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1. Introduction

Let S be a dense subsemigroup of a semitopological semigroup T. In this
paper we consider the following "extension problem"" Given certain sub-
algebras A of C(S) and B of C(T) (say the algebras of weakly almost periodic
functions), determine minimal conditions on S and T such that every function
in A extends to a member of B; in symbols, A C BIs.
A number of interesting results pertaining to this problem have appeared

in the literature in recent years. For example, A. T. Lau, generalizing a
result of S. J. Wiley [19], has shown that if T is a topological group, then
uc(s) C(T)ls [10]. P. Milnes, improving on Lau’s result, showed that
if T is a topological .semigroup which is a group then LMC(S) C C(T)Is
and, consequently, AP(S) AP(T)[s and WAP(S) WAP(T)Is [13]. The
proofs of these results depend critically on both the group structure of T and
the joint continuity of multiplication. In this paper we generalize and com-
plement these results, requiring that multiplication in T be only separately
continuous and that T satisfy some condition generally weaker than the
group property. Some examples of the type of results we obtain are the
following"

(A) If T is topologically right simple and contains a right identity, then
LUC(S) C C(T)Js.

(B) If T is topologically left and fight simple (for example, if T is a
semitopological group), then WAP(S) C UC(S) C C(T)Js and hence WAP(S)
WAP(T)Is and AP(S) AP(T)Is.

(C) If T is topologically simple, then SAP(S) SAP(T)Is.
The central theme of this paper is that of right topological compactification

of a semigroup, and this notion is used systematically in the proofs of our
theorems. Although we do not do so, many of our results may also be
phrased in terms of these compactifications. For example, (C) may be
restated as follows" If T is topologically simple, then S and T have the
same SAP compactification (up to isomorphism).
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The necessary background in the theory of right topological compacti-
fication is given in Section 2. Section 3 contains extension theorems for
LUC functions and applications to invariant means. In Section 4 we treat
the problem of extending WAP and SAP functions and give applications
to semigroup representations. In the final section we apply the results of
Sections 3 and 4 to the problem of enlarging the phase semigroup of a flow
(S, Z) from S to T while preserving a specified property of the flow.

2. Preliminaries

All topological spaces are assumed to be Hausdorff. If X is a topological
space, then Int(.) and CI(.) denote, respectively, the interior and closure
operations in X, and C(X) denotes the Banach algebra of all bounded, real-
valued, continuous functions on X.
A right topological semigroup is a semigroup S together with a topology

relative to which the mappings s ---> st S --. S are continuous (t e S). If,
in addition, the mappings s ts are continuous, then S is called a semi-
topological semigroup. The terminology right topological group and semi-
topological group will be used when S is a group. (Note that inversion is
not assumed to be continuous in these definitions.)
For the remainder of this section, unless otherwise stated, S denotes a

semitopological semigroup. A subspace A of C(S) is translation invariant
if for each s e S,

R(s)A t3 L(s )A C A,

where R(s) and L(s) are the operators on C(S) defined by

R(s)f(t) f(ts), L(s)f(t) f(st) (t S, f C(S)).

For such a subspace A we shall not distinguish notationally between R(s)
and its restriction to A; the same convention applies to L(s).
Let A be a translation invariant norm-closed subspace of C(S) containing

the constant function 1. A mean on A is a member of/z of A*, the dual
of A, such that z(1) and z(f) > 0 whenever f > 0. The set of all
means on A is denoted by M(A). Any /z e M(A) with the property that
tx(L(s)f) /.(f) for all s S and f A is called a left invariant mean
(LIM).
Let A be a norm-closed subalgebra of C(S) containing the constant functions.

An A compactification of S is a pair (X, a), where X is a compact topological
space and a S X a continuous mapping with dense range such that
a * (C(X)) A, where a* C(X) -- C(S) is the dual mapping. The canonical
A compactification of S is obtained by taking X to be spec (A) (the space
of non-zero real homomorphisms on A) with the weak* topology, and a
S X the mapping defined by a(s)(f) f(s) (s e S, f A).
A pair (X, a) is a right topological compactification of S ifX is a compact

right topological semigroup and a S ---> X is a continuous homomorphism
with dense range such that the mappings x ---> a(s)x X X are continuous
(s e S). It may be shown that if A is a norm-closed subalgebra of C(S)
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containing the constant functions, then the canonical A compactification of
S, (X, a), is a right topological compactification if and only ifA is translation
invariant and left m-introverted, i.e., the function s x(L(s)f) is a member
of A for each f e A and x e X. In this case multiplication (x, y) xy in
X has the properties

[a(s)x](f) x(L(s)f) and [xa(s)](f) x(R(s)f) (x, y e X; s e S; f e A).

We shall call a subalgebra A of C(S) admissible if A is norm-closed,
translation invariant, left m-introverted and contains the constant functions.
Some well-known examples of admissible subalgebras of C(S) are the following
(see, for example, Chapter III of [3]):

LMC(S) {f e C(S) Ix(L(’)f) is continuous for each/xe spec (C(S))},
LUC(S) {f e C(S) L(.)f is norm continuous},
WAP(S) {f e C(S) R(S)f is relatively weakly compact},
AP(S) {f e C(S) R(S)f is relatively norm compact},
SAP(S) closed linear span in C(S) of the coefficients of all continuous,

finite dimensional, unitary representations of S.

(We shall occasionally suppress the letter S in the notation for these algebras.)
All but the first algebra in this list are in fact left introverted, i.e., the
function tx(L(’)f) is a member of the algebra whenever f is in the algebra
and/x e C(S)*. We shall also need the following (not necessarily admissible)
subalgebras of C(S):

RUC(S) {f e C(S) R(.)f is norm continuous},
UC(S) LUC(S) fq R UC(S).

A right topological compactification (X, a) of S is said to be maximal
with respect to a property P if (X, a) possesses P, and whenever (X0, c0)
is a right topological compactification of S with property P there exists a
continuous homomorphism/3 X - X0 such that/3 oct ct0. The LMC,
LUC, WAP, AP and SAP compactifications (X, a) of S are maximal, re-
spectively, with respect to the following properties: the empty property,
the mapping (s, x) --. ct(s)x S X -- X is continuous, X is a semitopological
semigroup, X is a topological semigroup (i.e., multiplication in X is jointly
continuous), and X is a topological group. (See, for example, [3, Chapter
].)
The following lemmas will be useful in the sequel. As these are standard

results in the theory of extensions of functions on semigroups, we omit
their straightforward proofs.

2.1. LEMMA. Let S be a subsemigroup of a semitopological semigroup
T and let F denote any one of the prefixes LMC, LUC, WAP, AP, SAP,
RUC, UC. Then F(T)Is C F(S).

2.2. LEMMA. Let S be a dense subsemigroup of a semitopological semi-
group T, and let A and B be admissible subalgebras of C(S) and C(T),
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respectively, such that Bls c A. Let R B A denote the restriction
mapping (Rf fls), R* A* B* its dual, (X, t) the canonical A
compactification of S, and (Y, ) the canonical B compactification of T.
Then 0 R*lx is a continuous homomorphism ofX onto Y such that 0
t Bls. Also, R*(M(A)) M(B), and

IX(L(s)Rf) R*IX(L(s)f) (s S, f B, tx A*).

Hence if B has a LIM then so does R(B), the converse holding if B is left
introverted.

2.3. LEMMA. Let S be a dense subset of a topological space T, and let
f C(S). Then f has a continuous extension to T if and only if whenever
(rm) and (Sn) are nets in S converging to T such that the limits a
limm f(rm) and b limn f(Sn) exist, then a b.

A right topological semigroup X is (topologically) right simple if X has
no proper (closed) right ideals. Left simple and topologically left simple
are defined analogously. X is (topologically) simple if it has no proper
(closed) two-sided ideals.
Let S be a dense subsemigroup of a semitopological semigroup T. The

following proposition demonstrates the relationship among various conditions
we shall impose on S and T in the sequel. We omit the easy proof.

2.4. PROPOSITION.
semigroup T.

Let S be a dense subsemigroup of a semitopological

(a) T is topologically right simple if and only if S is topologically right
simple and S f’) CI(tT) - 0 for each t e T.

(b) T is topologically simple if and only if S is topologically simple and
S N CI(TtT) Ofor each e T.

(c) If T is topologically right simple and Int(S) 0, then tS f
S (kforeach te T.

We conclude this section with a brief summary of that portion of the
structure theory for compact right topological semigroups which will be
needed in the sequel. Every such semigroup X contains a minimal two-
sided ideal, K(X), which is both the union of all of the minimal left ideals
ofX and the union of all of the minimal right ideals. The minimal left (right)
ideals are precisely the sets Xe (eX), where e2 e e K(X). Each set eXe
is a group with identity e, and K(X) is the union of these groups. (For
details and proofs see [3, Chapter II] or [17]).

3. Extensions of LUC Functions

Throughout this section, S denotes a dense subsemigroup of a semi-
topological semigroup T.
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3.1. LEMMA. Let T be topologically right simple and tS f3 S 0 for
each t e T. If g e C(T) and f gls e LUC(S), then g e LUC(T).

Proof. Note first that since T is topologically right simple,
IIL(r)h[I Ilhll (r e T, h e C(T)). Let to e T and define

d(t) IlL(t)g L(to)g[[.
Since S is dense in T,

IIL(s)g t(so)gll IIt(s)f L(so)fll (s, So S),

hence d is continuous on S. Let e T and (Sn) a net in S converging to t.
Choose r e S such that tr e S. Then

Id(sn) d(t)l < IIL(s,)g L(t)gll
IIL(r)(L(sn)g L(t)g)ll
Ilt(snr)g t(tr)gll
Ilt(snr)f- t(tr)fll

-")0.

By 2.3, then, d is continuous on T. In particular, if (tm) is a net in T
converging to to then

IlL(tm)g L(to)gll d(tm) d(to) O.

Therefore g e LUC(T).

3.2. THEOREM. If T is topologically right simple and contains a right
identity, then LUC(S) C C(T)ls. If, in addition, tS N S :/: for each e
T (for example, if lnt(S) (: ), then LUC(S) LUC(T)Is.

Proof. The second part of the theorem follows from the first part, 3. l,
and 2.1. For the first part, let (X, a) denote the canonical LUC compactification
of S and (rm), (sn) nets in S both converging to e T such that the limits
x limm a(rm) and y limn a(Sn) exist in X. By 2.3, the proof of the
theorem will be complete once we show that x y.
Choose any So e S. We construct subnets (rm()) and (Sn,)), and a net (Pi)

in S, all indexed by the same directed set {i}, such that rmi)Pi -- So and
sn)p --> So Since So e T Cl(tT) Cl(tS), we may choose for each
open neighborhood N of So and each pair of indices m’, n’ a point p in S
and indices m re(N, m’, n’) > m’, n n(N, m’, n’) > n’ such that
rmp e N and s,p e N. Set (N, m’, n’) and Pi P, and direct {i} as
follows: i2 > il if and only if N2 C NI, m > m’ and n > n’. Then (rm,)),
(Sn,)) and Pi have the stated properties.

Since Cl(piS) T we may choose for each a net (qk) in S such that
limk Piqk e, where e denotes a right identity for T. We may assume that
the limit zi lim ot(qk) exists in X. Then

ot(rm(i) lim ot(rm(i)pi qk ot(rm(i)Pi)Z i.
k

(1)
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Taking a subnet if necessary, we may suppose that z lim z exists in X.
Taking limits on {i} in (1) and recalling that the mapping

(r, u) (r)u S X ---> X

is continuous (see Section 2), we see that x a(so)z. Similarly, y
a(So)Z. Therefore x y, as required.

3.3. COROLLARY. If T is a semitopological group and S has the finite
intersection property (f.i.p.) for right ideals (respectively, S has the f.i.p.
for right ideals and the f.i.p, for left ideals), then LUC(S) LUC(T)Is
(respectively, UC(S) UC(T)Is).

Proof. The LUC part follows from the first part of 3.2 and from Lemma
2.7 of [10] (the proof of which works also in the present setting). The UC
part follows by considering RUC analogs.

3.4. THEOREM. If T is topologically left and right simple then UC(S) C

C(T)Is. If, in addition, tS 0 S 0 and St V1 S O for all t e T (for
example, if Int(S) O), then UC(S) UC(T)Is.

Proof. By 2.1, and 3.1 and its RUC analog, it suffices to prove the first
inclusion. Let A UC(S), and let (X, ez) denote canonical (not necessarily
right topological) A compactification of S. Let (rm) and (Sn) be nets in S
converging to e T such that the limits x limm ot(rm) and y limn Ol(Sn)
exist in X, and let So e S. As in the proof of 3.2 we may construct subnets
(rm(i)), (Sn(i)), and a net (pi), all indexed by the same directed set, such that
(r,,i)pi) and (Sn(i)Pi) both converge to So. Let s e S be arbitrary, and for
fixed choose a net (q) in S such that lim pq s and z lim c(q)
exists in X. Then for any f e A we have

a(r,i))(R(s)f) lim f(r,,i)piqk)= lim ot(qk)(L(rmi)Pi)f)= zi(L(rmi)Pi)f).
k k

Taking limits on {i}, and assuming, as we may, that lim z z exists in
X, we obtain x(R(s)f) z(L(so)f). Similarly, y(R(s)f) z(L(so)f). Thus

x(g(s)f) y(R(s)f) (s e S, f e A). (2)

Now choose any s S. Since T is topologically left simple so is S
(Proposition 2.4), hence a(Ss) is dense in X. Therefore we may choose a
net (tj.) in S such that x limj a(tjs) and such that the limit u limj a(tj)
exists in X. Then, for each f e A,

x(f) lim a(tj)(R(Sl)f)= u(R(s)f).
J

Similarly, there exists v e X such that y(f) v(R(Sl)f). By (2),

u(R(ss)f) x(R(s)f) y(R(s)f) v(R(ss)f) (s S).
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Since S is topologically right simple it follows from the definition ofRUC(S)
that u(R(s)f) v(R(s)f) for all s e S. In particular,

x(f) 1,1(R(Sl)f) o(R(si)f) y(f) (f A).

By Lemma 2.3, the proof is complete.

3.5. Remarks. (a) Some of the above results may be extended to include
the case where S is not necessarily dense in T. For example, using Tietze’s
extension theorem and 3.2 one can easily prove the following: If T is a
semitopological semigroup whose topology is normal, and if S is a sub-
semigroup of T whose closure in T is a group, then LUC(S) C C(T)Is. This
result is a generalization of Theorem 2.3 of [10], where the conclusion
UC(S) C C(T)Is was obtained under the additional assumption that T is a
topological group. For other theorems of this type see [19].

(b) The LMC analog of 3.3 is false, as is seen by the following result
of P. Milnes and J. Pym: If T is the additive group of real numbers and S
the subgroup of rationals, then LMC(S) LMC(T)Is [14].

(c) Theorems 3.2 and 3.4 are generally false if T is not topologically
right simple. As an example, let T be the interval [0, o) with the usual
topology and ordinary addition, and let S (0, ). The function f(s)
sin(s -) is easily seen to be in UC(S), but f has no continuous extension
to T. (Note that UC(S) is not the space of functions which are uniformly
continuous on S relative to the usual uniformity.)
The following applications to invariant means are easily proved by com-

bining the last part of Lemma 2.2 with 3.2, 3.3, and 3.4, respectively.

3.6. THEOREM. Let T be topologically right simple and contain a right
identity. Then if C(T) has a LIM, so does LUC(S).

3.7. THEOREM. Let T be a semitopological group and suppose that S
has the f.i.p, for right ideals (respectively, S has the f.i.p, for right ideals
and the f.i.p, for left ideals). Then if LUC(T) (respectively, UC(T)) has a
LIM, so does LUC(S) (respectively, UC(S)).

3.8. THEOREM. Let T be topologically left and right simple. Then if C(T)
has a LIM, so does UC(S).

3.9. Remarks. (a) Theorem 3.8 and a somewhat weaker version of Theorem
3.7 were proved by A. T. Lau for the case T a topological group [10,
Theorem 3.1 ]. See also 12, Theorem 9] for an LMC version of these results.

(b) An example due to T. Mitchell [16, p. 640] shows that 3.6-3.8 are
false if T is not topologically right simple.
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,4. Extensions of WAP Functions and SAP Functions

Throughout this section, S denotes a dense subsemigroup of a semi-
topological semigroup T. The main results of this section are Theorems 4.3
and 4.6, which give sufficient conditions for the equalities WAP(S) WAP(T)Is
and SAP(S) SAP(T)Is to hold. The proof of 4.3 requires two lemmas,
the first one of which is due to J. F. Berglund [1, Proposition 4].

4.1. LEMMA. If g e C(T) and g[s e WAP(S), then g e WAP(T).

4.2. LEMMA.
UC(S).

If S is topologically left and right simple, then WAP(S) C

Proof. Let (X, c) denote the canonical WAP compactification of S. Then
a(s)X X X a(s) for all s e S. Let r e S and choose e e X such that
a(r)e c(r). If s e S, and u e X is such that a(s) ua(r), then c(s)e
ua(r)e ua(r) a(s). Similarly, there exists d e X such that da(s)
c(s) for all s e S. Since multiplication in X is separately continuous (see
Section 2), d and e must be left and right identities, respectively, hence
d e is the identity for X. Given s e S choose x, y e X such that t(s)x
e yt(s). Then y ye ya(s)x ex x, so c(s)has an inverse in
X. Thus a(S) is contained in the group of units of X. By a result of J. D.
Lawson [11, Proposition 6.1], multiplication restricted to a(S) x X t_J X
x a(S) is jointly continuous, hence WAP(S) C UC(S).

4.3. THEOREM. If T is topologically left and right simple, then

WAP(S) WAe(r)ls.

Proof. Since T is topologically left and right simple so is S (Proposition
2.4). By 3.4 and 4.2, WAP(S) C C(T)Is. The desired conclusion now follows
from 4.1 and 2.1.

4.4. Remarks. (a) Theorem 4.3, for the case T a topological semigroup
and a group, was proved by P. Milnes [13]. See also [6] which treats the
commutative topological group case.

(b) If T is not both topologically left and right simple, then the conclusion
of 4.3 may be false, as the following example shows: Let T be the interval
[0, 1] with the usual topology and with multiplication st s, and let S
(0, 1]. Then T is left simple and the function f(s) sin(s-)) is in WAP(S)
(in fact in AP(S)), but f has no continuous extension to T.

(c) Lemma 4.2 is false if S is not both topologically left and right simple.
As an example, let S be the space [0, 1] R with the usual topology
and with multiplication (a, s)(b, t) (a, s + t). Then S is left simple
(and even right cancellative), but, as shown by Berglund and Milnes,
WAP(S)

_
LUC(S) [2].

(d) The proof of Lemma 4.2 shows that if S is topologically left and
right simple, then X has an identity, where (X, a) is the canonical WAP
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compactification of S. This fact may be used to show that for such a
semigroup S, WAP(S) has an invariant mean. (Sketch of.proof: Let f e
WAP(S). Since S is topologically left simple, R(s) is an isometry on WAP(S),
hence by Ryll-Nardzewski’s fixed point theorem [18], the closure K(f) of
the convex hull of R(S)f contains a function g such that R(s)g g for all
s e S. Thus xy(g) x(g) for all x, y e X, and taking x to be the identity
of X shows that y(g) x(g) for all y e X. Therefore K(f) contains a
constant function for each f e WAP(S). As is well known, this is sufficient
to guarantee that WAP(S) have a LIM (see, for example, [4], [8], or [15]).
Similarly, WAP(S) has a right invariant mean and therefore an invariant
mean.)

(e) The example constructed in (c) shows that if S is not both topologically
left and right simple then WAP(S) need not have an invariant mean. (If
were a LIM and g e C[0, 1] then/x(f) tx(L(a, s)f) g(a) for all a e
[0, 1], where f is defined by f(a, s) g(a).)

(f) In [6] deLeeuw and Glicksberg proved that if G is a locally compact
abelian topological group, then WAP(H) WAP(G)In for any closed subgroup
H of G. Ching Chou has given an example of a locally compact group G
which is solvable and contains an abelian normal subgroup H such that
WAP(H) ft. UC(G)I, and therefore WAP(H) if_ WAP(G)In [20, p. 192].

In contrast to the AP case (see 4.4(b)), SAP functions on S may be
extended continuously to T if T is only topologically simple. To prove this
we shall need the following lemma due to J. F. Berglund [1, Proposition
4].

4.5. LEMMA. If g e C(T) and gls e SAP(S) then g e SAP(T).

4.6. THEOREM. If, for each t e T,

S fq CI(TtT) # 0
then SAP(S) SAP(T)Is.

(3)

Proof. By 2.1 and 4.5 it suffices to show that SAP(S) C C(T)Is. Let
(rm) and (Sn) be nets in S converging to T such that the limits

x lim ot(rm) and y lim Ol(Sn)

exist in X, where (X, a) is the canonical SAP compactification of S. Choose
any s e S CI(TtT) S fq CI(StS). An obvious modification of the
construction carried out in the proof of 3.2 yields nets (p), (qi) in S and
subnets (rm(i)), (Sn(i)), all indexed by the same directed set {i}, such that
(Pirm(i)qi) and (PiSn(i)qi) converge to s and the limits u lim a(p) and
v lim a (qi) exist in X. By the joint continuity of multiplication in X,

uxv lim ot(Pirmi)qi) Or(S).
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Similarly, uyo a(s). Therefore, since X is a group, x y. The desired
conclusion now follows from 2.3.

4.7. COROLLARY. If T is topologically simple, then

SAP(S) SAP(T)Is.

4.8. Remark. Theorem 4.6 generalizes the main result of [9], which
asserts that SAP(S) SAP(T)Is provided that T is a topological semigroup
and (tT t.J Tt) fq S k for each T. (See also [1, Corollary 10], which
treats the case T and S topological groups, and also [3, Theorem 15.17],
which treats the commutative case.) Examples given in [9] show that the
conclusion of 4.6 may be false if condition (3) does not hold for each t e
T.

It seems appropriate at this point to comment on the absence in this
section of any extension theorem for the AP case. As the example of 4.4(b)
shows, the AP analogs of 4.6 and 4.7 are false. On the other hand, the AP
analog of 4.3 is true, this being a consequence of 4.3, 2.1, and the AP
analog of 4..1. However, if T is topologically left and right simple, then
AP(T) SAP(T) and AP(S) SAP(S) (see Proposition 4.9, below), hence
the AP analog of 4.3 is, in fact, included in 4.7. We have been unable to
find any AP extension theorem which is not covered by 4.6 or 4.7. The
following proposition (which will be useful again in Section 5) may provide
some hint as to what class of semigroups admits an AP extension theorem
which is not included in 4.7.

4.9. PROPOSITION. Let S be a topologically simple semitopological semi-
group such that Cl(sS) Cl(Ss)for some s e S. If Y is a compact topological
semigroup and fl S --> Y a continuous homomorphism with dense range,
then Y is a group. In particular, for such a semigroup S, AP(S) SAP(S).

Proof. Since CI(sS) CI(Ss) is a closed ideal of S it must equal S.
ThereforexY Yx Y, wherex fl(s). It follows thatyY Yy Y
for all y in the closed subsemigroup of Y generated by x. In particular,
there exists an idempotent e e Y such that e Y Ye e Ye Y. Since S
is topologically simple and multiplication in Y is jointly continuous, Y is
simple. Therefore Y K(Y) e Ye, so Y is a group (see section 2). Taking
(Y, /3) to be the AP compactification of S gives AP(S) SAP(S) (see
section III.10 of [3]).
We conclude this section with some applications of the above results to

the theory of semigroup representations. A representation of the semi-
topological semigroup S on the Banach space E is a homomorphism U from
S into the semigroup L(E) of all bounded linear operators on E, where
multiplication in L(E) is operator composition. The representation U is said
to be strongly (respectively, weakly) continuous if for each x e E the
mapping U(.)x is continuous in the norm (respectively, weak) topology of
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E. A strongly (respectively, weakly) continuous representation U S
L(E) is almost periodic (respectively, weakly almost periodic), abbreviated
AP (respectively, WAP) if for each x e E the set U(S)x is relatively norm
compact (respectively, relatively weakly compact). A strongly continuous
representation U is said to be strongly almost periodic, abbreviated SAP,
ifE is the closed linear span of all U(S)-invariant finite dimensional subspaces
D of E with the property that U(S)Io is contained in a bounded group of
operators in L(D) (with identity the identity operator). The right translation
representation s -- R(s) is WAP on WAP(S), AP on AP(S) and SAP on
SAP(S) [5].

Part (c) of the following proposition was proved in [9]. The other parts
are proved in a similar manner. (See also [6, p. 159] in connection with
the converse of part (b).)

4.10. PROPOSITION. (a) IfAP(S) AP(T)Is, then every AP representation
of S extends to an AP representation of T. The converse holds if S has a
topological left identity.

(b) If WAP(S) WAP(T)Is, then every WAP representation of S extends
to a WAP representation of T. The converse holds if S has a topological
left identity.

(c) SAP(S) SAP(T)Is if and only if every SAP representation of S
extends to a SAP representation of T.

4.11. COROLLARY. If T is topologically left and right simple, then every
WAP representation of S extends to a WAP representation of T.

4.12. COROLLARY. If T is topologically simple, then every SAP repre-
sentation of S extends to a SAP representation of T.

5. Application to Flows

In this section we consider the problem of extending the phase semigroup
of a flow.

If Z is a compact topological space, then Zz will denote the set of all
self maps of Z and C(Z, Z) the subset of continuous maps. We shall always
assume that Zz and C(Z, Z) carry the semigroup operation of function
composition and the topology of pointwise convergence. With respect to
these, Zz is obviously a compact right topological semigroup and C(Z, Z)
a semitopological subsemigroup. A flow is a triple (S, Z, 7r), where S is a
semitopological semigroup, Z a compact topological space, and zr S --C(Z, Z) a continuous homomorphism. As is customary, we shall write sz
for 7r(s)(z) and Sz for the set {sz s e S}. The symbol r is often suppressed
from the notation (S, Z, zr) when no confusion can result. The closure of
7r(S) in Zz is called the Ellis semigroup of the flow and is denoted by
E(S, Z). It is easily verified that E(S, Z) is a subsemigroup of Zz and hence
(E(S, Z), 7r) is a right topological compactification of S (see Section 2).
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A flow (S, Z) is distal if x y whenever x and y are members of Z such
that limk SkX limk SkY for some net (Sk) in S. From the relation CI(Sz)

E(S, Z)(z) it is easy to see that (S, Z) is distal if and only if each member
of E(S, Z) is injective. The structure theory of compact right topological
semigroups (see Section 2) may be used to give a quick proof of the following
well-known result of R. Ellis [7, Proposition 5.3] (S, Z) is distal if and
only if E(S, Z) is a group with identity the identity operator.
A flow (S, Z, 7r) is point transitive if CI(Sz) Z for some z e Z;

equicontinuous if t(S) is an equicontinuous family; and quasiequicontinuous
if E(S, Z) C C(Z, Z). If (S, Z) is equicontinuous (respectively, quasi-
equicontinuous), then E(S, Z) is a topological (respectively, semitopological)
semigroup. The converse holds if (S, Z) is point transitive. Clearly, every
equicontinuous flow is jointly continuous, i.e., the mapping (s, z) sz is
continuous.
Let S be a dense subsemigroup of a semitopological semigroup T. We

say that the flow (S, Z, zr) extends to the flow (T, Z, ) if ls 7r. (This
is not to be confused with the usual notion of extension of a flow as a
homomorphic preimage.) Note that if (S, Z) extends to (T, Z) then
E(S, Z) E(T, Z). Consequently, (T, Z) is equicontinuous, or distal, or
quasiequicontinuous if and only if (S, Z) has the same property.
The following theorem provides the connection between the problem of

extending flows and the problem of extending continuous, real-valued
functions.

5.1. THEOREM. Let S be a dense subsemigroup of a semitopological
semigroup T.

(a) If LMC(S) C LMC(T)Is, then every point transitive flow (S, Z)
extends to a flow (T, Z).

(b) If LUC(S) C LUC(T)Is, then every jointly continuous, point transitive
flow (S, Z) extends to a flow (T, Z) with the same properties.

(c) If WAP(S) C WAP(T)Is, then every quasiequicontinuous, point tran-
sitive flow (S, Z) extends to a flow (T, Z) with the same properties.

(d) IfAP(S) C AP(T)Is, then every equicontinuous, point transitive flow
(S, Z) extends to a flow (T, Z) with the same properties.

(e) SAP(S) C SAP(T)Is ifand only ifevery point transitive, equicontinuous,
distal flow (S, Z) extends to a flow (T, Z) with the same properties.

If S has a right identity, then the converses of (a)-(d) hold.

Proof. We prove only (c) and its converse; the proofs of the other parts
are entirely similar.
Assume that WAP(S) C WAP(T)Is, and let (S, Z, z:) be a quasiequicon-

tinuous, point transitive flow with z0 e Z such that Cl(Sz0) Z. Let R
WAP(T) WAP(S) denote the restriction mapping,

R* WAP(S)* WAP(T)*
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its dual, and let (X, a) and (Y, fl) denote the canonical WAP compactifications
of S and T, respectively. Then 0 R*lx is a topological isomorphism from
X onto Y such that 0 a fl , where S ---> T denotes the inclusion
mapping (Lemma 2.2). Since (E(S, Z), r) is a semitopological compactification
of S, there exists a continuous homomorphism y X --> E(S, Z) such that
y a r (see Section 2). Let denote the continuous homomorphism

")l O--1 [ T ----> E(S, Z).

Since 3/ 0- o/3 y a 7r, the proof will be complete once
we show that (t) is a continuous mapping for t e T. To this end let (Zn)
be a net in Z converging to z, and let ((t)(Zk)) be a convergent subnet of
((t)(z)). Since E(S, Z)(zo) Z and 7 0-l y -- E(S, Z) is surjective,
there exists for each k a point Yk e Y such that Zk 7 O-(Yk)(Zo) We
may assume that (y) converges to some y e Y. Then

and hence

z lim 3/o o-l(yk)(Zo) , O-l(y)(Zo)
k

(t)(Z) 3/ O- (fl(t))(z)
[lt {9-- (fl(t ))] [7 o 0-1 (y)l(z0)

3/ 0 -1 (fl(t)Y)(Zo)

lim y 0 -l (fl(t)Yk)(Zo)
k

lim (t)(zk).
k

Therefore (t)(z) is the unique limit point of ((t)(z)), so (t((Zn) "-> (t)(z).
For the converse of (c), let e be a right identity for S, and assume that

every point transitive, quasiequicontinuous flow (S, Z) extends to a flow
(T, Z) (necessarily of the same type). Let (X, ct) denote the canonical WAP
compactification of S and define zr S ---> Xx by ,r(s)(x) a(s)x (s e S,
x e X). Then (S, X, zr) is obviously a flow, and the existence of a right
identity in S implies that (S, X) is point transitive and that the mapping
x ---> (left multiplication by x) is a topological isomorphism from X onto
E(S, X). Therefore (S, X, ,r) extends to a flow (T, X, ). Givenf e WAP(S),
define g e C(T) by g(t) [(t)(a(e))](f). Obviously gls f, so by 4.1,
g e WAP(T).

5.2. COROLLARY. If T is a semitopological group and S has the f.i.p.
for right ideals, then every jointly continuous, point transitive flow (S, Z)
extends to a flow (T, Z) of the same type.

Proof. 5.1(b) and 3.3.
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5.3. COROLLARY. If T is topologically left and right simple, then every
quasiequicontinuous, point transitive flow (S, Z) extends .to a flow (T, Z)
of the same type.

Proof. 5.1(c) and 4.3.

5.4. COROLLARY. If T is topologically simple, then every equicontinuous,
point transitive, distal flow (S, Z) extends to a flow (T, Z) of the same
type. If, in addition, there exists some s e S such that Cl(sS) Cl(Ss),
then every equicontinuous flow (S, Z) is necessarily distal, and therefore,
if it is point transitive, extends to a flow (T, Z) of the same type.

Proof. The first part follows from 5.1(e) and 4.7. For the second part,
apply 4.9 to (Y,/3) (E(S, Z), r), recalling 2.4(b).
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