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NORMAL BUNDLE
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ROBERT A. BLUMENTHAL

1. Introduction

Let M be a connected smooth manifold and let - be a smooth codimen-
sion q foliation of M. Let T(M) be the tangent bundle of M and let
E T(M) be the subbundle consisting of vectors tangent to the leaves of -.
Let Q T(M)/E be the normal bundle of - and let g: T(M)-. Q be the
natural projection. We shall denote by ;t(M), F(E), and F(Q) the spaces of
smooth sections of the vector bundles T(M), E, and Q respectively. Let

V" ;((M) x F(Q)-- F(Q)

be a connection on Q. Following [10] we say that V is an adapted connec-
tion if Vx Y ([X, rj) for all X F(E) and all Y F(Q) where z(M) is
any vector field satisfying ( Y. Such a connection is called basic in [3]
and is characterized by the condition that the parallel translation which it
induces along a curve lying in a leaf of " coincides with the natural parallel
translation along the leaves. Let T: ;t(M) x g(M)-. F(Q) be the torsion of V,
that is, T(X, Y)= Vx(gY)- V(X)- ([X, Y]). Then V is adapted if and
only if i(X)T 0 for all X 6 F(E) where i(X)T denotes the one-form on M
with values in Q given by (i(X)T)(Y)= T(X, Y) for Y 6 z(M). Let

R" ;t(M) x z(M)-- Homa (F(Q), F(Q))

be the curvature of V, that is, R(X, Y)Z Vx Vr Z Vr Vx Z Vtx,r Z for
X, Y ;(M), Z F(Q). Following [10] we say that the adapted connection V
is basic if i(X)R 0 for all X F(E) where i(X)R denotes the one-form on M
with values in the bundle End (Q) given by (i(X)R)(Y)= R(X, Y) for
Y ;t(M).

In Section 2 we study complete basic connections and prove:

THEOREM 1. Let M and N be connected manifolds and let f: MN be a
submersion. Let V be a connection on Q T(M)/ker (f,) and V a linear con-
nection on N such that f-l()= V. If V is complete, then f: M--, N is a
locally trivial fiber bundle and is also complete.
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We thank the referee for pointing out that Theorem l could also be
proved along lines similar to the proof of Theorem 1 in [8]. The context
there is Riemannian manifolds instead of affinely connected manifolds, but
the geometric content is similar.
We say that " has a locally reductive normal bundle (a transverse locally

reductive structure in the sense of [14]) if its normal bundle admits a basic
connection V satisfying VT 0, VR 0. In Section 3 we prove"

THEOREM 2. Let (M, , V) be a foliated manifold with a complete locally
reductive normaa bundle. Let p" 1--, M be the universal cover of M. Then
there is a simply connected reductive homogeneous space G/H and a locally
trivial fiber bundle F II- G/H whose fibers are the leaves of p-1(). More-
over, the lift of V to (t agrees with the basic connection obtained by pulling
back via F the canonical connection of the second kind on G/H.

When " is zero-dimensional we obtain from Theorem 2 the theorem of
Kobayashi [11] which states that a simply connected manifold with a com-
plete linear connection with parallel torsion and curvature is isomorphic to a
reductive homogeneous space with the canonical connection of the second
kind.

In Section 4 we apply Theorem 2 to the case where is a Riemannian
foliation of M, that is, the normal bundle Q of " admits a smooth metric 0
such that the natural parallel transport along a curve lying in a leaf of - is
an isometry. There is a unique torsion-free metric-preserving basic connec-
tion V on Q (e.g., see [16], [13]). We say that 0 is complete if V is complete
and we say that - is Riemannian locally symmetric if VR 0. For each
x M and each two-dimensional subspace of Q,, the (transverse) sectional
curvature of is defined by

K() -o(R(I, ’2)Xx, X2)

where {Xa, X2} is an orthonormal basis of and .’, ’2 6 T,,(M) satisfy
n(.) X, () X.
THEOREM 3. Let be a complete Riemannian locally symmetric foliation of

a manifold M. If K > O, then M/ is compact. If in addition , has a compact
leaf with finite fundamental 9roup, then M is compact with finite fundamental
9roup.

In Section 5 we give examples of foliations with locally reductive normal
bundle. We will observe that a codimension one foliation of a compact mani-
fold defined by a nonsingular closed one-form has a complete locally
reductive normal bundle and so we will obtain from Theorem 2, Reeb’s
structure theorem [19] for such codimension one foliations. More generally,
any Lie foliation of a compact manifold has a complete locally reductive
normal bundle and we will obtain the structure theorem of Fedida [6]. Also
see Molino’s structure theory for Riemannian foliations [17].
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2. Complete basic connections

Let M be a smooth manifold and let " be a smooth codimension q foli-
ation of M.

DEFINITION [4]. We say that Y 6 F(Q) is parallel along the leaves of " if
for each pair (U, f) where U is an open set in M and f: U R is a smooth
submersion constant along the leaves of ’IU, we havef,(Y) =f,(Y) when-
ever f(p)=f(q) where f,: ( T(R) is the map induced byf,: T(M)--- T(R).
We say that - is transversely parallelizable if there exist Y, Y F(()
which are parallel along the leaves of - and are linearly independent at each
point. We call such Yx, Y a transverse e-structure for ’.

Given Y F(Q), one can always choose z(M) such that ;r( Y.
Then Y is parallel along the leaves of " if and only if for. any open set
U c M, IX, F(EI U) for all X F(EI U) [4].

DEFINITION. Let Y F(Q). We say Y is complete if there exists a com-
plete vector field i 6 x(M) such that u( Y.

DEFINITION. Let - be transversely parallelizable and let Y, Yq
F(Q) be a transverse e-structure, We say this transverse e-structure is com-
plete if Y is complete for 1, q.

Let V be an adapted connection on Q. Let p: F(Q)-. M be the frame
bundle of Q, a principal GL(q, R)-bundle and let H T(F(Q)) be the horizon-
tal distribution corresponding to V. Let {(U,f, gp)}ma be an Rq-cocycle
defining -. Let F(Rq) be the frame bundle of R. Then

{(p- g,,.)}=.,,,,
is an F(R)-cocycle on F(Q) and hence defines a codimension q(q + 1) foli-
ation " of F(). Let E’ T(F(OA) be the subbundle tangent to ". Since V
is adapted, we have E’ H [15J. We may regard each u F() as the vector
space isomorphism u: Rq---} ,(,) which sends the standard basis {ex,
of Rq to the frame u of Q,(.). Let ’= HIE’, a q-plane bundle over F(Q).
Note that p: F()---} M induces p,: ’---} , an isomorphism on fibers. Let
h R. For u F(), let B(h). O’. be the unique element such that
p,.(B(h).) u(h). Then B(h) is a section of Q’. Note that ’c T(F(OA)/
E’= normal bundle of -’.

DEFINITION. We say V is complete if B(h) is complete for all h 6 Rq.

Let E be the q x q matrix with a 1 in the hth column and kth row and 0
elsewhere and let t(Ek) be the corresponding fundamental vector field on
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F(Q). Since the vector fields a(E) project via the maps f,. to the fundamental
vector fields on F(Rq), it follows that

((E])) F(T(F(Q))/E’)

is parallel along the leaves of -’. Note that it is also complete.
Suppose now that V is basic. Let 0 be the Rq-valued one-form on F(Q)

defined by O,,(Y)= u-l(np,u(Y)) for u F(Q), Y T(F(Q)). The torsion form
of V is the R-valued two-form 19 on F(Q) defined by

(R).(X, Y)= (dO).(Xn, Yn) for u F(Q) and X, Y T(F(Q)).

Since i(X)T 0 for all X F(E); it follows that i(X)(R) 0 for all X F(E’).
Let 09 be the connection form of V and let f be the curvature form. Since
i(X)R 0 for all X F(E), it follows that i(X)f 0 for all X F(E’). For
i= 1, q let Ei B(e3 and let Y be a horizontal vector field on F(Q)
satisfying rt(Y3 E. If X e F(E’), then

0 (i(x)n)(Y,) n(x, Y,) &o(x,,, Y,,,) &o(x, Y,)

xo(Y) Y, o4x) o([x, Y3) o([x, Yj)

and so I-X, Y] is horizontal. Now

0 ((x)o)(Y,) o(x, Y,) to(x,,, Y,,,) ,to(x, Y,)

xo(Y,)- Y,O(X)- o([x, Y,])= -o([x, Y,])

and so I-X, Y] F(E’ V) where V c T(F(Q)) denotes the subbundle con-
sisting of vertical vectors. Hence I-X, Y-I F(E’) and so E is parallel along
the leaves of ". Thus {E, n(a(E)): i, h, k 1, q} is a transverse e-
structure for #-’. If V is complete, then this transverse e-structure is complete.
We now prove Theorem 1. Let #" be the foliation of M whose leaves are

the connected components of the level sets of the submersion f: M--, N.
Since V is the pull-back via f of a connection on N, it follows that V is a
basic connection for -. Since V is complete, we have from the above dis-
cussion that {E, r(a(E))" i, h, k 1, q} is a complete transverse e-
structure for ". For each i= 1,...q let Y be a complete horizontal vector
field satisfying n(Y) Ei and let : R x F(Q)--, F(Q) be the action of R on
F(Q) generated by Y. Let X1, X, (r q2) be the vertical vector fields
a(E) and for each j 1, r let kJ: R x F(Q)--, F(Q) be the action of R on
F(Q) generated by Xj.

Let Uo F(Q) and let E be the leaf of " passing through u0. Define

ap. R" x R x - F(Q)

by
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Note that the leaves of -’ are closed since " is defined by the submersion

f,: F(Q)-- F(N).

Hence by the proof of Proposition 4 in [16] (or the proof of Lemma 1 in
Section II. 2 of [17]), there is a neighborhood f of 0 in R" x Rq Rr/q such
that : f x/2 U is a diffeomorphism where U is an open saturated set in
F(Q). We remark that this fact is closely related to a classical result of Ehres-
mann [5]. Note that tb maps the foliation of f x whose leaves are the sets
{point} x to -’ and induces on each leaf of Q x a diffeomorphism onto
a leaf of -’. We may assume that f is of the form fl x f2 where fl is a
neighborhood of 0 in R and f2 is a neighborhood of 0 in R. Note that
p: F(Q) M maps each leaf of -’ diffeomorphically onto a leaf of -. Let
L p(L) ’. Since X, X, are vertical, induces a smooth map F" f2
x L--, M such that the diagram

1 X2XE
/

P2 X,p [
f2xL

commutes where P2" X 22 is the projection onto the second factor.
Then p(U) is an open saturated set in M and F is a local diffeomorphism
which maps the foliation of f2 x L whose leaves are the sets {point} x L to- and induces on each leaf of f2 x L a diffeomorphism onto a leaf of -.
Let Xo p(uo) and consider the composition

i,o f
’)2 f2 x L p(U) N

where i,,o(y (y, Xo). Since this composition is a local diffeomorphism we
may assume, by shrinking f2 if necessary, that it is a diffeomorphism. Thus

f2 x L p(U)

is one,one and hence is a diffeomorphism. Let K be a compact neighborhood
of 0 in R contained in f2. Then F(K x L) is a closed saturated neighbor-
hood of L in M. Hence each point of M/. has a neighborhood base consist-
ing of closed sets. Since the points of M/, are closed sets, it follows that
M/ is Hausdorff. Thus M/. is a smooth Hausdorff manifold and the
natural projection M M/. is a locally trivial fiber bundle.
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Nowf induces a local diffeomorphismf: M/" N such that the diagram
$

M ,N

M/

commutes. Also, V induces a complete linear connection on M/ such
that f-()= . Since is complete and f is a connection-preserving local
diffeomorphism, it follows thatf is a covering and ’ is complete [9]. Hence f
is a locally trivial fiber bundle.

3. Locally reductive normal bundle

(3.1) PROPOSITION. Let (M, ’, V) be a foliated manifold with a locally
reductive normal bundle. Let p" .1’I-- M be the universal cover of M. Then
there is a simply connected reductive homogeneous space G/H and a smooth
submersion F: ]QI-- G/H such that the leaves of p-(,) are the connected
components of the sets F-{x}, x G/H. Moreover, the lift of V to 1I a#rees
with the basic connection obtained by pullin# back via F the canonical connec-
tion of the second kind on G/H.

Proof. Let U be an open set in M such that the leaves of IU are the
level sets of a smooth submersion f: U V where V is an open subset of Rq.
Let R, $’ Z(V). Let Y F(QI U) be the unique section of Q U which is
f-related to and let X e ;t(U) be any vector field which is f-related to ’.
Let Z F(EI U). Then

Vz Vx Y R(Z, X)Y + Vx Vz Y + Vtz,x Y

(i(Z)R)(X)(Y) + Vx Vz Y + Vtz,x Y

=0

since Z, I-Z, X] e F(EI U). Thus Vx Y is parallel along the leaves of ’1U
and hence is f-related to a vector field ’ on V. If X1 ;t(U) is also f-
related to X, then Vx Y- VxIY Vx-xlY 0 since X- X1 e F(EI U) and
so ’ " depends only on " and ’. Clearly " ;t(V) x ;t(V)--- ;t(V) defines a
linear connection on V such that f-(’)= V. Moreover, the torsion ’ and
curvature/ of ’ satisfy ’7v 0, 9/ 0. Hence V is locally representable as
a reductive homogeneous spacse with the canonical connection of the second
kind [18]. Thus, by shrinking U if necessary, we may assume that V is an
open subset of a simply connected reductive homogeneous space G/H and
that V is the restriction of the canonical connection of the second kind.
Hence we can find an open cover {U}A of M such that for each 0 e A the
leaves of -IU are the level sets of a smooth submersion f" U V where
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V is an open subset of a simply connected reductive homogeneous space
(G/H) and f-l(,)= V U where ’ is the canonical connection of the
second kind on (G/H). For each a, fl A such that U c U# 4: we have a
diffeomorphism

a#" f(U U)--f(U U)
satisfyingf g of# on U r U. Sinze

f- ’(g’(’)) (g,# f#)-(’) =f- ’(’) V =f(’)
on U & U# it follows that gl()= on f(U U) and so g is an
affin transformation.

Let a A. Since (G/H) is a reduetive homogeneous space and ’ is the
canonical connection of the second kind, we have that (G/H) is an analytic
manifold and is a complete analytie linear connection [12J. Without loss
of generality we may assume that U ( U# is connected whenever it is non-
empty. Hence g can be uniquely extended to an affine isomorphism from
(G/H)# to (G/H) [12]. If a, a’ A are arbitrary, let tr" [0, 1]--- M be a con-
tinuous curve with a(0)e U, a(1) U,, and choose a covering of tr by a
finite sequence Uo, U,..., U with Uo U, U,, U, such that U, c

U,+ 4: for i= 0, 1, n- 1. Since (G/H), and (G/H),+x are affinely iso-
morphic for i= 0, 1, n- 1 it follows that (G/H) and (G/H), are afffinely
isomorphic. Hence there is a simply connected reductive homogeneous space
G/H such that " is defined by a G/H-cocycle {(U, f, ff)}.aa such that
f-(’) V U where ’ is the canonical connection of the second kind on
G/H and each ff# is the restriction of an affine isomorphism of G/H. Thus *-
is transversely homogeneous and so there is a smooth submersion F"
1--- G/H constant along the leaves of p-(.) [1]. Clearly F-t(gr) p-(V).
This completes the proof of the proposition.

Theorem 2 now follows from Proposition (3.1) and Theorem 1.

(3.2) COROLLARY. Let (M, :) be a foliated manifold and let V be a com-
plete basic connection on the normal bundle of .. Let p" ff,,l- M be the uni-
versal cover of M.

(a) If T O, VR O, there is a simply connected symmetric space G/H and
a locally trivial fiber bundle F: ff/l-- G/H whose fibers are the leaves of
p-l(:). Moreover, p-l(V)= F-I() where is the canonical connection on
G/H.

(b) If R 0, VT 0, there is a simply connected Lie group K and a
locally trivial fiber bundle F: lff,l--- K whose fibers are the leaves of p-().
Moreover, p-(V)= F-t() where (7 is the linear connection on K whose
parallel transport is defined by the left translations of K.

(c) If T O, R O, then lift is diffeomorphic to a product x Rq where ,
is the universal cover of the leaves of and p-(r)r is the product foliation.
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Moreover, p-x(V) is the basic connection on r_, x R determined by the canon-
ical linear connection on RL

4. Riemannian locally symmetric foliations

We prove Theorem 3. Let (M, -, 9) be a complete Riemannian locally
symmetric foliation. That is, " is a foliation of the manifold M and O is a
holonomy-invariant metric on the normal bundle Q of . Moreover, the
unique basic connection V on Q with T 0, V0 0 is complete and satisfies
VR 0. We assume that the (transverse) sectional curvature K of (M, -, 0)
is positive. Let p: M be the universal cover of M and let , p-().
By Theorem 1, the space of leaves /. is a smooth Hausdorff manifold and
the natural projection r___, r/. is a locally trivial fiber bundle. The lift of 0
to the normal bundle of projects to a complete Riemannian metric on
/ with parallel curvature. Thus .r/, is a complete Riemannian locally
symmetric space and hence, since it is simply connected, is Riemannian sym-
metric [12]. Since K > 0, it follows that / has positive sectional curva-
ture. Thus / is compact [21]. Now p:/---, M induces a continuous
surjection .r/___, M/." and so M/. is compact. If " has a compact leaf
with finite fundamental group, then the fibers of the bundle r/, are
compact. Hence is compact and so M is compact with finite fundamental
group.

5. Applications and examples

(5.1) Application to Fedida’s structure theorem [6] for Lie foliations. Let
be a finite dimensional real Lie algebra. Let M be a compact manifold and
suppose o9 is a smooth -valued one-form of rank q on M satisfying do9
+ 1/2[09, co] 0. Then co defines a smooth codimension q foliation " on M
which is a Lie foliation modeled on [6]. Let Xx, X be a basis of .
Then o = o,X, where (o, o are smooth linearly independent one-
forms on M satisfying

dogi cko A Ok where Ck R.
lj<k<q

Let , x(M) be such that mi()= 6ij. For each i= 1, q let

() F(Q).

Define a connection V on Q by requiring Vx Y O, i= 1, q for all
X ;t(M).

LEMMA. V is adapted.
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Proof Let XeF(E), YeF(Q). Write Y==I f/Y where the f are
smooth functions on M. Then

Vx g Vx( f Y)

=Vx
(Vx + (xD)

Z (x)
E ((x))

E ([x, ])-[x, ])
-(E ix. ])- E .([x. ]).

But for i, I, w have

o E (x, )
lj<I

(x, )
x()- (x)- ([x, ])
-([x, ])

and so IX, ] r(E). Thus V Y "(E IX, ])= ([X, E ]).

LEMMA. VT O.

Proof For i, l, r 1,..., q we have

o.(E.. g2) , ,,(,) , ,o.(.) o.(E ..
d,(, g)

Z (, g)
lj<kq

llj<klq

-i, .
hus [, gl x + 2% bl, where X s F(E)and so

q

Hence

T(, ,)= Vr,Y- Vr,Y- n([, ])= Z.bl, Y
i=1

which shows that T is parallel.
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Clearly, R 0. In particular V is basic. Since M is compact, we have that
1, are complete and so V is complete. Hence, by Corollary 3.2 (b), the
leaves of the lift of - to the universal cover /r of M are the fibers of a
locally trivial fiber bundle r K where K is a simply connected Lie group
which is Fedida’s result. Of course, K is the simply connected Lie group
whose Lie algebra is p.

(5.2) Application to Reeb’s structure theorem [19] for codimension one foli-
ations defined by a closed one-form. Let M be a compact manifold and let- be a codimension one foliation of M defined by a nonsingular one-form co
on M satisfying dco 0. Then - is Riemannian and hence the canonical
torsion-free connection is curvature-free. Hence, by Corollary 3.2 (c), r is a
product , x R and p-1(’) is the product foliation which is Reeb’s result.

(5.3) Example. Let M be a manifold and let co be a smooth nonsingular
one-form on M satisfying dco co Aco, dco 0. Then co defines a smooth
codimension one foliation - of M which is transversely affine and which can
be defined by an R-cocycle

where each g=a is of the form g=tj(t)= atjt + ba [7], [20]. The canonical
linear connection on R induces a basic connection V on the normal bundle
of - satisfying T 0, R 0. If M is Compact and V is complete, then -has no exceptional minimal sets [2].

(5.4) Example. This example is a special case of (5.3). Let F: R2--- R be
the smooth submersion given by F(x, y)= ey sin 2nx. Then F defines a codi-
mension one foliation of R2 which passes to a codimension one trans-
versely affine foliation of the two-dimensional torus Tz. The basic
connection on the normal bundle of " induced by the canonical linear con-
nection on R is not complete. Observe that F: RZ R is not a locally trivial
fiber bundle.

(5.5) Example. Let

K={(; bl)’a,b,R,a>O},
a two-dimensional Lie group. Let 2r ((x, y, 2) Ra’z > O) and let F"
r__, K be the smooth submersion given by

( e sin 2xx)F(x, y, z)
1

Then F defines a codimension two foliation 9 of/r. Define a left action of
Z x Z on /r by ((n, m), (x, y, z))(x + n, y + m, z). Then # passes to a
codimension two foliation of (Z x Z)\/r T2 x R + which can be defined
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by a K-cocycle {(U, f, ff)},A where each g is of the form ff(k)=
aka The linear connection on K whose parallel transport is given by
left translations of K induces a basic connection V on the normal bundle of- satisfying R 0, VT 0, T 0.

(5.6) Example. Let G/H be a reductive homogeneous space. That is, the
Lie algebra p of G may be decomposed as p where is the Lie
algebra of and is an ad (H)-invariant subspace of p. Let V be the canon-
ical connection of the second kind on G/H. Then V is a complete G-invariant
linear connection on G/H satisfying VT 0, VR 0. Let F be a discrete
subgroup of G. The foliation of G whose leaves are the left cosets 0H of H
induces on M F\G a foliation " with a complete locally reductive normal
bundle.

(5.7) Example. Define a left action of nl(T2) Z Z on S2 by

-1 0 0)(1, 0)--} 0 -1 0 0(3),
0 0 -1

cos 2no sin 2n 0)(0,1) -sin2na cos2na 0 O(3)
0 0 1

where 0 < a < 1 is irrational. Let M R2 x {z z} $2 be the associated bundle
over T2 with fiber S2. The foliation of R2x S2 whose leaves are the sets
R2x {x}, x S2 induces on M a complete Riemannian locally symmetric
foliation - with (transverse) sectional curvature K 1.
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