pt-(7.18) 0- Z2(’(t)’ t)-
2 + O(t2t 3/2)

and

cO pt-(7.19) 0" zx((i(t), t)=
2 - 0(t2-3/2)"

Using these results we shall bootstrap the proof of Lemma 7.1., thereby
establishing:

LEMMA 7.3.

(7.20) (t)- pt-’ O(t3-2).



690 AVNER FRIEDMAN

Proof. In view of (7.3), it suffices to show that

(7.21) b(t) ptp- > _ctap 2.

We re-evaluate J, writing

s- f[ (t)t_-,(t)

f[ (t)t_-’()
K(p(t), t; O, z)z2x(l(’r), z) dz

K(p(t), t; O, "C)Zz,(l(z), z) d’r,

and replacing (by (7.18)) zzx by pzP-1/2 + O(z2p-3/2) in the last integral, we
obtain

K(p(t), t; O, z)Zzx(l(z), z) dz

Next, by using again (7.18),

Tp-1K(p(t), t; O, z)- dz -I- O(t3p-2).

J"2 f 2(t)t_z-2(z) P Tp-1K(p(t), t; O, "c)- d -b O(t3p- 2).

For 1(0 we obtain similar expressions. If we denote by Ji the expressions
analogous to J, then

P
T,p-1 d’cK(p(t), t; O, z)

K(p(t), t; O, z)zl,(z(), ) dr

P Tp-1K(p(t), t; O, "c)- dz

-F O(t3p- Z).

Setting K K(p(t), t; 0, z), and using (5.21) and (5.22), we conclude that

(t) f (z(t) Cz(z))t_r-(l(t) l(z)) Kp.cp- dz

+ f p(t)
K[pzp- + (pzp- ())] dz

+ J"3 ]3 + O(t3p- -).
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If we now use (7.3) and (7.15), we obtain

(t) o t-- o t--

+ J-a J + O(t3n-2)
p(t)
K_ d J 0(3p-2).=P t--z

+ +

We now recall (7.11) and note that a is obtained from a by rplaing
z2(((z), z) by -z((2(z), z). After making us of th relation

Z2((I(T), T) @ ZI((2(T), T)= PTP-lp(T) @ O(fr+2p-1 + fP+q)

(which follows from (5.19) and (5.20)), we obtain

p(t)
Kn_ dx(t) p

t-

f p2(t) 1 ] Kpz,-lp(z) dz + O(ta,-2+
t-

f P2(t)
(t- )2 KP- P() d + O(t3- 2).

Substituting p(t) from formula (6.21) and using (7.16), we finally get

> P

_
P2(O

(.22)
(t)

(t- )2 K(p(t), t; o, )2-x d + O(t3-2)

j + O(t3n- 2).

Substituting z p(t)/t we obtain

P z2 p2(t)2"J
p(t) {o/t

e -/2 dz.

Since

t-
22 j

--t2t’-x
p2(t)

<_ Ct2p 2

Z2
we find that

P g2t2p- le-Z2/2 dz + O(t- 2)x/P(t)
pt2, foOO z2/2 2)x-)(t) z2e dz + O(t’-

2p(t)
-I- O(t3t- 2)

pt- + o(tat-2).
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Substituing this into (7.22), the assertion (7.21) follows.
Combining Lemmas 7.3 and 6.6 we obtain"

THEOREM 7.4. If the condition (b) holds then

(7.23) p’(t)
ptp-

4o
+O(t3p-2)"

(7.24)

It now follows from (5.21), (5.22) and (5.18) that

c3 p tP_l- z,t), t)=- + o(t-)

and

c P ,- 2),(7.25) O-’ zx(,(t), t)= -- + O(tsp

this is an improvement over (7.18), (7.19).
Orientation 7.2. With these improved estimates we shall now estimate

Oz,(x, t)/cx for Cz(t)< x < (t) by comparing with special super- and sub-
solutions via the maximum principle. The new estimates derived in Theorem
7.5 will enable us (in Section 8) to obtain sharp estimates on z(x, t) which in
turn, yield improved estimates on (t) (by using the "conservation law"
method). These improved estimates (stated in Theorem 8.1) together with
Theorem 7.4 constitute the main results of this paper.

THEOREM 7.5.

(7.26)

and

If(b) holds then,for (2(t) < x < (x(t),

0
Z2(X t) P p-x- + o(t )

c3 P - 2)(7.27) - zx(x, t)= -- + O(ta-

where lO(t3p-x)l < Ct3p-2, C independent ofx.

Proof By Lemma 6.3,

(7.28)

Hence, we also have

[z/x[ Ctp-.

(tPwi)tx <-- CtP- .
Since (tPWi)x 0 on x ((t), we get

tEw)x < CttP-

(tPw2)x -< CttP-

if 0 < x < (a(t),

if (2(t) < x < O.
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Recalling that (tP(wl w2))x tP(ll J2)x, We find that

(7.29) I(tpw)xl _< Ctp for (2(t) < x < (l(t).

Differentiating (5.15) (for 2) with respect to x and using (5.16) and (7.28),
(7.29), we see that

(7.30) (z2x)
2 0x2 (Z2x) -< Ctp- 2.

Consider the function

P tp-1 -2 2(7.31) W(x, t)= Z,2x-- Ax2tp -t- Bt3p-

in the region (2(t) < X < (l(t), 0 < < t*, where A > 0, B > 0. Then, by (7.30),

Wt 1/2Wxx > Ctp- 2 p(p- 1) - 2 ._ At- 2 A(p 2)x2tp- 3

__
B(3p 2)t3p- 3

A
-2

>0

provided A is large enough independently of B (and t* will depend on B).
Next, in view of (7.24),

if B is large enough, say,

w(((t), t) > o

B>

here we use the relation p(t) tP/(4).

2A

(4X)2’

Applying the maximum principle we deduce that W(x, t) > 0, that is,

P tP-1 2

Z2x--’ Co
ap- (CO > 0).

Similarly one obtains an upper bound, which completes the proof of (7.26).
The proof of (7.27) is similar.

THEOREM 8.1.
then

8. The final asymptotic formulas

If the condition (b) holds with r >_ 3p, q >_ 4p 1, tr >_ 3p 1,

ptaP -1
(8.1) (1(0

4 962 t- o(tgP),



694 AVNER FRIEDMAN

and

(8.2)
p ptP

Cz(t) + 96z + 0(#),

Recall that under just the condition (b) we have already proved that

(8.3)
and

(8.4)

1)-x(’(t) PtP- +O(tap-2) (i= 1,2)
4a

02 P p-

_
Ctap 2 (c > o)

if (2(t) < X < (l(t), 0 < < t* (t* small enough).

Proof From Theorem 7.5 and (6.21) we get

P t- (x G(t)) + o(t-)z(x, t) -(8.5) P - x + / O(t4p 2).=i
From (6.21) we see that if (2(z) x then

x(x) {4lxl [1 + O(Ix t2"- x)/,)}
[4lxl] x/, + O(x2).

Thus, if (2(t) < X < 0,

t(x, t)= (x, s) s
lxI

Hence,

(8.6) ptp- 1W2(X t)- Z2(X t)-"
pt2P pax2

2).- + O(t*E-
16a

Next, if x > O,

tPw2(x, t) (? X(x))w2(x, ; X(x)) z2(x, s) ds
i- t(x)

s- x + ds + O(t4- )
ax]/p

t2P xtp

16a + --- 3txx2 + O(t4P-1).
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Also, if x (l(t),

( (x))’w2(x, - (x)) (- (x))’(2 ) 4ax2 + O(t"- ).

Hence, if x < 0,

(8.7) pt’- Xw2(x, t)- z2(x, t)
pt2p

t- P + O(t4p 2).
16a

With the estimates (8.6) and (8.7) at hand, we can now bootstrap the proofs of
Theorem 5.5 and (6.21). We begin by computing

(8.8)

[ptp- 1W2(X t)- 22(X t)] dx
d2(t) d2(t)

t2t,

16a

+ POttX2) dx+ O(t4)

(,(t) (2(t))

+ -- [((t)) (dt))] + o(t’")

pt3p pa 2t3
+ + O(t4)

32a 3t (4)a

+ O(t*").

Next,

(8.9)

*’’[p(i (X))"-"W2(X, ; ’(X)) Z2(X, (? (X))] dx

16
(’(s) ds + O(t4)

16a - s 16a2ji(s) ds + 0(#)

O(t4/)

since the last integrand vanishes.
Using (8.8) and (8.9) we conclude from (5.40) that

(8.10) (x(t)- (2(0
pt3

2a 482 V O(t4t).
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Next we compute

(8.11)

ztt)
x[ptP-1W2(X’ t)- z2(g t)] dx

,to
Ptp-lXl6ct + pX ] dx +

Pt2’-x r((x(t))2 ((2(0)2]
32
pg

+ [((t))’- (#2(t))’] + O(tS’).

We also find, analogously to (8.9), that

’’x[p((i- (x))"-w,(x, ? (x) z(x, ? (x))] ax o(ts").

Substituting this and (8.11) into (5.42) and also recalling (5.43), we get

(8.12) ’(t) ’(t)= O(tS’);

here we have used the assumptions that r > 3p, q > 4p 1 and tr > 3p 1.
Dividing both sides of (8.12) by 1 2 and using (8.10), we get

((t) + (:(t)=

Comparing this with (8.10), the assertions (8.1) and (8.2) follow.
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