THE EILENBERG-MOORE SPECTRAL SEQUENCE AND THE MOD 2 COHOMOLOGY OF CERTAIN FREE LOOP SPACES

BY

LARRY SMITH

There has been considerable interest in computing the cohomology of the space $\Lambda(X)$ of free loops on X, at least since the theorem of Gromoll and Meyer, connecting the unboundedness of the Betti numbers $\{\dim H^i(\Lambda X; \mathbf{Q})\}$ with the existence of infinitely many closed geodesics on X when X is a Riemannian manifold. There have been however relatively few explicit calculations. The minimal model theory of Sullivan has been used in the rational case to obtain a few results. However with finite coefficients, aside from [12], which only contains Betti number estimates, there seems nothing known, apart from those facts that are easily knowable. In [9] we observed that the free loop space sits in a fibre square for any connected space X, where Δ is the diagonal map:

This observation makes available the Eilenberg-Moore spectral sequence (see for example [8]) as a tool for computing $H^*(\Lambda(X); k)$ for simply connected X. In [9] we dealt with the case where the coefficient field k was of characteristic zero. In this note we take up the case of $k = \mathbb{Z}/2$, and derive the following not so easily knowable result.

THEOREM. Let X be a simply connected space, and suppose Sq^1 vanishes on $H^*(X; \mathbb{Z}/2)$ and

(*)
$$H^*(X; \mathbb{Z}/2) \simeq P[x_1, ..., x_n]/(x_1^{e_1}, ..., x_n^{e_n})$$

where $e_1 \cdots e_n$ is a power of 2, and $P[\]$ denotes a polynomial algebra. Then the Eilenberg-Moore spectral sequence

$$E_r \Rightarrow H^*(\Lambda(X); \, \mathbb{Z}/2), \quad E_2 = \mathrm{Tor}_{H^*(X; \, \mathbb{Z}/2) \otimes H^*(X; \, \mathbb{Z}/2)}^{**} \, (H^*(X; \, \mathbb{Z}/2), \, H^*(X; \, \mathbb{Z}/2))$$
 collapses.

Received April 25, 1982.

An essential step in the proof is the explicit computation of E_2 , along the lines of [9; 3.5] (see also Proposition 1 below). A particularly simple example of a space that satisfies (*) are the complex quadrics

$$Q_n := \{ [z] \in \mathbb{C}P(n+1) | z_0^2 + \dots + z_{n+1}^2 = 0 \}$$

when n + 1 is a power of 2. Combining the preceding theorem with the known mod 2 cohomology of the quadric and applying Proposition 1 below we have:

COROLLARY. Let n+1 be a power of 2. Then there is a filtration on $H^*(\Lambda Q_n; \mathbb{Z}/2)$ such that

$$E^{\circ}H^*(\Lambda Q_n: \mathbf{Z}/2) \simeq \frac{P[u, v]}{(u^{m+1}, v^2)} \otimes E[su, sv] \otimes \Gamma[\tau u, \tau v]$$

where n = 2m + 1, $E[\]$ an exterior algebra, and $\Gamma[\]$ a divided power algebra and the degrees of the generators are as follows:

deg
$$u = 2$$
, deg $su = 1$, deg $\tau u = 2m$,
deg $v = 2m + 2$, deg $sv = 2m + 1$, deg $\tau v = 4m$.

The classes u and v have filtration 0, su, sv filtration -1 and τu , τv filtration -2.

Other examples of spaces that satisfy (*) are U(n)/SO(n), Sp(n)/SO(n), etc.

I want to thank Frank Conolley for suggesting the problem of computing $H^*(\Lambda Q_n; \mathbb{Z}/2)$ as being a natural "test case" for extending the results of [9], for as he pointed out, $H^*(Q_n; \mathbb{Q})$ and $H^*(\mathbb{C}P(n); \mathbb{Q})$ are isomorphic when n is odd, so the rational results of [11] does not apply to deduce anything about closed geodesics on odd quadrics.

The proof of the theorem requires a number of preliminary manoeuvres. We begin by recalling some results from [9]. Let X be a connected topological space, and $\Lambda(X) := X^{S^1}$ the space of free loops on X. There is then the fibre square

$$\mathcal{L}(X) \xrightarrow{\Lambda(X)} X$$

$$\downarrow^{p} \qquad \downarrow^{\Delta}$$

$$X \xrightarrow{\Delta} X \times X$$

where Δ is the diagonal map, whose fibre is the ordinary loop space $\Omega(X)$ of X. Thus for simply connected X and coefficients in a field k we obtain an Eilenberg-Moore spectral sequence [8], [9]

$$E_r \Rightarrow H^*(\Lambda(X); k), \quad E_2 = \mathrm{Tor}_{H_*(X;k) \otimes H^*(X;k)} (H^*(X; k), H^*(X; k)).$$

For notational simplicity it will be convenient to set

$$T^{*,*}(A^*) := \operatorname{Tor}_{A^* \otimes A^*}^{*,*} (A^*, A^*)$$

for any graded connected algebra A*.

Convention. For the remainder of this note all cohomology will be taken with $\mathbb{Z}/2$ coefficients, and we write $H^*(\)$ for $H^*(\ ; \mathbb{Z}/2)$.

Using the mod 2 analog of [9; Section 3] one can easily prove:

Proposition 1. Let

$$A^* \simeq P[x_1, \ldots, x_n]/(x_1^{e_1}, \ldots, x_n^{e_n})$$

where $e := e_1 \cdot \cdot \cdot \cdot e_n$ is a power of 2. Then

$$T^{**}(A^*) \simeq A^* \otimes \operatorname{Tor}_{A^*}^{**}(\mathbb{Z}/2, \mathbb{Z}/2)$$

$$\simeq \frac{P[x_1, \dots, x_n]}{(x_1^{e_1}, \dots, x_n^{e_n})} \otimes E[su_1, \dots, su_n] \otimes \Gamma[\tau u_1, \dots, \tau u_n]$$

where $E[\]$ is an exterior algebra, $\Gamma[\]$ a divided power algebra and

$$\deg su_i = (-1, \deg u_i), i = 1, ..., n; \deg \tau u_i = (-2, e_i), i = 1, ..., n$$

Proof. For the sake of completeness we sketch a proof based on Hopf algebra considerations. Since e is a power of 2 we may impose a Hopf algebra structure on A^* by declaring the generators to be primitive elements. Then

$$\mathbb{Z}/2 \to A^* \xrightarrow{\Delta} A^* \otimes A^* \xrightarrow{\mu} A^* \to \mathbb{Z}/2$$

is a coexact sequence of algebras, where μ is multiplication and Δ the diagonal map. Moreover, $A^* \otimes A^*$ is free over A^* [6; 4.4] so the change of rings spectral sequence [1; XVI.6.1. (1a)] may be applied. There being no problem with local coefficients we conclude

$$\begin{split} E_r \Rightarrow \mathrm{Tor}_{A*\otimes A*}(A^*,\ A^*), \\ E_2^{p,q} \simeq A^* \otimes \mathrm{Tor}_{A*}^p(\mathbb{Z}/2,\ A^*) \otimes \mathrm{Tor}_{A*}^q(\mathbb{Z}/2,\ \mathbb{Z}/2) \end{split}$$

whence the spectral sequence collapses to the isomorphism

$$\operatorname{Tor}_{A^*\otimes A^*}(A^*, A^*) \simeq A^* \otimes \operatorname{Tor}_{A^*}(\mathbb{Z}/2, \mathbb{Z}/2).$$

The computation of $Tor_{A*}(\mathbb{Z}/2, \mathbb{Z}/2)$ is routine.

Proposition 1 gives us the structure of the E_2 term of the Eilenberg-Moore spectral sequence of the fibre square $\mathcal{L}(X)$ when X satisfies (*).

THEOREM 2. Let X be a simply connected space such that

(1)
$$Sq^1: H^*(X; \mathbb{Z}/2) \rightarrow H^*(X; \mathbb{Z}/2)$$
 vanishes

and

(2) $H^*(X; \mathbb{Z}/2) \simeq P[x_1 \cdots x_n]/(x_1^{e_1}, \dots, x_n^{e_n})$ where $e_1 \cdots e_n$ is a power of 2. Then the Eilenberg-Moore spectral sequence

$$E_r \Rightarrow H^*(\Lambda(X)), \quad E_2 = T^{**}(H^*(X))$$

for $\mathcal{L}(X)$ collapses.

The proof of Theorem 2 proceeds by comparing $\{E_r(\mathcal{L}(X)), d_r(\mathcal{L}(X))\}$ to the corresponding spectral sequence for certain universal examples E. The universal examples are H-spaces, so the following lemma allows us to reduce the study of $\{E_r(\mathcal{L}(E), d_r(\mathcal{L}(E))\}$ to more familiar Eilenberg-Moore spectral sequence considerations.

LEMMA 3. Let X be an H-space. Then $\Lambda(X)$ is homotopy equivalent to $X \times \Omega(X)$. Moreover, for simply connected X the Eilenberg-Moore spectral sequence

$$\{E_r(\mathcal{L}(X), d_r(\mathcal{L}(X))\}$$

and

$$\{H^*(X) \otimes E_r(X), 1 \otimes d_r(X)\}$$

are isomorphic, where $\{E_r(X), d_r(X)\}$ is the Eilenberg-Moore spectral sequence of the path-loop fibration

$$\Omega X \subseteq PX \downarrow X$$
.

Proof. Since X is an H-space, so is $\Lambda X = X^{S^1}$. Moreover, seen with this H-space structure, the evaluation map $e: \Lambda(X) \downarrow X$ becomes an H-map. Thus

$$\Omega X \subseteq \Lambda X \downarrow^e X$$

becomes a principal bundle with

$$s: X \to \Lambda X: s(x) = \text{constant loop at } x$$

as cross-section. Hence the multiplication gives a map

$$X \times \Omega X \rightarrow \Lambda X$$

which is a homotopy equivalence. Naturality and diagram chasing yields the rest.

Proof of Proposition 2. We proceed by induction to show that $d_r = 0$. The structure of $E_2(\mathcal{L}(X))$ is given in Proposition 1. As an algebra we see that E_2 is generated by classes

$$u_1, \ldots$$
 of filtration zero, $s^{-1}u_1, \ldots$ of filtration -1 , $\gamma_{2s}(\tau u_1), \ldots$ of filtration $2^{s+1}, s=0, 1, \ldots$

If there is a nonvanishing differential, then it must take a nonzero value on some indecomposable element, and so it suffices from filtration considerations to show that d_r vanishes $\gamma_{2s}(\tau u_1)$ for all $s \ge 0$, and all $r \ge 2$. To simplify notations we drop subscripts, setting $u = u_i$, $d := \deg u_i$, $e = e_i$, etc., and consider $\gamma_{2s}(\tau u)$. Let E_m be the stable two stage Postnikov system defined by the fibre square

$$E_{m} \xrightarrow{} L(\mathbb{Z}/2, de)$$

$$\downarrow \qquad \qquad \downarrow$$

$$K(\mathbb{Z}/2, d) \xrightarrow{\lambda} K(\mathbb{Z}/2, de)$$

where

$$\lambda^*(i_{de}) = i_d^e$$

and

$$i_{de} \in H^{de}(K(\mathbb{Z}/2, de)), \quad i_d \in H^d(K(\mathbb{Z}/2, d))$$

are the fundamental classes. The cohomology of E_m can be computed by [7; (2.1) and (2.2]. We get

$$H^*(E_m) = \frac{\mathbb{Z}/2[j,\ldots]}{(j^e,\ldots)} \otimes \text{Poly}$$

where: $j := \pi^* i_d$, and Poly is a certain polynomial algebra (see also [5]). Standard Hopf algebra considerations applied to the Eilenberg-Moore spectral sequence of the fibration

$$\Omega E_m \subseteq PE_m \downarrow E_m$$

show that $d_2 = 0$ (the usual argument that d_2 of an indecomposable of minimal degree $\neq 0$ implies d_2 (there on) is primitive, and an inspection of primitives). Thus in the Eilenberg-Moore spectral sequence of the fibre square

$$\mathcal{L}(E_m) \qquad \begin{matrix} \Lambda E_m & \longrightarrow & E_m \\ \downarrow & & \downarrow \\ E_m & \longrightarrow & E_m \times E_n \end{matrix}$$

one sees $d_2(\mathcal{L}(E_m)) = 0$ by noting that E_m is an H space and applying Lemma 3. Let

$$f: X \to K(\mathbb{Z}/2, d)$$

represent u, i.e., $f * i_d = u \in H^2(X)$. Since $u^e = 0$ there is a lift ϕ in the indicated diagram

such that $\phi^*j = u$. The map ϕ defines a map of fibre squares

$$\mathscr{L}(\phi) \colon \mathscr{L}(X) \to \mathscr{L}(E_m)$$

and one easily sees that

$$\mathscr{L}(\phi)^*(\gamma_{2s}(\tau j)) = \gamma_{2s}(\tau u).$$

Since d_2 vanishes on $\gamma_{2s}(\tau j)$ it follows that d_2 vanishes on $\gamma_{2s}(\tau u)$ by naturality. An induction is thus started. Assume now that we have shown $d_r = 0$ for $r = 2, \ldots, 2^k - 2$ and consider the inductive step. We replace the two stage Postnikov systems by the stable k + 1 stage Postnikov system

$$P()$$

$$\downarrow$$

$$E_{m} = : P(1)$$

$$\downarrow$$

$$P(0) = K(\mathbb{Z}/2, d)$$

of [4; Theorem 4.2, p=2, s=1]. The essential features of this example for our purposes are as follows. Let $j \in H^2(P(k))$ be the image of the fundamental class $i_2 \in H^2(P(0))$. Then:

- (i) $j^e = 0$.
- (ii) The first nonzero differential in the Eilenberg-Moore spectral sequence of the fibration $\Omega P(k) \subseteq PP(k) \to P(k)$ defined on a class $\gamma_{2s}(\tau j)$ is $d_{2^{k+1}-1}$ (4; (6.4)].

Let $f: X \to P(0) = K(\mathbb{Z}/2, d)$ represent u, i.e., $f^*(i_d) = u$. Then in the diagram

we can find a lift ϕ because the successive k-invariants used to construct the tower (\mathcal{P}) all begin with a $\beta = Sq^1$ [4; Theorem 5.2 (1)], and $\beta \equiv 0$, $H^*(X) \subseteq 0$. By commutativity, $\phi^*(j) = u$. The map ϕ induces a map of fibre squares

$$\mathcal{L}(\phi) \colon \mathcal{L}(X) \to \mathcal{L}(P(k))$$

and hence a map of Eilenberg-Moore spectral sequences. From property (i) we see that

$$\mathscr{L}(\phi)^*(\gamma_t(\tau j) = \gamma_t(\tau u), \quad t = 0, 1, \ldots$$

Since P(k) is an H-space, it follows from (ii) and Lemma 3 that $d_r(\gamma_t(\tau j)) = 0$ for $r = 2, ..., 2^{k+1} - 2$ and t = 0, 1, ... By naturality we conclude that

$$d_r(\mathcal{L}(X))(\gamma_t(\tau u)) = 0$$
 for $r = 2, ..., 2^{k+1} - 2$.

This completes the inductive step and hence the proof of Proposition 2.

REFERENCES

- 1. H. CARTAN and S. EILENBERG, Homological algebra, Princeton University Press, 1956.
- D. GROMOLL and W. MEYER, Periodic geodesics on compact Riemannian manifolds, J. Differential Geometry, vol. 3 (1969), pp. 493-510.
- K. GROVE and M. TANAKA, On the number of invariant closed geodesics, Acta Math., vol. 140 (1978), pp. 33-48.
- 4. D. Kraines, The kernel of the loop map, J. Math., vol. 21 (1977), pp. 91-108.
- 5. L. Kristensen, On the cohomology of two stage Postnikov systems, Acta Math., vol. 107 (1962), pp. 73-123.
- 6. J. MILNOR and J. C. MOORE, The structure of Hopf algebras, Ann. of Math., vol. 81 (1965), pp. 211-264.
- L. SMITH, The cohomology of stable two stage Postnikov systems, Illinois J. Math., vol. 11 (1967), pp. 310-339.
- 8. ———, Lectures on the Eilenberg-Moore spectral sequence, Lecture Notes in Math., vol. 134, Springer-Verlag, New York, 1970.
- 9. ———, On the characteristic zero cohomology of the free loop space, Amer. J. Math., vol. 103 (1981), pp. 887-910.
- D. SULLIVAN, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math., vol. 47 (1977).
- 11. D. SULLIVAN and M. VIGUE-POIRRIER, The Homology theory of the closed geodesic problem, J. Differential Geometry, vol. 11 (1976), pp. 633-644.
- 12. W. ZILLER, The free loop space of globally symmetric spaces, Invent. Math., vol. 41 (1977), pp. 1-22.

MATHEMATISCHES INSTITUT

GÖTTINGEN, FEDERAL REPUBLIC OF GERMANY