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REMOVING INTERSECTIONS OF LAGRANGIAN IMMERSIONS

BY

ALAN WEINSTEIN

Introduction

Critical points of functions can be identified with intersection points
between lagrangian submanifolds. If S X R is a function on a manifold
X, the critical points of S correspond to points where the lagrangian sub-
manifolds dS(X) and the zero section meet in T*X. Conversely, if L C_
T*X is lagrangian and projects diffeomorphically onto X (for instance, if L
is C close to the zero section), then L to(X) for some closed form to.

If to happens to be exact (for instance, if H(X; R) 0), then L must
intersect the zero section in as many points as a function on X has critical
points.

Periodic solutions of hamiltonian dynamical systems can also be interpreted
as lagrangian intersections, so that critical point theory can sometimes be
used to prove the existence of periodic solutions. This idea goes back to
Poincar6 [19] and has been used recently by Arnol’d [1], Meyer [16], and
the author [21], among others, but its application has been restricted to
systems which are very close to ones with nice manifolds of periodic solutions.
Can one go further with lagrangian intersection theory? The theory is

motivated by the idea that lagrangian submanifolds, being constrained by
a differential condition, should intersect more often than freely chosen
manifolds, just as area-preserving maps are forced to have more fixed points
than arbitrary maps, Killing vector fields must have more zeros than arbitrary
vector fields, and complex submanifolds intersect more often than real ones.
In particular, one may conjecture that any lagrangian submanifold of T’X,
isotopic to the zero section by a deformation generated by globally ham-
iltonian vector fields, must intersect the zero section in as many points as
a function on X has critical points.
We shall show in this paper that for any compact X satisfying the obvious

necessary condition x(X) 0, and dim X 3,2 the zero section in T*X
can be deformed to be free of itself by a family of exact lagrangian immersions.
Whether or not the immersions can be made to be embeddings is still
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unknown; the construction to be described here exchanges intersections
for self-intersections in a fairly explicit way, and it remains to be seen whe-
ther the intersections can be removed by a further or different deformation.
Our construction can be carried out arbitrarily near (in the CO sense) to

the zero. section, and it can be transplanted to lagrangian intersections in
general symplectic manifolds by the method of "cotangent bundle
coordinates".
The proof for a general cotangent bundle T*X proceeds by a reduction

to the case of disc bundles over S’, using the round handle decompositions
of Asimov [4]; it is here that the topological hypotheses on X are used.
There follows a reduction to S itself, where the action really takes place,
and the self-intersections are introduced. The exposition in this paper proceeds
in the reverse order, beginning with the circle; some technical results needed
along the way are given in two appendices.
A non-intersection theorem resembling ours can be derived from the

lagrangian immersion theory of Gromov [10] and Lees [14], but our con-
struction is simpler and more explicit, and the results are somewhat stronger
(except for some cases in dimension three). This point is discussed in detail
in Section 6, where we also consider the relation of our result to fixed-
point theorems for area-preserving mappings.

1. Exact Deformations and Loose Manifolds

We recall that a lagrangian immersion in a symplectic manifold (P, 11)
is an immersionf’ L --+ P with dim L 1/2 dim P andf* 0. A
lagrangian submanifold is one whose inclusion map is lagrangian.
Each cotangent bundle T*X carries a canonical 1-form Ox and symplectic

structure fx -dox. A section X -+ T*X satisfies o’*Ox o-, so r
is lagrangian if and only if it is closed when considered as a 1-form on X.
If f L T*X is any lagrangian immersion, f*ox is closed; if f*ox is
exact, we shall call f exactmthis is consistent with the usual terminology
iff is a section.
Given a smooth one parameter family {ft} of lagrangian immersions (we

shall always take [0, 1]), the derivative dft/dt is a vector field :, along
ft. By the homotopy formula ((12.1, in [13]),

d
td
-S(ft*l’) d[f*t (t __J -)] + f*t (t -_J d).

Since ft*f and dO are zero, the form ft*(:,
_
f) is closed for all t; if it is

exact for all t, we shall call {ft} an exact deformation.
In T’X, the homotopy formula applied .to tOx shows that {ft} is an exact

deformation if and only if d(ft*tox)/dt is exact for all t. In particular, if f0
is exact, then ft is an exact deformation if and only if ft is exact for all t.
We need one more bit of notation before stating our main definition and
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theorem. If A -- B is a vector bundle, we will denote the zero section
from B to A by ZB,A, and the image of ZB,A by Z,A.

DEFINITION. A compact manifold X is loose if there is an exact deformation
{ft} from X to T’X, arbitrarily Co close to zx, r.x, such that f0 zx, r.x and
ZX c Zx,, .

MAIN THEOREM. Let X be a compact manifold. If X is loose, then
x(X) O. Conversely, if x(X) 0, then X is loose if any of the following
conditions holds"

(i)
(ii)

(iii)

dim X # 3;
X is a bundle whose fibre is $1;
X is a bundle over SI.

The main theorem is proven as Theorem 5.5. Our result for general
symplectic manifolds is Theorem 5.1; we refer the reader to 5 for its
statement.

2. The Circle Is Loose

Every immersion f" S T*S is lagrangian, so the only interesting
deformations are the exact ones. (These are a special case of the lagrangian
cobordisms studiedby Arnol’d [3] .) Wecancharacterize the exactdeformations
by using the fundamental theorem of calculus.
Let 0(mod 2zr) and Po be the canonical coordinates on T*S1, so that the

fundamental 1-form is podO and the symplectic structure is dO/ dpo. Then
it is easy to prove:

LEMMA 2.1. ft" S -- T*S
fs’ ft*(podO) is independent of t.

is an exact deformation if and only if

From this lemma follows"

COROLLARY 2.2. Iff" S T*S is an exact embedding which is homo-
topic to the zero section, then f(S l) meets the zero section in at least two
points.

Proof. Assume that there is at most one intersection point, and apply
Stokes’ theorem to the region bounded by f(S) and the zero section.

The main point of this section is that Corollary 2.2 does not extend from
embeddings to immersions. Figure shows the image of an immersion f
which does not meet the zero section. The integral of f*(podO) is A +
A2 A3, where Ak is the (positive) area of region k. Thus f is exact as
long as we make A3 A + A2. To show that S is loose, we must describe
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FIG.

an exact deformation from the zero section to f, which can be carried out
in an arbitrarily small Co neighborhood of the zero section. Figure 2 shows
such a deformation; specifically, it shows the image of ft for a series of
values between 0 and 1. The immersions at t2, t4, t6 are transitions between
the "stable" types of t, t3, /5, and t7: at t2, ft ceases to be transverse to
the fibres of T*S; at t4, ft stops being an embedding; at t6, the two points
of f(Zs,r,s) merge and are about to disappear. For the deformation to
be exact, it is necessary only to make sure that the areas of the regions
determined by ft(S) add up as indicated in Figure 2.
By shrinking the horizontal size of the loops in Figure and 2 and

multiplying Po f by a small constant, we can carry out the homotopy ft
in an arbitrarily small CO neighborhood of the zero section. This observation
completes the proof of the following:

THEOREM 2.3. S is loose.

Remarks. 1. As goes from t to t7, the two points of intersection
between ft(S) and Zsi,r,s, are replaced by two points of self intersection
for f(S). (At ts, both types of intersection are present.) If we consider
ft(S 1) t3 fo(S) as the immersed image of the disjoint union of two circles,
then all the intersections are self-intersections, and only their distribution
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-t: 0

Pe

A+A= A

A+A==A=

-K

has changed. Is there a reason for this "conservation of intersections"
which extends beyond the one-dimensional case?

2. f,(S’) can be thought of as dS(S’) for a multiple-valued function S
on S. (As a function on the lagrangian submanifold f(S), S is the primitive
of f(podO). S is single-valued and smooth but becomes multiple-valued
when pushed down to the base of T*S’.) The graph of S looks something
like that in Figure 3 (cusps in Figure 3 correspond to vertical tangents in
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FIG. 3

Figure 1). Notice that, since Po o f > 0, S is "always increasing," even
though it is periodic. This combination of monotonicity and periodicity
brings to mind some of the prints of M. C. Escher [9], such as Ascending
and Descending (N 75), and Waterfall (N 76).
The graph in Figure 3 may also be interpreted as the Cerf "graphic" [6]

of a generating family (see [22]) for f(S). Although this diagram plays no
essential role in the present paper, we note that Cerf graphics are used by
Eliashberg [8] in his work on fixed points of symplectic diffeomorphisms
of surfaces. (See Section 6 for a further discussion of Eliashberg’s paper.)

3. V.I. Arnol’d has pointed out that there is an allusion to a construction
like our Figure 1 in his paper [1].

3. Bundles over Loose Manifolds Are Loose

If Y is a loose manifold and F is any manifold, then Y F is also loose.
In fact, given any exact deformation in T* Y, we can take its product with
the zero section in T*F to get an exact deformation in

T*( Y) T*(F) T*( Y F).

We leave it to the reader to fill in details of this product construction,
which is a special case of the pullback operation to be described next.

Let q X --> Y be a differentiable mapping and f: L ---> T* Y a lagrangian
immersion. When and r f are transversal, 7r the projection from T* Y
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to Y, we can define a pulled back lagrangian immersion q*f as follows. Let
Lybe the fibre product {(/, x) L x Xl(Tr f)(l) q(x)}; by the transversality
hypothesis, L is a submanifold of L x X. Now define q*f: Lr-- T*X by

(q*f)(l, x) (Txq)*(f(/));

since f(l) belongs to *T,xY, this is well defined and lies in T*xX. It turns
out that q*f is a lagrangian immersion; this is proven on p. 148 of [11] for
the case where f is an inclusion map, and essentially the same proof works
here. If L Y and f is a section, then Ls can be identified with X, and
q*f is just the usual pull-back of f as a 1-form. In general, if we write p
for the projection of L onto L, then (q*f)*(tOx) p*(f*(tOy)), SO that q*f
is exact iff is.
We will now use the pull-back construction to prove the following result:

THEOREM 3.1. If q X -- Y is a differentiable fibre bundle, and Y is
loose, then X is loose.

Proof. Let ft Y T* Y be an exact deformation as in the definition
of looseness. Since q is a submersion, the transversality hypothesis is
always satisfied, and we may define the pullbacks tk*ft Ys, -- T*X. It
follows from the discussion above that’

(i) Yr0 may be identified with X, and q*f is then the zero section;
(ii) q*f is exact for each t.

Since f(Y) does not meet the zero section and each (Txq)* is injective, we
also have:

(iii) (tk*f)(Yr) does not meet the zero section.

To prove that X is loose, then, we must show that Yz, can be identified
with X for all t, and that the resulting immersions of X in T*X are CO close
to the zero section if the ft are.
Now, Y, {(y, x)l(Tr ft)(Y) t0(x)}, considered as a bundle over Y, is

the pullback of q X Y by the map 7r ft, which is CO close to the iden-
tity if ft is CO close to the zero section. By introducing a metric on Y and
a differentiable connection in the sense of Ehresmann [7] on q X Y,
we can use parallel translation along short geodesics in Y to identify
nearby fibres of q X Y and thereby obtain a smooth family of maps
kt X Yy,. Finally, the required exact deformation gt X -- T*X is
defined by gt (d,J*ft) kt.

Remark. If Y S and ft is the deformation constructed in 1, the two
self-intersection points of f(S) become clean self-intersection manifolds
for g(X), each of them diffeomorphic to the fibre of tO X --* Y.
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4. Vector Bundles over Loose Manifolds Are Very Loose

In this section q X -- Y will be a real vector bundle and S X ---> R
a function which is a positive definite quadratic form on each fibre. The
differential dS X T*X is then an exact lagrangian embedding which
intersects the zero section of the cotangent bundle T*X X cleanly along
the zero section Y0 C_ X of the vector bundle q X ---> Y. (See Appendix
A for the definition of clean intersection.) In this section, we shall prove
the following relative version of Theorem 3.1.

THEOREM 4.1. (Notation as above). Let > 0 and a CO neighborhood
all of the map dS be given. If Y is loose, there is an exact deformation
ht S "-> T*X such that:

(i)
(ii)

(iii)
(iv)

ho dS
h(x) does not meet the zero section in T’X;
ht(x) dS(x) whenever S(x) > 1/2e2

ht for all t.

The situation described in Theorem 4.1 is easiest to visualize ifwe consider
the case where Y= S,X S R, andS(y,r) r2, and think ofX
{xlS(x) < e} as an annular region in the plane. Then the graph of S on X
is a "trough" in R lying over X. For any function on X which agrees to
first order with S along the boundary, there is a global minimum point in
the interior ofXthe bottom of the distorted trough. There is also a second
critical point--the saddle point encountered on a minimax circuit of the
trough. Our goal in Theorem 4.1 is to change the "trough" near the core
circle X0 so that it has no lowest point, and so that water can flow continually
around it. (See Escher’s waterfall [9] again.) The method of proof is to use
the immersion f of Section 2 to define the "profile" of the trough near X0,
and to pass continuously to the given boundary conditions by using the
deformation ft. This will give us h, and then we use the deformation fi
again to get the whole family ht.
Proof of Theorem 4.1. We will carry out the construction first on

the product W Y R and then pull it back to X by the mapping
(, -)’X--> Y R. We identify T*(Y x R)with T*Y R R.
Choose a smooth even function k: (-, ) ---> [0, 1] such that k(r)

when Ir[ < e/2, k(r) 0 when Ir[ > , and rk’(r) < 0 when /2 < Irl < e.
Let ft" Y --> T* Y be an exact deformation of the zero section as in the
definition of looseness. We will define the immersion g" W ---> T*W by

gl(Y, r) (f(r)(Y), r, X(y, r)) T*Y R R,

This argument is related to Poincar6’s proof of a special case of his "last geometric
theorem" [20]. We discuss this theorem in Section 6.
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where h:Y R -- R will be chosen so as to make g an exact lagrangian
immersion satisfying the conditions on hi in Theorem 4.1 with S(y, r)
1/2/,2
Denoting by fir and lw the canonical 2-forms on the cotangent bundles

T* Y and T’W, we have lw l’lr + dr dp, where (r, p) are the natural
coordinates on T*R R x R. Then, gw gr + dr d. Let us
denote by dr the operation of exterior differentiation on Y and write k(y)
for X(r, y). Then (dr A dk)(y, r) dr A drk(y).
To find gflr, we consider its values on vector pairs of the fo (O/Or, v)

and (1, 2), where v, 1, and 2 are tangent to Y. The result is that, along
Y x {r}, gr f(rY + dr A k’(r)() dot), where t is the deformation
vector field d/dt (see 1). Since f is lagrangian, the term fk<)r vanishes.
We conclude that g is lagrangian if and only if

0 dr A [k’(r)f)(r) r) + drh],

which is true if and only if

dyhr k’ (r)f<r)(kr) ). (4.1)

The form on the right-hand side of (4.1) is exact because the deformation
} is exact. In fact, we know that

d ,f(t Y) d(f(t )) f Y, (4.2)

where r is the fundamental 1-form on T*Y. Combining (4.1) and (4.2)
gives

d ,dyhr -dy[k’(r)f(r)(k(r) y)] + fk(r)Y (4.3)

which is exact because f(r)Y is exact for each r.
We may solve (4.3) by choosing a base point Y0 in Y and writing

-k’(rg(r ((rA r) + f(r + c(r), (4.4)

where 0 denotes the line integral from yo, and c(r) is a function of r alone
which may still be freely chosen.4

The choice of c(r) will be made so that g(Y x R) does not meet the
zero section and so that the boundary conditions are satisfied. We must
be sure that X(y) is not zero when f((y) meets the zero section in T’Y;
by the properties off and k, we need only be concerned when Irl > /2.
As for the boundary conditions, it is necessary and sufficient to have
c(r) r for Irl , since the other terms in (4.4) are zero in this range.

This holds if Y is connected; otherwise the theorem can be proved component by component.
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Define M(r) to be the minimum value on Y {r} of the sum of the first
two terms on the right-hand side of (4.4). As we just observed, M(r) is zero
for Irl > e; it is also zero for Irl < /2, since k’(r) is zero there as well.
Now we may easily choose c(r) to be a smooth, odd function such that

(1) c(r)> -M(r) whene/2<r<e,
(2) c(r) r when r > e.

This choice of c(r) completes the construction of a gl satisfying all the
requisite conditions, except that it might not be near to d(1/2r2).
To make gl close to d(1/2r2), we must have ft close to the zero section,

and h must be .close to r. Since Y is loose, we can choose ft to be as close
to the zero section as we wish. This is not quite enough, since (4.4) involves
the derivative of ft with respect to t. It is easy to make the required
derivative small though: we need only replace the family {ft} by {aft} for
a sufficiently small constant a. This has the effect of multiplying the first
two terms in (4.4) by a, so that M(r) becomes small; we may then choose
c(r) to be as close to r as we wish, and it will follow that h will be close
to 2r.

Finally (within the special context of Y R), we must construct the
whole deformation gt. To do this, we choose smooth functions K(r, t) and
C(r, t) on R x [0, 1] such that:

K is even in r C is odd in r
K(r, t) when Irl -< e/2 C(r, t) (1 t)r when Irl -< e/2
K(r, t) =Owhenlrl>e C(r, t) r when lrl > e
K(r, O) 0 C(r, O) r
K(r, 1) k(r) C(r, 1) c(r).

For each t, we now construct gt as we did gl above, using kt(r) K(r, t)
and ct(r) C(r, t) in place of k(r) and c(r).
To finish the proof of Theorem 4.1, we pull back gt by the map

(q, /-)" X-- r R

to get ht. The non-differentiability of the square root when S 0 causes
no problem: on the set where < e/2, (q, k/)*g is just the pull-
back of f, by tk:X -- Y, translated in each cotangent sl?ace
TxX by (1 t)dS(x). The variation in of the domain of (, V2S)*g,
can be handled just as in Theorem 3.1, and the proof is complete.

Remark. What do the self-intersections of h look like? We can give a
partial answer to this question. Let us look at the simplest case: Y S,
X S X R, with g(y, r) (fr)(Y), r, X(y, r)). If g(Yo, ro) gl(Y’, r’),
r’ must equal r, and then we must have

fk(r)(Y) fk(r)(Y’) (4.5)
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and

X(y) (y’). (4.6)

By (4.5), y and y’ must correspond to a self-intersection off(). To interpret
(4.6), we note from (4.1) that

)kr( Y’) )kr( Y) k’ (r) f*kr) (k,) l’l r). (4.7)

We may interpret the integral (4.7) as the infinitesimal area in T* Y swept
out by the vector kr) as fk) goes around one of the loops in Figure 2, say,
the one enclosing A or the one enclosing A, A2, and A4. It appears (though
this is not proven) that the deformation illustrated in Figure 2 can be
constructed so that, between to and t7, the motion of curve segments is in
a "constant sense," so that the integrand in (4.7) does not change sign
along each loop. Now the factor k’(r) in (4.7) is non-zero except when
Irl < e/2 or Irl > e. In the latter case, k(r) 0, and the curve fkr)has no
loops. It seems, therefore, that the self-intersection set of g consists of
two closed intervals (the product of the self-intersection set off by [-e/2,
e/2]). It is likely that, by a further deformation, each of these intervals can
be shrunk to an isolated point of self-intersection. To remove the self-
intersections, if it is possible at all, would seem to require a construction
of h which is less symmetric. It also seems that self-intersections occur
when the area of a loop has a critical point as a function of r, so that
removing the self-intersections might require abandoning the simplifying
ansatz that the middle component of g(y, r) be just r.

If Y S and X is an R" bundle, then the two closed intervals of the
preceding paragraph become two closed n-discs. Again, one should be able
to reduce each disc to an isolated self-intersection point.

5. Loose Manifolds and Circular Manifolds

The following theorem is interesting in its own right, as well as being a
step in proving that most manifolds of Euler characteristic zero are loose.

THEOREM 5.1. Let (P, l-l) be a symplectic manifold, A C_ P a lagrangian
submanifold, and i’L --> P a lagrangian immersion which intersects A
cleanly along Y C_ L. (See Appendix Afor the definition.) Ifeach component
of Y is loose, then there is an exact deformation {it} of such that:

(i) i0- i;
(ii) it is CO close to io for all t;

(iii) it outside any preassigned neighborhood of Y;
(iv) i-(A) i-(A)\ Y.

In particular, if Y i-(A), then i(L)
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Proof. Use Theorem A in Appendix A to put the intersection into normal
form, and Theorem 4.1 to remove it. Note that, if each component of Y is
loose, then so is Y. This remark, as well as Theorem 4.1 and Theorem A,
is true even if Y has components of different dimensions. (A vector bundle
over a disconnected manifold is allowed to have different fibre dimensions
over different components.)

COROLLARY 5.2. Let X be a manifold which admits a function S whose
critical point set is a non-degenerate critical manifold, each component of
which is loose. Then X is loose.

Proof. First deform the zero section in T*X by Jt etdS, where e is
small. Now Jl intersects the zero section cleanly along the critical set of
S, so we can apply Theorem 5.1 to get a further deformation which removes
the intersection.

COROLLARY 5.3. If O:X -- Y is a differentiable fibre bundle whose fibres
are loose, then X is loose.

Proof. Pull back to X a Morse function on , and apply Corollary 5.2.

A manifold X will be called circular if it admits a function S whose critical
point set is a non-degenerate critical manifold which is a disjoint union of
circles. A special case of Corollary 5.2 is:

COROLLARY 5.4. Circular manifolds are loose.

Finally, we put together the results obtained so far as our main theorem.

THEOREM 5.5. If X is loose, then x(X) O. Conversely, if x(X) O,
then X is loose provided any one of the following conditions is satisfied:

(i)
(ii)

(iii)

dim X - 3;
X is a bundle whose fibre is S;
X is a bundle over S I.

Proof. The first statement follows from topological intersection theory.
For part (i) of the converse, we refer to Appendix B, where theorems of
Asimov and Meyer are used to show that every manifold with x(X) 0
and dim X 3 is circular. Part (ii) follows from Corollary 5.3 and Theorem
2.3, and part (iii) follows from Theorems 2.3 and 3.1.

Remark. There exist 3-manifolds which are neither circular nor bundles
over S (see [18]). It would be interesting to see whether these manifolds
are loose.
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6. Discussion

Relation to Gromov-Lees. As we mentioned in the introduction, the
lagrangian immersion theory of Gromov and Lees can be used to prove a
result which is closely related to ours. Here is how it goes.

DEFINITION. Let (P, f) be a symplectic manifold, L any manifold. An
almost-immersion from L to P is a bundle map f: TL - TP, injective on
fibres, which covers a map f:L -- P. The almost-immersion is lagrangian
if the image off takes the fibres of TL to lagrangian subspaces.

There is a natural inclusion from the space of lagrangian immersions to
the space of lagrangian almost-immersions for which the underlying map f
pulls back the de Rham cohomology class of f to zero. The immersion
theorem of Gromov and Lees asserts that this inclusion is a weak homotopy
equivalence. The theorem is stated by Gromov in a special case in [10] and
proven by Lees in [14]. Using this immersion theorem, we can prove:

THEOREM 6.1. If x(X) 0, then there is a family f’X -- T*X of
lagrangian immersions such that fo Zx.r,x and fl(X)

Proof. Since x(X) 0, there is a nowhere-vanishing 1-form on X. Using
this 1-form, it is easy to construct a smooth family {t} of lagrangian almost-
immersions from X to T*X such that go Zx.r,x, ,o Tgo, and g(X)
Zx.r,x . Thinking of as an almost-immersion from X to *X (T*X
with the zero section deleted), we may apply the Gromov-Lees theorem
to construct a family ht of lagrangian almost-immersions of X to r*X such
that t0 g and t The, i.e., h is an honest lagrangian immersion.
Finally, since there is a path from T0 to Th, in the lagrangian almost-
immersions from X to T*X we may apply the Gromov-Lees theorem again
to obtain a family ft of honest lagrangian immersions such that f0 go
Zx, r*x, and f h "X---, *X.
Theorem 6.1 does not require the qualifying conditions in Theorem 5.5

(and so it applies, for example, to all 3-manifolds), but the conclusion is
weaker in two ways. First of all, neither the deformation {f,} nor even the
final map f is shown to be exact. Second, although the deformation {ft}
can be carried out in any neighborhood of fo(X), the maps ft themselves
might not be CO close to f0. It is possible that these weaknesses could be
removed by a closer look at the proofs of Gromov and Lees, in which case
Theorem 5.5 would be true without the qualifying conditions. Nevertheless,
our proof may still have the advantage of presenting ft more explicitly, so
that the self-intersections may be studied and perhaps eliminated.

Relation to fixed point theorems. The original impetus for studying la-
grangian intersections came from fixed point problems for symplectic maps
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and periodic orbit problems for hamiltonian systems. The perturbation theory
of clean lagrangian intersections in [21] implies the existence of fixed points
or periodic orbits only for problems which are "close" to nice ones. Never-
theless, there do exist fixed point and periodic orbit theorems for problems
which are far away from nice ones, and these can be interpreted as intersection
theorems for certain lagrangian submanifolds.
What is special about the lagrangian submanifolds which enter in the

fixed point theorems? If/z"P -- P is a symplectomorphism, then the graph
map %,(p) (p,/x(p)) is a lagrangian immersion from P to (P,
whose intersection points with the diagonal correspond to the fixed points
of/x. The lagrangian immersions which occur as graph maps are special in
two ways" they are embeddings, and they are transversal to the (symplectic)
fibres of the projection of P x P onto either factor. Under these additional
assumptions, exact lagrangian immersions near the diagonal may be forced
to intersect the diagonal even if P is a circular manifold.

For example, the Poincar6-Birkhoff annulus theorem asserts that certain
"twist" symplectic diffeomorphisms/z of A S x [-1, 1] have at least
two fixed points. (See [5] for a nice clean proof of this result.) For/x which
are C close to the identity, this can be proved by lagrangian intersection
theory, i.e., critical point theory, as was already observed by Poincar6 [20].
The "twist" boundary condition on/z implies that the corresponding function
on A has its gradient pointing outward on OA, and this implies the existence
of at least two critical points (see the discussion following the statement
of our Theorem 4.1). But Theorem 4.1 shows that some special properties
of graphs must be used to get fixed points for a/z which is merely CO close
to the identity. In fact, the proofs of the annulus theorem all use "dynamical"
ideas--especially iteration of
For closed manifolds, V. I. Arnol’d has proposed the following conjecture.

Let jIA, be a 1-parameter family of symplectic diffeomorphisms of a compact
surface P such that {%,3 is an exact deformation and /z0 is the identity.
Then tz has at least as many fixed points as a function on P has critical
points. For P a torus, there are at least three fixed points, and this turns
out to imply the annulus theorem (see Appendix 9 of [2]). Our Theorem
5.5 shows that the extension of Amol’d’s conjecture to lagrangian immersions
of T2 in T2 x T2 is false. (An unpublished manuscript of Eliashberg [8]
contains a proof of Arnol’d’s conjecture, but this author at least has some
doubt as to the completeness of that proof which uses an intricate combination
of "dynamical" and "topological" constructions.)

Appendix A. Clean Intersections

Let (P, ) be a symplectic manifold, A C_ P a lagrangian submanifold,
and i’L P a lagrangian immersion. We say that intersects A cleanly
along a submanifold Y C L if:

(i) i(D c_ A;
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(ii)
(iii)

for each Y, the inclusion TIY C_ (Tti)-(Ti)A) is an equality;
ilY is an embedding.

In this appendix, we shall prove a normal form theorem for clean inter-
sections which is global in Y; it is closely related to Theorem 4.3 of [21].
A purely local normal form was derived by Guillemin and Uhlmann in [12].

THEOREM A. Let i’L --> P intersect A cleanly along Y. Let X -- Y be
the normal bundle of Y in L, and let S’X -- R be a function which is
positive definite quadratic on fibres. Then the intersection along Y of
i’L P with A C_ P is equivalent to the intersection along Zr,x of
dS’X -- T*X with Zx,T,x. More precisely, there exist:

(i)

(ii)

a diffeomorphism g/from a neighborhood ofy in L to a neighborhood
l/" of Zr,x in X, with ql Y Zr,x;
a symplectic diffeomorphism from a neighborhood s ofzx, r,x(Zr,x)
in T*X to a neighborhood of i(Y) in P, with (Zx,r,x f3 sg)
AN , such that dS tO.

Proof. We use cotangent coordinates as constructed in Section 4 of
[21]. It follows from those constructions that there is a symplectic diffeo-
morphism b from a neighborhood of A in P to a neighborhood of ZA, T,A

in T*A such that blA ZA, T,A, and such that (b i)(L) is the graph of a
section near Y; i.e., there is a 1-form tr defined on a neighborhood of i(I:)
in A such that b tr zr (4) i) near Y. (rrA:T*A - A is the
projection.)
The clean intersection of with A along Y implies that tr dS2 for a

function $2 defined near i(Y) on A and having i(Y) as a non-degenerate
critical manifold; we may assume that $2 -= 0 on i(Y).
Next we observe that zr b gives a local diffeomorphism between L

near Y and A near i(Y). Using this diffeomorphism and the previously
constructed maps, we obtain a symplectic diffeomorphism/z from P near
i(Y) to T*L near ZL,r,L() such that, on the natural domains of the maps:

(i)
(ii)

/z takes A to ZL, r,.;
tz dS, where S is a function on L near Y having Y as a non-
degenerate critical manifold and vanishing identically on Y.

Now we apply the Morse-Bott-Meyer lemma (see Section 4 of [17]) for
non-degenerate critical manifolds to find a diffeomorphism 8 from a neigh-
borhood of Y in L to a neighborhood of Zr,x in the normal bundle X such
that S 8- So is non-degenerate and quadratic on fibres.
The proof of Theorem A will be complete if we know that So is positive

definite and not just non-degenerate. In fact, a careful look at the constructions
in Section 4 of [21] (particularly the proof of Proposition 4.1) shows that
they can be carried out in such a way that So does become positive definite.
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Remark. An alternate way of getting So to be positive definite is by
using the following:

LEMMA. Let X -- Y be a vector bundle, Q1 and Q2functions on X which
are non-degenerate quadratic on fibres. Then there is a symplectomorphism
q" T*X -- T’X, fixing the zero section, which maps dQl(X) onto dQE(X).

Proof. If Q and Q2 are both positive definite, then there is a bundle
map b’X X with Q2 b QI, so we may take to be the natural lift
of b to T*X. To prove the lemma, then, it suffices to construct k for a
given Q and a suitably chosen positive definite Q2.

Given Q, we may decompose X into an orthogonal direct sum X+ ) X_
of positive and negative definite subspaces for Q; define Q2 by changing
the sign of Q on X_.
We now define a hamiltonian function H on T*X as follows. Let Q’ and

Q’ be functions on the dual bundle X* which are dual to Q and Q2. Given
an element : T’X, restrict it to T*(fibre) to get an element ofX*; evaluate
Q’ Q’ on this element and call the result H(:).
Now define to be the time-1 map of the hamiltonian flow generated by

H. A simple calculation in vector bundle coordinates (y, x, x2) for which

2Q1 IIxll2- IIx2112 and 2Q2 IIxll2 + IIx2112
shows that maps dQ(X) to dQ2(X).

In fact, if (, :, :2) are the dual variables, then H I1:11:, and so

$(y, x, x2, r/, :, :2) (Y, XI’ "2 + 2:2, /, :, :2).

Then

tO dQ(y, Xl, X2) (y, x, X2, 0, Xl, --X2)
(Y, Xl, -x2, 0, x, -x2) dQE(y, x, -x2).

Appendix B. Circular manifolds

D. Asimov [4] has shown that every closed manifold with x(X) 0 and
dim X # 3, except the Klein bottle, admits a so-called round handle de-
composition. A "round handle" is the product of S with an ordinary handle,
which is just a cell. Using this decomposition, he constructs a non-singular
Morse-Smale vector field with one periodic orbit for each round handle.
Given such a vector field, Meyer [15] constructs a "Liapunov" function

S whose critical point set consists of one non-degenerate circle for each
periodic orbit. One could bypass Meyer’s result, as well as some aspects
of Asimov’s construction of the vector field, by proceeding directly from
the round handle decomposition to S, one handle at a time.
The Klein bottle is a circle bundle over the circle, so it carries a function

whose critical point set consists of two non-degenerate circles. (This function
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does not come from a round handle decomposition because the normal
bundles of the critical circles are non-orientable.)
Morgan [18] has determined those 3-manifolds which admit a round handle

decomposition; there are many which do not.
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