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THE DISTRIBUTION OF VALUES OF AN
INNER FUNCTION

BY

PATRICK AHERN

The purpose of this note is to show that there is a theory of the distribu-
tion of values for an inner function that is analogous to some parts of the
value distribution theory for meromorphic functions.

1. A bounded holomorphic in the unit disc U whose radial limits have
modulus almost everywhere is called an inner function, see [7], Chapter 17,
for details on the structure of inner functions. If b is an inner function and
a U, then b will denote the inner function (b -a)/(1 -b). We let n(r, )
denote the number of zeros of b whose moduli are at most r and define

v(r, x)= fl n(t,t dr.

Following the notation of O. Frostman [4], we let 6() be the total mass of
the singular measure, a, associated to the inner function b, and

The quantity

L(r, ) -2- log dp(re)idO.

12"-’ (1 -lop(re‘) 12) dO

will be denoted by A(r). It is a simple consequence of Jensen’s formula that

L(r, )= v(r, ) + 6().

We may say that v(r, ) is a measure of the number of zeros of b in

{z: r < Izl < 1}.

Since b has a radial limit equal to 0 almost everywhere with respect to a,
we may say that tS() measures the number of zeros of b on the unit circle.
In other words L(r, ) measures the number of zeros of b in

{z: r < Izl-< 1}.
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Next we recall some notions from potential theory. If/ is a positive Borel
measure of total mass 1 in U then define

and V sup/(z).
zU

If K
_
U is compact we let Vr inf { V: supp #

_
K}, and if E

_
U we let

VE inf {Vr: K
_

E, K compact}. The inner capacity of E is defined to be
y(E) e -yr. The set function y is monotone and we have the subadditivity
property" if E ff=l E,, then

1 1

We refer to [8], Chapter III, for details.
In this note it is shown that the distribution of values of b is determined

by the quantity A(r) in the following sense:

L(r, oO(i) 0 < lira for all o U,
A(r)

and

(ii) lim
L(r, )

.< for allU,
A(r)

with the exception of a set of capacity 0.
We may say that the exceptional values of b are the ones that are taken too
often. This can happen in two ways, either 6() :/: 0, or 6() 0 and

lim
v(r, )
A(r)

We show by example that the second possibility can occur. Since

lim A(r) 0,

one consequence of having

lim
L(r, )
A(r)

with the exception of a set of capacity 0, is that ()= 0 with the exception
of a set of capacity 0. This is, of course, the well known theorem of Frostman
[4].
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It is probably not true that, for every inner function ok, we have

with the exception of a set of capacity 0, but we can find no counterexample.
We can show that our results are close to sharp, in that

lim
L(r, ).. A(r)2(A(r))

=0

with the exception of a set of capacity 0, if 2 is any positive decreasing
function on (0, 1) such that

dt

Finally we show that this result can be somewhat improved if we allow a
slightly larger exceptional set. To do this we need to develop a relation
between capacity and some Hausdorff-like set functions that may not have
been observed before.

2. The notion that L(r, ) is in some way dominated from above by A(r) is
suggested by the proof of Theorem 4.3 of [3]. The proof of part (ii) of the
following theorem is a modification of that proof.

THEOREM 1.

L(r, a) 1 I1(i)
A(r) 4 for atl U and all r, O < r < l.

(ii)
then

If 0 < p < 1, and if # is a distribution of the unit mass on {z" Izl p}

L(r, oO d#(a)
V

’1 A(r).
p)

Proof. To prove (i) we start with the inequality 1 x _< -log x, valid for
0 < x < 1. We obtain

1 c(rei) 12 < 2 log c(rd)l.

We also have the following identity (see [6], for example)"

-t1’
1 ck(re) 12 (t qb(re’) 12).
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We may conclude that

1 (reiO) 12 < (1+ .l)2
i " o [2 (1 elba(rei’) 12)

2
< (- 2 log (rei)[)

-4
log dp(rei)l.

4
Integrating on 0, we get A(r) < L(r, cz), which gives us (i).

To prove (ii) we use Fubini’s theorem to see that

L(r, ) dg(e)= ((re)) dO.

Next we write

lfo2 l fE,#((rei)) l fE fi( (re’O))2 #($(rei)) dO dO +
/

where

and

E, {0" 0 <_ 0 <_ 2z, dp(re’)l < p}

447

E’ {0" 0 < 0 <_ 2re, ck(re’)l> p}.

From the definition of V we see that

1__ (dp(re’)) dO < V. n dO.
2 .r.,

To deal with the integral over E’, we note that/ is harmonic in

{z: p < Izl < 1/p}

and/(z) 0 if lz[ 1. It follows that the function

log
/(z)- Vu log p

is harmonic in the annulus A {z: p < [z[ < 1} and has a non-positive
upper limit at each point of the boundary of A. We conclude from the
maximum principle that

loglzl
ifzA./(z) _< Vu log p
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In particular, if 0 E’, then

f(ck(re’)) < V,,
lg (re’)

log p

Using the inequalities 1- x < -log x < (1 -x)/x, valid if 0 < x < 1, we see
that

log qb(re*)l -log tk(re) 1 ck(re)l 1 dP(re) 12<
log p -log p (1 p) lck(re)l- (1 p)p

So we see that if 0 E’r, then

V, (1 dP(re) 12[t(dp(re’)) <
p(1 p)

We can conclude that

L(r, ) d#() =’n t(dp(re’)) dO

ao+ V 1 f (1 -Iqb(re) 12) dO
p(1 p) 2r .]E,,

E2__fE fn 2)V, (1 p) dO + ,,(1 -I(re’)l dO]
p(1 p)

<
p(1 p) ,(1 p2) dO + ,,(1 -Idp(re’)l 2) dO

V 1 ;)(1-Ick(rei)12 dO<- p(1 p) 2-

since 1 p2 _< 1 -[(re) 12 if 0 Er. This completes the proof.

COROLLARY.

lim
L(r, o)

> 0 for all U.(i) ,_--- A(r)

L(r, )
(ii) lim <

a(r)

with the exception of a set of capacity O.
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Proof Part (i) is clear. Part (ii) follows from a well known argument.
Since the union of a countable number of sets of capacity 0 has capacity 0 it
is enough to show that for each p, 0 < p < 1,

L(r, ) }E ’ll p and lirn
A(r)

has capacity 0. If/ is a distribution of the unit mass with support in E, then
by (ii) of the theorem we have

A(r)
d#() <

p(1 p)"

We conclude from Fatou’s lemma that

L(r, )
!irn A(r)

d#()<
p(1 p)

and hence that V, . This implies that y(E)= 0.
If we let

e u: o}
and

E()= e U’,_.lirn A(r)

then of course E()_ E1() and so Theorem 1 (ii) may be regarded as a
generalization of Frostman’s Theorem [4]. To show that it is a true gener-
alization we give an example to show that E() and E1() are not always the
same.

THEOREM 2.
Then

Suppose that B is a Blaschke product whose zeros lie on (0, 1).

(i) E(B) O, and
(ii) A(r)= O(v/1 r).

Proof We assume B has infinitely many zeros. If e U, z :p 0, and B
were not a Blaschke product then B would have a radial limit equal to 0
somewhere. That is to say that B would have radial limit equal to at e for
some 0, 0 < 0 < 2re. If e q: 1, then B has a radial limit of modulus 1 at e. If
B has a radial limit at 1, that limit must be 0 since B has infinitely many
zeros on (0, 1). This proves part (i). Part (ii) is proved by Carleson in [3],
page 48, see also [1], Theorem 7, with fl 1.
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Now, to get an example of a Blaschke product B with E(B) =f El(B), let B
have the zeros ak 1- k -’, 1 < < 2. By Theorem 2, (i), E(B)= . It is
easy to calculate that

L(r, O)= n(t,t O)

for some e > O, and hence that

dt > e(1 r)t- )/,

L(r, O)
> 6(1 r)t- 2/2

A(r)

for some > 0. It follows that 0 El(B).

3. Next we want to exploit the inequality in Theorem 1 (ii) to get some
information about

li--- L(r,
_. A(r)

The method wc use is analogous to one used in the theory of mcromorphic
functions by J. E. Littlcwood [5], and refined by L. Ahlfors [2].

THEOREM 3.

o

dt

Then for any inner function , we have

lim
L(r,

,--1 A(r)(A(r))

with the exception of a set of capacity O.

Suppose 2 is a positive decreasing function on (0, 1) such that

=0,

Proof. Given p, 0 < p < 1, it is enough to show that

{. < p, li-- L(r’ ) },-1 A(r)2(A(r))
> 0

has capacity 0. To show this it is enough to show that

{" cz < p, li--- L(r’ ) },_. A(r)2(A(r))
> 2

has capacity 0, because once this is done we may replace 2 by e2, e > 0. This
being said, for all sufficiently large n we may choose r, such that A(r,)= 2-"
and let

E.= ’[[<O, A(r) >-2(2-
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If # is a distribution of the unit mass with support in E we see that

2(2 ") f 2(2 ") d#
L(r., a) Vu< <_ p(i p)

It follows that V. VE. > 2(2-")p(1 p) and hence that

1 1 1

V.+ p(1 p) 2(2 -("+ 1))

p(1 p) log 2
1 f2-. _1 dt

2(2-.+ 1)) 3-,.+ ,

1 f22-" 1
--< p(1 p) log 2 -t.+l t2(t)

dr,

since 2 is decreasing. It now follows from the hypothesis on 2 that

oo 1

And from this it follows that E =1 o=. E has capacity 0. Now if g
E, lal< p, then )o=. E for some n, and hence

L(rk, a)
A(r )

< 2(2 -k)

for all k > n. Now fix k > n and take r, rk <_ r rk+ 1; then

L(r, t:t) L(rk, ) 2L(rk, o0
A(r) A(rk+ 1) A(r)

< 22(2 -k) 22(A(rk)) _< 22(A(r)).

In other words, if lal < p, E then there is an n such that

L(r, ) < 2 for
A(r)2(A(r))

In particular

li-’- L(r, )
< 2.

-.1 A(r)2(A(r))
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Remark. We note that the function

satisfies the hypotheses of Theorem 3, for > 1.

4. Next we show that if we allow a slightly larger exceptional set we get a
somewhat better result. We recall some notions from the theory of Hausdorff
measures. A positive increasing function, h, defined on (0, o) such that
limr_,oh(r) 0 is called a measure function. If C and r > 0, A(a, r) will
denote {z:lz a < r}. We have the set function

Mh(E) inf {Zh(rk): E
_
A(ak, rk)}.

The set function Mh is monotone and subadditive. For e > 0 there is the set
function

and finally,

Mh(E) inf {Eh(rk): E
_

wA(ak, rk), rk < e}

Ah(E) lim Mh(E).
e0

The set function Ah is actually a measure on the Borel sets, also Mh and Ah
have the same null sets. In [4-1, Frostman has shown that if the measure
function h satisfies

then for any Borel set E such that (E)= 0 we must have Ah(E 0. This
cannot be a consequence of an inequality involving and Ah because is
finite on bounded sets but Ah is in general infinite. We will show that under
some additional mild assumptions on h there is a general inequality between

Mh and ),. We will assume that the measure function h is continuous and that
h(r)/r2 is decreasi.ng, and that

We define

Lemma. (i) There is a constant C such that for every compact set K
_
U

we have Mh(K)< C(7(K)).
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(ii) If there is a constant Co such that

(*) h(t) < Co h(1/2te -")/h"))
then Mh(K) < Clh(y(K)) for some constant Cl, independent of K.

Remarks. It follows from the assumption that h(r)/r2 is decreasing that

h(cr) < c2h(r) for any c > 1.

It then follows that (*) holds any time that h(t)< ch(t) for some constant c.
This is the case for example if h(r) r, 0 < < 2. If we take

(h(r)= log withg>l

then (*) is still true but it is no longer true that/(r) < ch(r) for some constant
c. Condition (*) fails for

_1 log log g>l.h(r) log
r

Proof of lemma. The proof is a modification of the proof of Frostman [4]
and depends on his basic result that says that there is a constant a > 0,
independent of h, such that if K_ U is compact, there is a positive Borel
measure # on K such that #(A(z,r))<h(r) for all zC and r>0 and
#(K) > aMh(K). We calculate

;(z) o z a,() < o ao(r) + ,(K) o 2,

where R is chosen so that A(z, R) K, and (r) (A(z, r)). After integrating
by parts we find that

1 ff(z) (R) og + r gr + (K) log 2

1 f h(r)
N g(g) log + r dr + (K)[log R log e] + (K) log 2

1
(e) + .(K) log- + .(K) log 2,

for any e > 0. Now the measure v /(K) is a distribution of the unit mass
on K and

() N
(K) + log-e + log 2.



454 PATRICK AHERN

To prove (i) we just choose e =/-I(#(K)) and get

1
() _< C + log

_
I(#(K))’

this means that

so

1
Vr < C + log/_ x(#(K))’

#(K) <_ l(eCy(K)) < e2C/(y(K)).

Since #(K) >_ aMh(K), the proof of (i) is complete.
To prove (ii) we return to the inequality

h(e)
f(z) <- + log-e + log 2.

This time we let e h-t(#(K)). Now we check that (*) yields

/(h- t(#(K)))
#(K)

We conclude that

+ log
h-(#(K))

and hence

1 1
+ log 2 < log

h-t(#(K)/c)"

Vr< -log h- (#-(!),
1 c

Mh(K) <- p(K) <_- h((K)).
a a

COROLLARY.

and

Let (9

_
U be open. Then

(i) Mh((9) < ch(y((9)),

(ii) if (*) holds then Mh((9) < ch(((9)).

Proof. From (i) of the lemma we conclude that

sup {Mh(K)" K
_

C0, K is compact} _< c/(V((9)).

But Carleson has shown [3] that

Mh((9) <_ 24 sup {Mh(K)" K
_

(9, K compact}.

This proves (i) of the corollary; (ii) is proved in the same way.
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THEOREM 4. Suppose h is a measure function and 2 is a positive decreasing
function on (0, 1) such that

< o
(e-X,))

dt

Then there is a set E
_

U, such that Mh(E 0 and

C(r, )
lim <oe for all E.
,-1 A(r)2(A(r))

Proof Since Mh is subadditive it is enough to show that for each p,
0<p<l.

" 11 < p, lim A(r)2(A(r)= oe
r--*l

is a null set for Mh. Fix such a p and choose r. such that A(r.) 2-" and let

L(r., z) 2_.(_A(r_..))_60. " 11< p,
A(r.)

>
p(1 p)J"

Then (9. is an open set and if # is any distribution of the unit mass with
support in (9. we have from Theorem 1 (ii), 2(A(r.)) < V. and hence

2(A(r.)) < V..
From the corollary wc scc that

M((9.) < c/(cxp (-V.)) < c/(cxp (-2(A(r.)))).

Wc conclude as before that

c ;22-" f(e- "))
dt

Mh((9,+l) <
log 2 -t./l

and hence that EMh((9.)< . Since Mh is monotone and subadditive we see
that Mh(E) 0, where E (")k .k (9.. As before we conclude that if E,
I1 < p, then

li- L(r, ) 2

A(r)2(A(r)) p(1 p)"

Remark. Of course if condition (*) of the lemma holds, then the hypothe-
sis of Theorem 4 may be weakened to read

dt<.
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COROLLARY. Let Mg be the set function associated to the measure function
h(r) r, 0 < fl < 2. Suppose 2 is a positive decreasing function on (0, 1) such
that

< for some constant
e-C(t)

dt C.

Then there is a set E
_
U such that M,(E) 0 for all , 0 < <_ 2, and

li-- L(r, )
< if E.

(Note that (t) log log (l/t) will work.)

Proof Fix fl, 0 < fl < 2, and let A(t) c2(t)/fl. Then

le-dt<

and by Theorem 4 there is a set Ea with Ma(Ea) 0 such that

lim
L(r, a)

<c foraE.,_, A(r)A(A(r))

Of course this means that

li-’- L(r, a)
< forE.

r-. A(r)2(A(r))

Now choose ft, h 0 and define

k>n

If E then )k>_, Ea for some n. In particular Ea, and hence

L(r,
lim < o.
r-. A(r)2(A(r))

Fix fl, 0 < fl < 2; then fl > fl for some n. Now

E_ E,, so M(E)<_ M(E,).
k>n k>n

But clearly Ma(Ea) < Ma(Ea) 0 because fl > ilk; that is, Ma(E) O.
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