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1. Introduction

Let M be a connected smooth manifold and let # be a smooth codimen-
sion g foliation of M. Let T(M) be the tangent bundle of M and let
E = T(M) be the subbundle consisting of vectors tangent to the leaves of #.
Let Q = T(M)/E be the normal bundle of & and let n: T(M)— Q be the
natural projection. We shall denote by y(M), I'(E), and I'(Q) the spaces of
smooth sections of the vector bundles T(M), E, and Q respectively. Let

V(M) x T(Q)— T(Q)

be a connection on Q. Following [10] we say that V is an adapted connec-
tion if V4 Y = n([X, ¥]) for all X e I'(E) and all Y € I'(Q) where ¥ e (M) is
any vector field satisfying 7(¥) = Y. Such a connection is called basic in [3]
and is characterized by the condition that the parallel translation which it
induces along a curve lying in a leaf of &# coincides with the natural parallel
translation along the leaves. Let T: y(M) x y(M)— I'(Q) be the torsion of V,
that is, T(X, Y) = Vx(nY) — Vy(nX) — n([X, Y]). Then V is adapted if and
only if {X)T =0 for all X e I'(E) where i(X)T denotes the one-form on M
with values in Q given by (i(X)TXY) = T(X, Y) for Y € y(M). Let

R: (M) x y(M)— Homg (I'(Q), I'(Q))

be the curvature of V, that is, R(X, Y)Z =VyV,Z -V, VyZ — Vx ,Z for
X, Y € (M), Z € I'(Q). Following [10] we say that the adapted connection V
is basic if i X)R = O for all X e I'(E) where i(X)R denotes the one-form on M
with values in the bundle End (Q) given by (i(X)RXY)=R(X,Y) for
Y € y(M).

In Section 2 we study complete basic connections and prove:

THEOREM 1. Let M and N be connected manifolds and let f: M— N be a
submersion. Let V be a connection on Q = T(M)/ker (f,) and V a linear con-
nection on N such that f (V)= V. If V is complete, then f: M— N is a
locally trivial fiber bundle and V is also complete.
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We thank the referee for pointing out that Theorem 1 could also be
proved along lines similar to the proof of Theorem 1 in [8]. The context
there is Riemannian manifolds instead of affinely connected manifolds, but
the geometric content is similar.

We say that & has a locally reductive normal bundle (a transverse locally
reductive structure in the sense of [14]) if its normal bundle admits a basic
connection V satisfying VT = 0, VR = 0. In Section 3 we prove:

THEOREM 2. Let (M, &, V) be a foliated manifold with a complete locally
reductive normaa bundle. Let p: M — M be the universal cover of M. Then
there is a simply connected reductive homogeneous space G/H and a locally
trivial fiber bundle F: M — G/H whose fibers are the leaves of p~ '(¥). More-
over, the lift of V to M agrees with the basic connection obtained by pulling
back via F the canonical connection of the second kind on G/H.

When & is zero-dimensional we obtain from Theorem 2 the theorem of
Kobayashi [11] which states that a simply connected manifold with a com-
plete linear connection with parallel torsion and curvature is isomorphic to a
reductive homogeneous space with the canonical connection of the second
kind.

In Section 4 we apply Theorem 2 to the case where # is a Riemannian
foliation of M, that is, the normal bundle Q of # admits a smooth metric g
such that the natural parallel transport along a curve lying in a leaf of & is
an isometry. There is a unique torsion-free metric-preserving basic connec-
tion V on Q (e.g., see [16], [13]). We say that g is complete if V is complete
and we say that & is Riemannian locally symmetric if VR = 0. For each
x € M and each two-dimensional subspace 4 of Q,, the (transverse) sectional
curvature of 4 is defined by

K(p) = “g(R(Xp Xz)Xp X,)

wh~ere {X,, X,} is an orthonormal basis of 4 and X,, X, € T(M) satisfy
X, = X, n(Xz) =X,.

THEOREM 3. Let & be a complete Riemannian locally symmetric foliation of
a manifold M. If K > 0, then M/% is compact. If in addition & has a compact
leaf with finite fundamental group, then M is compact with finite fundamental
group.

In Section 5 we give examples of foliations with locally reductive normal
bundle. We will observe that a codimension one foliation of a compact mani-
fold defined by a nonsingular closed one-form has a complete locally
reductive normal bundle and so we will obtain from Theorem 2, Reeb’s
structure theorem [19] for such codimension one foliations. More generally,
any Lie foliation of a compact manifold has a complete locally reductive
normal bundle and we will obtain the structure theorem of Fedida [6]. Also
see Molino’s structure theory for Riemannian foliations [17].
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2. Complete basic connections

Let M be a smooth manifold and let # be a smooth codimension q foli-
ation of M.

DErFINITION [4]. We say that Y e I'(Q) is parallel along the leaves of & if
for each pair (U, f) where U is an open set in M and f: U— R? is a smooth
submersion constant along the leaves of & | U, we have f, (Y,) =f, (Y,) when-
ever f(p) = f(q) where f,: Q— T(RY is the map induced by f,: T(M)— T(RY).
We say that & is transversely parallelizable if there exist Y, ..., Y, € I'(Q)
which are parallel along the leaves of # and are linearly independent at each
point. We call such Yj, ..., Y, a transverse e-structure for #.

Given Y e I'(Q), one can always choose ¥ e y(M) such that n(¥) =Y.
Then Y is parallel along the leaves of & if and only if for any open set
UcM,[X, Y]eI(E|U) for all X € T'(E|U) [4].

DerFINITION. Let Y € I'(Q). We say Y is complete if there exists a com-
plete vector field ¥ e y(M) such that n(Y) = Y.

DEerFINITION. Let & be transversely parallelizable and let Y;,..., Y, €
I'(Q) be a transverse e-structure. We say this transverse e-structure is com-
plete if Y; is complete fori=1, ..., q.

Let V be an adapted connection on Q. Let p: F(Q)— M be the frame
bundle of Q, a principal GL(g, R)-bundle and let H = T(F(Q)) be the horizon-
tal distribution corresponding to V. Let {(U,, f;, gup)}ape 4 b€ an R?%-cocycle
defining #. Let F(RY) be the frame bundle of R% Then

{(P - 1(lja)$ faa > gaﬂ.)}a.ﬂ €ed

is an F(R9-cocycle on F(Q) and hence defines a codimension g(q + 1) foli-
ation &' of F(Q). Let E' = T(F(Q)) be the subbundle tangent to &'. Since V
is adapted, we have E' = H [15]. We may regard each u € F(Q) as the vector
space isomorphism u: R?— Q,,, which sends the standard basis {e,, ..., e;}
of R? to the frame u of Q,, . Let Q' = H/E', a g-plane bundle over F(Q).
Note that p: F(Q)— M induces p,: Q'— Q, an isomorphism on fibers. Let
heR% For ue F(Q), let B(h), € Q, be the unique element such that
Py (B(h),) = u(h). Then B(h) is a section of Q'. Note that Q' <= T(F(Q))/
E' = normal bundle of #'.

DerFINITION. We say V is complete if B(h) is complete for all h € R%

Let E} be the g x g matrix with a 1 in the h™ column and k™ row and 0
elsewhere and let o(E}) be the corresponding fundamental vector field on
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F(Q). Since the vector fields o(E}) project via the maps f,, to the fundamental
vector fields on F(R9), it follows that

n(o(E}) € D(T(FQ))E)

is parallel along the leaves of #'. Note that it is also complete.

Suppose now that V is basic. Let 0 be the R%valued one-form on F(Q)
defined by 6,Y) = u~(np,(Y)) for u € F(Q), Y € T(F(Q)). The torsion form
of V is the R4-valued two-form ® on F(Q) defined by

0,X,Y)=0d0), Xy, Yy) forue F(Q) and X, Y e T(F(Q)).

Since i(X)T =0 for all X e I'(E), it follows that i(X)® = 0 for all X € I'(E").
Let @ be the connection form of V and let Q be the curvature form. Since
i(X)R =0 for all X e I'(E), it follows that {(X)Q =0 for all X € I'(E"). For
i=1,...,q let E;= B(e;) and let Y, be a horizontal vector field on F(Q)
satisfying n(Y)) = E;. If X € I'(E"), then

0 = (AT = AX, ¥) = do(Xy, Yi) = doo(X, T)

= Xo(Y) — Yo(X) — o([X, Y]) = —o([X, Y]
and so [X, Y] is horizontal. Now

0 = (X)B)Y) = B(X, Y) = d(Xy, Yiy) = dO(X, Y)
= X6(Y) — Y,6(X) — 6(LX, Y]) = —6([X, Y])

and so [X, Y] e I'(E' ® V) where V = T(F(Q)) denotes the subbundle con-
sisting of vertical vectors. Hence [X, Y;] € I'(E') and so E,; is parallel along
the leaves of #'. Thus {E;, n(a(E}):i, h, k=1,...,q} is a transverse e-
structure for #'. If V is complete, then this transverse e-structure is complete.

We now prove Theorem 1. Let & be the foliation of M whose leaves are
the connected components of the level sets of the submersion f: M — N.
Since V is the pull-back via f of a connection on N, it follows that V is a
basic connection for #. Since V is complete, we have from the above dis-
cussion that {E;, n(o(Ef):i, h, k=1,...,q} is a complete transverse e-
structure for #'. For each i =1, ...q let Y; be a complete horizontal vector
field satisfying n(Y)) = E; and let ¢': R x F(Q)— F(Q) be the action of R on
F(Q) generated by Y;. Let X,,..., X, (r = q% be the vertical vector fields
o(EY) and for each j =1, ..., r let Yy/: R x F(Q)— F(Q) be the action of R on
F(Q) generated by X;.

Let uy € F(Q) and let L be the leaf of #' passing through u,. Define

®: R’ x R? x L' F(Q)
by

q)(sla cees Sy tl’ [RRX] tq, u)= '//sll ortro ¢tl1 errto ‘//;, ° ;Iq(u)‘
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Note that the leaves of #' are closed since &' is defined by the submersion

Ji: F(@Q)— F(N).

Hence by the proof of Proposition 4 in [16] (or the proof of Lemma 1 in
Section II. 2 of [17]), there is a neighborhood Q of 0 in R” x R? = R"*4 such
that ®: Q x L— U is a diffeomorphism where U is an open saturated set in
F(Q). We remark that this fact is closely related to a classical result of Ehres-
mann [5]. Note that ® maps the foliation of Q x L whose leaves are the sets
{point} x L to &' and induces on each leaf of Q x L a diffeomorphism onto
a leaf of #'. We may assume that Q is of the form Q; x Q, where Q, is a
neighborhood of 0 in R" and Q, is a neighborhood of 0 in R% Note that
p: F(Q)— M maps each leaf of #’ diffeomorphically onto a leaf of #. Let
L =p(L)e &#. Since X, ..., X, are vertical, ® induces a smooth map ¥: Q,
x L— M such that the diagram

[}
Q xQ, xL U
p2%Xp P
k4
Q, x L p(U)

commutes where p,: Q; x Q,— Q, is the projection onto the second factor.
Then p(U) is an open saturated set in M and ¥ is a local diffeomorphism
which maps the foliation of Q, x L whose leaves are the sets {point} x L to
& and induces on each leaf of Q, x L a diffcomorphism onto a leaf of #.
Let x, = p(u,) and consider the composition

i L 4 S/

Z L Q,xL p(U) N

Q,
where i, (y) = (), Xo). Since this composition is a local difftcomorphism we
may assume, by shrinking Q, if necessary, that it is a diffeomorphism. Thus

v
Q, xL

p(U)

is one-one and hence is a diffecomorphism. Let K be a compact neighborhood
of 0 in R? contained in Q,. Then W(K x L) is a closed saturated neighbor-
hood of L in M. Hence each point of M/# has a neighborhood base consist-
ing of closed sets. Since the points of M/# are closed sets, it follows that
M/ is Hausdorff. Thus M/# is a smooth Hausdorff manifold and the
natural projection M — M/# is a locally trivial fiber bundle.
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Now f induces a local diffeomorphism f: M/ — N such that the diagram

S
M-——— N

7

M/F

commutes. Also, V induces a complete linear connection ¥V on M/# such
that f ~%(V) = V. Since V is complete and f is a connection-preserving local
diffeomorphism, it follows that f is a covering and V is complete [9]. Hence f
is a locally trivial fiber bundle.

3. Locally reductive normal bundle

(3.1) PropPoSITION. Let (M, #, V) be a foliated manifold with a locally
reductive normal bundle. Let p: M— M be the universal cover of M. Then
there is a simply connected reductive homogeneous space G/H and a smooth
submersion F: M — G/H such that the leaves of p~'(¥) are the connected
components of the sets F~'{x}, x € G/H. Moreover, the lift of V to M agrees
with the basic connection obtained by pulling back via F the canonical connec-
tion of the second kind on G/H.

Proof. Let U be an open set in M such that the leaves of & | U are the
level sets of a smooth submersion f: U— V where V is an open subset of R4
Let X, Ye y(V). Let Y e I(Q|U) be the unique section of Q|U which is
f-related to Y and let X e x(U) be any vector field which is f-related to X.
Let Z e I'(E|U). Then

VZVX Y = R(Z, X)Y + vaz Y + V[Z,X] Y
=0

since Z, [Z, X] € I(E|U). Thus V5 Y is parallel along the leaves of #|U
and hence is f-related to a vector field Vz ¥ on V. If X, € y(U) is also f-
related to X, then V4, Y — V4, Y =V, _, Y =0 since X — X, e [(E|U) and
so V3 Y depends only on X and Y. Clearly V: y(V) x x(V)— x(V) defines a
linear connection on V such that f ~'(V) = V. Moreover, the torsion T and
curvature R of V satisfy VT = 0, VR = 0. Hence V is locally representable as
a reductive homogeneous spacse with the canonical connection of the second
kind [18]. Thus, by shrinking U if necessary, we may assume that V is an
open subset of a simply connected reductive homogeneous space G/H and
that V is the restriction of the canonical connection of the second kind.
Hence we can find an open cover {U,},. , of M such that for each a € A the
leaves of & | U, are the level sets of a smooth submersion f,: U,— V, where
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V, is an open subset of a simply connected reductive homogeneous space
(G/H), and f;'(V,))=V|U, where V, is the canonical connection of the
second kind on (G/H),. For each «, 8 € A such that U, n U; # 0 we have a
diffeomorphism

Gap: fo(Us N Ug)— f(U, 0 Up)
satisfying f, = g, o fs on U, n Uy. Since

[5' 0’ (V) = (gup o f) 'V =f' (V) =V =f71(Vp)

on U, n Uy it follows that g;'(V,) =V, on f(U, n Uy and so g,4 is an
affine transformation.

Let o € A. Since (G/H), is a reductive homogeneous space and V, is the
canonical connection of the second kind, we have that (G/H), is an analytic
manifold and V, is a complete analytic linear connection [12]. Without loss
of generality we may assume that U, n Uy is connected whenever it is non-
empty. Hence g,; can be uniquely extended to an affine isomorphism from
(G/H)4 to (G/H), [12]. If a, o’ € A are arbitrary, let ¢: [0, 1]— M be a con-
tinuous curve with ¢(0) € U,, o(1) € U,, and choose a covering of ¢ by a
finite sequence U,, U,,,..., U,, with U,  =U,, U, = U, such that U, n
Uy, #9fori=0,1,...,n— 1. Since (G/H),, and (G/H),,,, are affinely iso-
morphic for i =0, 1, ..., n — 1 it follows that (G/H), and (G/H), are afffinely
isomorphic. Hence there is a simply connected reductive homogeneous space
G/H such that & is defined by a G/H-cocycle {(U,, f,, gup)}apc 4 Such that
fe¥(V) =V|U, where V is the canonical connection of the second kind on
G/H and each g, is the restriction of an affine isomorphism of G/H. Thus #
is transversely homogeneous and so there is a smooth submersion F:
M — G/H constant along the leaves of p~ (%) [1]. Clearly F~*(V) = p~}(V).
This completes the proof of the proposition.

Theorem 2 now follows from Proposition (3.1) and Theorem 1.

(3.2) CorROLLARY. Let (M, &) be a foliated manifold and let V be a com-
plete basic connection on the normal bundle of . Let p: M— M be the uni-
versal cover of M.

(@ IfT=0,VR =0, there is a simply connected symmetric space G/H and
a locally trivial fiber bundle F: M— G/H whose fibers are the leaves of
p~ YF). Moreover, p~*(V) = F~Y(V) where V is the canonical connection on
G/H.

(b) If R=0, VT =0, there is a simply connected Lie group K and a
locally trivial fiber bundle F: M — K whose fibers are the leaves of p~\(F).

Moreover, p~* (V) = F~Y(V) where V is the linear connection on K whose
parallel transport is defined by the left translations of K.

(© IfT=0,R=0,then M is diffeomorphic to a product L x R? where L
is the universal cover of the leaves of F and p~ (%) is the product foliation.
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Moreover, p~X(V) is the basic connection on L x R? determined by the canon-
ical linear connection on R4

4. Riemannian locally symmetric foliations

We prove Theorem 3. Let (M, #, g) be a complete Riemannian locally
symmetric foliation. That is, # is a foliation of the manifold M and g is a
holonomy-invariant metric on the normal bundle Q of #. Moreover, the
unique basic connection V on Q with T = 0, Vg = 0 is complete and satisfies
VR = 0. We assume that the (transverse) sectional curvature K of (M, £, g)
is positive. Let p: M — M be the universal cover of M and let # = p~ ().
By Theorem 1, the space of leaves M/# is a smooth Hausdorff manifold and
the natural projection M — M/ is a locally trivial fiber bundle. The lift of g
to the normal bundle of # projects to a complete Riemannian metric on
NM/# with parallel curvature. Thus M/# is a complete Riemannian locally
symmetric space and hence, since it is simply connected, is Riemannian sym-
metric [12]. Since K > 0, it follows that M/# has positive sectional curva-
ture. Thus M/# is compact [21]. Now p: M— M induces a continuous
surjection M/# — M/% and so M/# is compact. If # has a compact leaf
with finite fundamental group, then the fibers of the bundle M — M/# are
compact. Hence M is compact and so M is compact with finite fundamental
group.

5. Applications and examples

(5.1) Application to Fedida’s structure theorem [6] for Lie foliations. Let g
be a finite dimensional real Lie algebra. Let M be a compact manifold and
suppose ® is a smooth g-valued one-form of rank g on M satisfying dw
+ 4w, ®] = 0. Then w defines a smooth codimension g foliation & on M
which is a Lie foliation modeled on ¢ [6]. Let X, ..., X, be a basis of 4.
Then w = Y., w; X; where w,, ..., ®, are smooth linearly independent one-
forms on M satisfying

do;= Y cjo;Aw, wherec) eR.
1<j<k=q

Let ¥,, ..., ¥, € x(M) be such that w(¥) = 6,,. Foreachi=1,..., q let

Y, = n(¥) € T(Q).
Define a connection V on Q by requiring VY, =0, i=1,...,q for all
X € x(M).

LeEMMA. V is adapted.
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Proof. Let X eT(E), Y eI(Q). Write Y =Y7_, f; Y, where the f; are
smooth functions on M. Then

ViY =V £iY)
= Z Vx /i Y
=Y (iVx Y+ (XNHY)
=X (XN,
=Y (X))
= (X, £ ¥]) - AIX, TD)
= [X, £ YD) - T fin(X, Y.

But fori,l=1,..., g we have
0= Y choAolX, )

1<j<ksgq

= do(X, T)
= Xo(¥) - Yio(X) - o((X, ¥])
= —of[X, 1)
and so [X, ¥] e I(E). Thus Vy Y = oY [X, ; %) = n((X, ¥, f; %).

LEMMA. VT =0.

Proof. Fori,lLr=1,..., q we have
—of[¥, %]) = Yo(¥) - T, o(¥) — 0¥, 7))
=:dah(ﬁ’ in
= Z C§kwj/\wk(7u 7')

1<j<k=<gq

= Z C;k(aj[ 51"' - 5jr 6kl)

1<j<k<gq
= —bl, e R
Thus [¥;, ¥1 =X + Y., b}, ¥ where X e I'(E) and so

q
(% 7D = L0 Y

Hence
q

T(?l’ 7') = VYIY;' - VYrYl - n([Yls 7r]) = - Zlb;r Y,

i=

which shows that T is parallel.
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Clearly, R = 0. In particular V is basic. Since M is compact, we have that
Y, ..., Yq are complete and so V is complete. Hence, by Corollary 3.2 (b), the
leaves of the lift of & to the universal cover M of M are the fibers of a
locally trivial fiber bundle M — K where K is a simply connected Lie group
which is Fedida’s result. Of course, K is the simply connected Lie group
whose Lie algebra is 4.

(5.2) Application to Reeb’s structure theorem [19] for codimension one foli-
ations defined by a closed one-form. Let M be a compact manifold and let
& be a codimension one foliation of M defined by a nonsingular one-form w
on M satisfying dw = 0. Then & is Riemannian and hence the canonical
torsion-free connection is curvature-free. Hence, by Corollary 3.2 (c), M is a
product L x R and p~!(#) is the product foliation which is Reeb’s result.

(5.3) Example. Let M be a manifold and let w be a smooth nonsingular
one-form on M satisfying dow = o Aw,, dw, =0. Then w defines a smooth
codimension one foliation # of M which is transversely affine and which can
be defined by an R-cocycle

{(Ua ’ f;z ’ gaﬁ)}a,p €A

where each g,5 is of the form g,4(t) = a5t + b,s [7], [20]. The canonical
linear connection on R induces a basic connection V on the normal bundle
of & satisfying T =0, R =0. If M is compact and V is complete, then F
has no exceptional minimal sets [2].

(5.4) Example. This example is a special case of (5.3). Let F: R?— R be
the smooth submersion given by F(x, y) = ¢’ sin 2nx. Then F defines a codi-
mension one foliation # of R?> which passes to a codimension one trans-
versely affine foliation & of the two-dimensional torus T?2. The basic
connection on the normal bundle of # induced by the canonical linear con-
nection on R is not complete. Observe that F: R2— R is not a locally trivial
fiber bundle.

(5.5) Example. Let

ab
K={<O 1).a,b,eR,a>0},

a_two-dimensional Lie group. Let M={(x, y, z7eR3:z>0} and let F:
M — K be the smooth submersion given by

z € sin 2mx
0 1 )
Then F defines a codimension two foliation &# of M. Define a left action of

Z x Z on M by ((n,m), (x,y,2)—(x+n,y+m,z). Then & passes to a
codimension two foliation # of (Z x Z)\M = T? x R* which can be defined

Fr =
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by a K-cocycle {(U,, f,, 9up)}apca Where each g,z is of the form g,4(k) =
a,gkaz' . The linear connection on K whose parallel transport is given by
left translations of K induces a basic connection V on the normal bundle of
F satisfying R=0, VT =0, T #0.

(5.6) Example. Let G/H be a reductive homogeneous space. That is, the
Lie algebra ¢ of G may be decomposed as g = # @ » where # is the Lie
algebra of 4 and  is an ad (H)-invariant subspace of 4. Let V be the canon-
ical connection of the second kind on G/H. Then V is a complete G-invariant
linear connection on G/H satisfying VT =0, VR =0. Let I be a discrete
subgroup of G. The foliation of G whose leaves are the left cosets gH of H
induces on M =I'\G a foliation & with a complete locally reductive normal
bundle.

(5.7) Example. Define a left action of n,(T?) = Z x Z on S? by

-1 0 o0
GLo-| 0 -1 0] eo00),
0 0 -1

cos 2nae  sin 2rat O
(0, 1)> |—sin 2ra  cos 2na 0 | € O(3)
0 0 1

where 0 < a < 1 is irrational. Let M = R? x (5,5 S? be the associated bundle
over T? with fiber S2. The foliation of R% x S? whose leaves are the sets
R? x {x}, x € S? induces on M a complete Riemannian locally symmetric
foliation # with (transverse) sectional curvature K = 1.
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