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REMARKS ON RANGES OF CHARGES ON a-FIELDS

BY

K. P. S. BHASKARA RAO

Summary

In this paper we present the following results about ranges of charges on a
a-field ’ of subsets of a set X.

(1) For any bounded charge the range is either a finite set or contains a
perfect set, contrary to an assertion made by Sobczyk and Hammer [8].

(2) If/t, #2,..., #, are strongly continuous bounded charges on then
the range of the vector measure (#t, #2, #.) is a convex set and need not
be closed.

(3) There is a positive bounded charge, on any infinite a-field, whose
range is neither Lebesgue measurable nor has the property of Baire.

1. Notation and definitions

Let stand for a a-field of subsets of a set X. A charge on ’ is a finitely
additive measure on . If # is a charge, #+, #-, and I1 stand for the
positive, negative and total variations of # respectively. For any bounded
charge #, # #

/ #- and I/1 =/+ //-. A charge # is said to be strongly
continuous if for any e > 0 there is a partition {At, A2, A} of X of sets
from ’ such that l# I(A) < e for all i. If A, n > 1, is a sequence of sets from

which are pairwise disjoint such that

#(B)= E#(BA.) for allB A.,B/
n>l n>l

then we say that # is countably additive across A., n > 1. If #t, #2, #n
are charges on 1, R(#t, #2 #.) denotes the range of the vector measure
(#t, #2 #,) namely {(#t(a), #2(a), #.(A)); a }.
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2. The range of a bounded charge

The following proposition characterises countable additivity
sequence.

across a

PROPOSITION. If # is a bounded charge on (X, ) and if A,, n > 1, is a
sequence of pairwise disjoint sets from 1 then the following are equivalent.

(i) # is countably additive across A,, n > 1.
(ii) #

+ is countably additive across A, n > 1, and #
across A, n >_ 1.

(iii) I1 is countably additive across A, n > 1.
(iv) I#I(U, h,)= ,x I#l(a.)
(v) I# I(J.m A.), m > 1, converges to zero.

is countably additive

The easy proof of this proposition is omitted. We now present the theorem
of this section.

THEOREM 1. If # is a bounded charge on (X, ) then R(#) is either finite or
contains a perfect set. More generally, either every point in R(#) is isolated, in
which case R(#) is finite or every neighborhood of every point in R(/) contains
a perfect set.

Proofi If R(#) is not finite then clearly R([#I) is not finite. So by a result
of Sobczyk and Hammer [8-1, there is a sequence A, n > 1, of pairwise dis-
joint sets from such that I/1 is countably additive across A, n > 1, and
I/I(A) > 0 for all n > 1. Let nl, n2, be an infinite sequence of indices
and B,, c A,, > 1, be a sequence of sets from such that #(B,) > 0 for all
or la(B,)< 0 for all i. Clearly such nl, n2, B1, B,2, exist. Now,

observe that # is countably additive across B, > 1. So,

is a perfect subset of R(#). The proof of the rest of the assertion of the
theorem easily follows.

Remark 1. Theorem 1 for positive charges was obtained by Sobczyk and
and Hammer [8] and they claim that this result cannot be extended to
general bounded charges. In fact, our Theorem 1 says that Theorem 3.4 of
[8] is not correct.

3. The range of n strongly continuous bounded charges

Sobzyk and Hammer [7] and Maharam [5] have proved that if # is a
strongly continuous positive charge on (X, ) then the range R(#) is a closed
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interval. This result can be extended to finitely many strongly continuous
bounded charges as follows.

THEOREM 2. If 1, ]2, n are strongly continuous bounded charges on
(X, ) then R(#I, #2,..., #.) is a convex set.

Proof. We shall imitate the proof of Halmos for the Liapounoff’s theorem
as presented by JCrsboe [4]. We shall only present a sketch of the proof.
We shall first prove the result for positive strongly continuous bounded

charges #1, #2, #,. The proof is by induction. For the case n 1 see [7]
or [5]. Let us assume the result for n k and prove the result for n k + 1.
To show that R(/I, #2, ...,/k/ 1) is convex it is clearly sufficient to show
that R(zl, "c 2 Zk+l) is convex where z #, + #,+1 + + k+l for
1 <i_< k + 1. To show that R(zl, z2, ZR+I) is convex it is sufficient to
show that for any A in a’ there exists a set B in , B c A, such that z(B)
1/2zi(A) for i= 1, 2, k + 1. Let C c A, C a’ be a set obtained by the
induction hypothesis such that z(C) 1/2z(A) for 1, 2, k.

For any set D in let {Da}ato,ll be an increasing family of sets in
such that zi(Da)= a.z(D) for i= 1, 2, k and 0 _< a <_ 1. By the induction
hypothesis such a family exists. If we denote by (Ca},to,ll and
{(A C)a},to,ll such families obtained for C and A C respectively then

"Ck+ l(ca t,J (a C)l_a)

is a continuous function of a, since

"CI+ l(Da Db) -- "k(Da Db) < a b x(D)

for any D in m’ and 0 _< a, b < 1. This function takes the value Zk+x(C) at
a 1 and the value Zk+ (A C) at a 0. Since 1/2Zk+ (A) lies between Zk+ (C)
and Zk/ I(A C), there is an ao such that

’lSk+ l(Cao k.) (a C)l-ao) "k+ 1(A)

and of course

zi(C,,o w (A C)1-ao) ao z(C) + (1 ao)zi(A C) c(A)
for < < k. Hence the result.

For general strongly continuous bounded charges/1, /2, #n the con-
vexity of R(#I,/2, ...,/) follows from the convexity of

R(,u,/,t, #, #, ,u+, ,u-).

In the above theorem we have proved only the convexity of the range

#2,’’’, n)

for strongly continuous charges. However, R(/I, #2, n) need not be
closed in general. If/ is a positive strongly continuous bounded charge then
R(/) is a closed interval. Beyond this case nothing definite can be said about
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the closedness of the range. First we give necessary and sufficient conditions
for R(#) to be closed for a strongly continuous bounded charge #.

THEOREM 3.

(a)
(b)
(c)
(d)

Consider the followin# conditions"

R(#) is closed;
Supa #(B) R(#);
Infa #(B) g(lo;
has a Hahn decomposition: i.e., there exists Ao in such that

+(Ao) o -(x Ao).

Then (a)=(b).c(c).c(d)for any bounded charge l. If # is further strongly
continuous then (d) = (a).

Proof. That (a)= (b)(c) is clear. To show (c)= (d) simply observe that if
Ao is a set in a’ such that #(Ao)= InfB #(B) then

#
/(Ao) 0 #-(X Ao).

The implication (d)=:, (c) follows from the observation that

Inf #(B)= -g-(X)= #(Ao).

To prove (d)=:, (a) for a strongly continuous bounded charge # observe that
R(#) is an interval because of Theorem 2 and is a closed interval with end
points #(Ao) and #(X Ao) because of (d).

Now we shall give an example of a strongly continuous bounded charge #
such that R(#) is not closed. By Theorem 3, it suffices to construct a strongly
continuous bounded charge # which does not admit a Hahn set. We shall
also obtain incidentally two positive strongly continuous charges v and z
such that R(v, ) is not closed.

Example 1. Let be any infinite a-field of subsets of a set X. Let v be
any strongly continuous probability charge on . Such a v exists by Corol-
lary 4.3 of [1]. By Theorem 2, we obtain a tree

{A61, 62 6,; 1, 62, n a finite sequence of O’s and l’s, n > 1}
having the following properties"

(i) A61, 62 6,, 0 c A6t. 62 6,, 0 for any n > 1 and any
sequence fit, di2, fin of O’s and l’s.

(ii) A61.62 6,0 wA6,62 6,.1=A61.62 6, for any n>l
finite sequence fit, 62, din of O’s and l’s.

(iii) Ao cAt =O and Ao AI=X.
(iv) 5(A61,62 6n) Xl(I)" X2(2)’ Xn((n) for any n _> 1 and

sequence 61, 62, din of O’s and l’s, where n(0)= 1In + 1
n/(n + 1) for n > 1.

finite

and any

any
and n(1)
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Let V [A : v(A)= 0}. Look at the quotient Boolean algebra ’/V.
For A in z’, I-A-I denotes the equivalence class in z’/V" containing A. Note
that {I-AI,, .-I; 6x, di2, , is a sequence of O’s and l’s and n > 1} is a
tree in /V’. As in the proof of (ii)=(iii) of Theorem 4.1 of [1-1, one can
construct a strongly continuous probability charge on /V such that

([AI, 2 n]) X(1 x)2(1 2)..., n(1 n)

for any finite sequence 6x, 62, t$. of O’s and l’s, and any n > 1. Now we
define on /by (A)= ([A]) for A in . is a strongly continuous prob-
ability charge on because for any finite sequence 61, 62, 6, of O’s and
l’s,

for every n > 1. Observe that v A z 0 because for any n > 1,

A, ,. .,o and Ao, .,,
where both the unions are taken over all fix, 62, 6. in {0, 1}, are disjoint
with union equal to X; the v-value of the first set and the z-value of the
second set are each equal to 1/(n + 2). z also has the property that if A
and v(A)= 0, then z(A)= 0.
Now define#onCby#=v-.SincevAz=0,#+ =vand#- =.Itis

clear that v and z are distinct and # is a strongly continuous bounded charge
on . We note that # does not admit a Hahn set. If # admits a Hahn set A
in , then #/(X A) v(X A) 0. So, z(X A) 0. Also
#-(A) "c(A)= 0. This implies that "c(X)= 0 which is a contradiction. Hence
R(#) is not a closed interval.

Also R(v, "c) is not a closed set because (1, 0) R(v, z) but belongs to its
closure.

4. Charges whose ranges are not Lebesgue measurable

One of the interesting problems about the range is to determine if the
range of every bounded charge is a Borel set. See [51 for some related
remarks. In this section we present an example of a charge # whose range is
not even Lebesgue measurable. In view of the Sobczyk-Hammer decomposi-
tion Theorem (see [7-1 and [1]) and since the range of any strongly contin-
uous bounded charge is an interval, it is only expected that our example is a
sum of two valued charges. We need some definitions.

DEFINITION. A sequence #., n > 1, of 0-1 valued charges is said to be a
discrete sequence if for every n there exists A in such that #.(A)= 1 and
#m(A) 0 if rn :/: n. A 0-1 valued charge #o is said to be an accumulation
point of a sequence #,, n > 1, of 0-1 valued charges if A 6 , #o(A)= 1
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implies that g.(A)= 1 for infinitely many indices n. These two notions are
just translations of the corresponding notions on the Stone space of .
THEOREM 4. Let g’ be a a-field of subsets of a set X and g., n > 0, be a

sequence of 0-1 valued charges on such that g., n > 1, is a discrete sequence
and go is an accumulation point of #., n > 1. Define # on sg by # .o
(1/2.+ t)g.. Then the range R(g) of g is neither Lebesgue measurable nor has
the property of Baire.

Proof Let Z {0, 1} and let v be the measure on the discrete a-field on
Z given by v({0})= v({1})= 1/2. Let C Z equipped with the product
a-field and the product probability measure z v x v x v x on this a-
field. If we define a function h on C by

h(xx, xz, )= (1/2")x.
n>l

for (xx, x2, ...) in C then h has many interesting properties. It is one-to-one
except for a countable set of points; it is a homeomorphism except for a
countable set of points; h(A) is a Borel subset of [0, 1] if and only if A is a
Borel subset of C; h preserves the measure z and the Lebesgue measure 2 on
[0, 1]; h(A) is Lebesgue measurable if and only if A is z-measurable; h(A) has
the property of Baire in [0, 1] if and only if A has the property of Baire in C.

In view of these properties of h, if we show that

F {(go(A), gx(A), ...); A zz’}

is neither z-measurable nor has the property of Baire in C, then it will follow
that R(g) is neither Lebesgue measurable nor has the property of Baire in
[0, 1]. This is because h(F)= R(g).

Let D= {(gl,(A),g2(A),...);A ,go(A)= 1}. If we show that D is
neither z-measurable nor has the property of Baire in ,C, then the desired
conclusion about F follows.

First we show that D is not z-measurable. Let us see that D is a tail set.
Since g., n > 1, is a discrete sequence, we can find a sequence A,, n > 1, of
pairwise disjoint sets in ’ such that g.(A.) 1 for every n > 1 and g.(Am)
0 for m 4: n. Since #o is an accumulation point of #., n > 1, #o is distinct
from all #., n > 1. One can assume without loss of generality, that #o(A.) 0
for every n > 1. This follows from the fact that if and q are two distinct 0-1
valued charges on , then there is a set A in such that
(A) 0 r/(X A). Let (xl, xz, ...) (#x(A), gz(A), D for some A in

with go(A)= 1. Let k be any positive integer and yt, y, y be any
finite sequence of O’s and l’s. Let

Ex={l<i<_k;y,=O} and E2={l<i<_k;y,=l).
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Let B (A- U,Et A,) u (U,E2 A3.
#(B) y for 1 < < k. Consequently,

It is obvious that #o(B)= 1 and

(Yl, Y2, Yk, Xk + 1, Xk + 2,’’ ") D.

Hence D is a tail set.
Suppose D is z-measurable. By the Kolmogorov’s zero-one law, z(D) 0 or

1. Let us look at the map $ from C to C defined by

P(xl, x2,...) (1 x1, 1 x2,...)

for (x l, x2,...) in C. We claim that $(D) cD=0 and $(D) wD=C.
Suppose that $(D) r D 4: 0. Let (xx, x2,...) ,(D) c D. Then we can find
two sets A and B in a’ such that #o(A) 1 #o(B) and

(X 1, X2,...) (ill(A), #2(A), ...),

(1 xi, 1 x2, ...) (#l(B), #2(B), ...).

Note that #o(A c B)= 1 and (#I(A t B), ,tt2(A t B), ...)= (0, 0, ...). This is
a contradiction to the fact that #o is an accumulation point of #,, n > 1.
Therefore $(D) c D 0. To show that $(O) D C, let

(X1, X2,...) C.

Let E (n >_ 1; x. 1} and A . A.. Then

(#I(A), #2(A), ...)= (Xl, X2,...).

If #o(A) 1, then (xl, x2,...) D. If #o(A) 0, then

(X l, X2,...) tp(D).

This shows that k(D) w D C. Note that , preserves the measure . Now, if
(D) 1, then z($(D))= 1 and consequently, (C)= 2 which is a contradic-
tion. If z(D)= 0 then (,(D))= 0 which is again a contradiction since
(C) 1. Thus D is not -measurable.
To prove that D does not have the property of Baire, one can repeat the

above argument and use Oxtoby’s category analogue of Kolmogorov’s 0ol
law and the Baire Category theorem [6].

Remark 2. On any infinite a-field it is always possible to obtain #., n >_ O,
satisfying the hypothesis of the above theorem.

Remark 3. If ., n > 0, is a sequence of 0-1 valued charges which con-
tains a subset {#.o, #.t, ...} such that {#.t, #.2, ...} is a discrete set and #o is
an accumulation point of {#t, #.x, ...} then it is possible to show that the
range of .o (1/2")#. is not Borel, because one can easily see that the range
of ,i_>o (1/2")#., is a continuous image of

R ((1/2")#.)..20
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But not every sequence #,, n > 0, of 0-1 valued charges need contain a
subset with this property. In [2], van Douwen has constructed countable
Hausdorff extremally disconnected "Nodec’ spaces (i.e., every nowhere dense
subset is closed). In a personal communication van Douwen informs me that
such spaces can be constructed in fiN. If we write such a space as #n, n > 0,
then it would be interesting to know whether the range of no(1/2")#, is
Borel or not.
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