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HANKEL OPERATORS AND BERGMAN PROJECTIONS
ON HARDY SPACES

WILLIAM S. COHN

1. Introduction and statement of results

Let D denote the unit disk in the complex plane and T its boundary, the unit circle.
For 0 < p < o, HP will be the usual Hardy space of functions holomorphic on the
unit disk; i.e., a holomorphic function f belongs to HP if its non-tangential maximal
function belongs to LP(T). (See the definition given by equation (7) below.) Let P+
denote the "Szeg6 projection" given by

P/g(z) Z Id01,

for a function g L(T). If u is an L function on T and f is a function in H then
the Toeplitz operator with symbol u is defined by the formula Tu f(z) P+uf(z).
The Hankel operator H, with symbol u may be defined to be the boundary distribution
of the function

u(z) f (z) P+uf(z).

In particular, if u L(T) and f H then H.f is the function defined by the
formula

Huf(eiO) u(eiO)f (eiO) p+uf(ei).
It is well known that the operator T extends to be a bounded operator on Hp for
< p < cx to Hp if and only if u is a bounded function. On the other hand, if

u 6 Lg(T) then the Hankel operator H extends to be a bounded operator on HP for
< p < cx to Lp if and only if u g + 2 where g H2 and g2 BMOA. See

[CRW] or [P].
Here, BMOA is the space of holomorphic functions of bounded mean oscillation

on the unit disk. See [G] for the definition ofBMOA and its various characterizations
in terms of Carleson measures, as well as (1) and (4) below.

In [C2], some operators on Hardy spaces which are analogues of the operator T,
were obtained by using the projections associated with the weighted Bergman spaces
L2a(dm,). For s > 0 let z rei be a point in the unit disk and let dm, be the
measure dm,(z) 2--/(1 r2)S-ld Adz. LP(dms) will denote the Lebesgue space
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of measurable functions defined on the unit disk integrable with respect to dm. and
La (dm,) will denote the Bergman space of holomorphic functions in Le (dm.). The
orthogonal projection of L:(dm) to Lea(dm.) is given by the formula

Notice that if F is continuous on the closed disk then

lim p F(z) P+F(z),
s---- O

so the Szeg6 projection P+ can be considered as the limiting case of the projections

If u is any function in L(dm.) and if f is a function in H, then the operator

T f is defined to be

Tf(z) u()f()
(1 -I’1=)s-

(1 z)TM d." A d’.

The following result was obtained in [C2].

THEOREM A. Let s > O, < p < oe, and suppose u h + G# is in L (dm.)
where h is harmonic and Glz is the Green potential ofa non-negative measure d#.
Then Ti, is a bounded operatorfrom He to He ifand only ifh is a bounded harmonic
function and (1 -Izl)dtz(z) is a Carleson measure.

Here, the Green potential refers to the Green’s function of the unit disk; see [C2].
In this paper we study operators on He which may be regarded as analogues of the

Hankel operator Hu obtained by using the weighted Bergman projections p, s > 0,
in place of P+. Thus, for s > 0, z 6 D, and f 6 Ha define

Hf(z) u(z)f (z) P(uf)(z).

For a function v defined on D and 0 < r < 1, let 1) be the function defined on
T given by Vr(ei) v(rei). This definition will give a well defined measurable
function in each context we apply it. We shall say that H/ f has boundary distribution
in LP(T) provided that

lim(H2f)r
r-,

exists in Le(T).
The operator H/ is interpreted as taking a function f to the boundary distribution

of H[,f
Our main result is the following theorem.
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THEOREM 1. Let < p < cx and s > O. Suppose u where cp is in H
Then HI, extends to a bounded operatorfrom Hp to LP(T) i(and only ifcp BMOA.

Note that if s > 0 and BMOA then the operator H is bounded from H to L
if 6 BMOA but this is not true in general for the operator H$.

The dual of this result is also of interest. Suppose s > 0. Let C,f the operator
defined by

fr f(z)
C,f(’) - (1 ’)

If f is holomorphic with power series representation f(z) -,,o f(n)z" then we
expect C,f to behave like R f, the fractional derivative of f of order s given by the
formula

RS f(z) (n + 1Yf(n)z".
n=O

For a function let Me denote the multiplication operator Mf cpf. Finally,
let HP_, (resp. BMOA_,) be the space of holomorphic functions f whose fractional
integral of order s, I f, is in H’ (resp. BMOA_.,). Here, I is the inverse of the
fractional derivative operator R and is given by the formula

’/0’(l’f(z)
F(s)

log f(tz)dt.

In the rest of the paper we will not distinguish between a bounded operator and an
operator which extends to be a bounded operator.

THEOREM 2. Let < p < cx and s > O. Suppose cp H Then thefollowing
conditions are equivalent.

1. The operator [Me, C, is bounded.from LP to HP_,.
2. The operator [Mo, C,] is boundedfrom L to BMOA_,.
3. Thefunction cp belongs to BMOA.

For a smooth function g on T, the commutator [M0, C,] is given by the formula

[Me, C,]g(’) (’)C,g(’) C,(g)(’),

for I1 < 1.
Results by other authors concerning commutators of the form [Me, K] where K

is a singular integral operator or a Riesz potential are discussed in [T], chapter XVI.
The methods employed by these authors do not seem to yield Theorem 2.

If g Hp then [Me, C]g(’) ’(’)’g(’). Thus Theorem 2 implies that if
< p < o and g Hp and BMOA, then a function of the form g’ is the



496 WILLIAM S. COHN

derivative of an Hp function. In fact this is true for all 0 < p < oz. (See [C4] for a
converse to this fact.) This result was proved in [C2] and a stronger result is used in the
proof of Theorem and 2; see Theorem B below. It can be shown that if 4 BMOA
then the operator [M, C,] is bounded from Ht’ to H_P. for all 0 < p < oz whenever
s is a positive integer. We do not know, however, if the condition q BMOA implies
that the operator [M, C,] is bounded from HP to H, for 0 < p < in the general
case of a non-integral s.

Since the commutator IMp, C] is essentially multiplication by 4’, it is natural to
ask about the holomorphic multipliers of Hi’ into H_P,. We have the following result.

THEOREM 3. Let 0 < p < oz and suppose s > O. Let be holomorphic on
the unit disk. Then M, defines a bounded operatorfrom HP to HP_, if and only if

BMOA_,.

Our proof of Theorem leads to an interesting formula for the difference operator

T+f T f. In what follows we will let T be the usual Toeplitz operator, T,,, and

H be the usual Hankel operator, Hu.

THEOREM 4. Let H . Suppose < p < oz. Then T T is a bounded

operatorfrom Hp to Hp ifand only ifd BMOA.

In [C2] it was shown that the Toeplitz operator T is bounded from He to Hp

whenever b 6 H and (s + l)p > 0. It follows that there is no extension of
Theorem 4 to Hardy spaces Hp for p < since in general, the operator T is not

bounded from H to H for 4 H; see [S]. On the other hand, given the results in
[C2], it is natural to expect there to be some type of theorem for Hp when 0 < p < 1.
In this direction we have the following result.

THEOREM 5. Let s > 0 and suppose (s + 1)p > O. Suppose dp is holomorphic
in D and cp L(dm.). Then T+ T is a bounded operatorfrom Hp to Hp gf

and only if[cp’(’)[ O((1 [’[)-).

We also consider the operator H/ for some symbols u that are not necessarily
antiholomorphic. Recall that G# denotes the Green potential (with respect to the
Green’s function of the unit disk) of the measure #.

THEOREM 6. Let s > 0 and < p < oz. Suppose u h + G# L (dms)
where h is a harmonicfunction and lz is a non-negative measure on D. Then H is
a bounded operatorfrom Hp to Lp ifand only if h g + q where q BMOA and
(1 -[zl)dlz(z) is a Carleson measure.
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2. Background and preparation for proofs of Theorem 1-6

We will adopt the following conventions. The notation A B means that there
is a constant C such that C-B < AC < CB. The letter C will be used to denote
various numerical constants that change in value depending on the context.

It will be convenient to characterize the functions in HP Hp BMOA andBMOA_s
in terms of tent spaces.

For r/ T, let F (r/) be the approach region

contained in D. If u is a function defined on D then we say u T if

Ilul, p fr ( fr lu(z)l d
/ dz )

p/z

r" <o) (1- Izl)2
Id01 < .

If I is a subarc of the circle T then let Ill equal the length of I and let T(1) be the
"tent" over I; see [CMS]. If u is a function defined on D then we say u T if

2=sup (1 fr ,u(z),2dAdz)Ilullr
) l-lzl

< . (1)

Thus u e T if and only if -i lu 12 a.v4z is a Carleson measure. We will need the factI-Izl
p,that if < p < cx, then the dual space of Tp is T2 with the pairing

(u, v) ]o u()v(’) I------- (2)

and the same pairing gives the duality between the spaces T and T. Sec [CMS].
Recall if 0 < p < o then a necessary and sufficient condition for a function f

holomorphic in the disk to belong to the Hardy space HP is that for each k > 0 the
function (l -Izl) Df belongs to the tent space T; see [AB]. Let p be the function
given by p(z) (1 Iz12). Then for a fixed k we have the equivalence of norms

Ilflln,, lipRkllT#’. (3)

Similarly, a necessary and sufficient condition that a holomorphic function g belong
to H_P, is that p’g T and we have equivalence of norms

Ilgllw,_’.,." IIP’glIT’. (4)

The spaces BMOA and BMOA_. may be be characterized in terms of the spaces
T. We have the following equivalences of norms (see [J])"

IlgllMoa lipg’glly (5)
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and

g BMOA_, "-- IIpSg T.
Let Nu(z) be the non-tangential maximal function

(6)

Nu(o) sup lu()l. (7)

If u is a continuous function on D then we say u Tp if

fIlull (Nu(o))PldoI < cx.

We will need the following result from [C2].

THEOREM B. Let 0 < p < o and suppose u TP. Suppose that h > 0
is a function defined on D and that h Tx. Then hu T and IlhullT[ <_
C (p)Ilh T Ilu T"

We will also need some recent results of Ahem, Cascante and Ortega [ACO]
concerning invariant Poisson integrals and tent spaces. Although the main point of
[ACO] was to get results for functions defined on the unit ball in C" where n > 1,
it is the results for the case n that we need here. If 4- c 4-/ > 0 and neither

4- c or 4-/ is a negative integer then define

P.(, z) c,,,

r(+)rt+,) For g L (T) definewhere c., rl++,)

e.g() g(z)e.(, z)ldzl.

Let Df()= (’)and bf(’)= (’).
The following result is proved in [ACO].

THEOREM C. Let < p < (x) and suppose g L I(T). Then there are constants

C(p, , fl) and C(c, fl) such that thefollowing inequalities hold.
1. IlplDeo,gl + PlbP.,glllr[ <_ C(p, a,/)llgllg,,.
2. IIe.,gllTg <--C(p,c,/)llgll,’.
3. IIPlDP.gl / PlP.,glllr <- C(, )llgllMo.

Finally, we will need the following result proved in [C l] in a more general form.
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THEOREM D.
form

Let s > 0 and 0 < p < cx. Suppose K (z, ’) is a kernel of the

K(z, ) q(z, )
(1 z),+2

where q is a Ca function defined on C2. Then the operator defined by

Ku(z) u()K(z, )dm()

maps Tp to itself

3. Proofs of Theorems 1-6

We start by proving Theorems and 2. Our first goal is to establish the duality
between the operators H and [Me, C.]. This is done in Lemmas 5 and 6 below.
Lemmas 1-4 will give us some necessary machinery.

The following lemma follows easily from Stokes’ theorem and the fact that

We will henceforth use the term "smooth" to mean infinitely differentiable.

LEMMA 1. Suppose that f is holomorphic in a neighborhood of the closed disk
and that H Then:

1. P,f(z) extends to be Ca in the closed disk.
2. limr__, IIe,f e,rfllH --O.

Proof. Let D’ {’" 7 < ffl < 1}. To see the first statement, we just need to
notice that for any k > 0, Stokes’ theorem gives

P.f(z) ( f(
(1 Ig 12)k+s- d A d"

(l -z).+ + E(z)

where E(z) is a sum of terms which are all smooth on the closure of D’. The second
statement is proved in a similar manner.

Lemma 2 also follows from Stokes’ theorem.

LEMMA 2. Let qb H and let f be a function holomorphic in a neighborhood
ofthe closed disk. Then

Hf(z) Df(g)
(z) ()

(, IC 12) a/x a
( gz)+ g + f(O)(q(z) (0)).
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Let

Jf(z) Hf(z) f(0)(q(z) q(0)).

It follows that Jf Hf if f (0) 0.
For two functions f and g defined on T let < f, g > be the usual pairing

(f, g) f(z),(z) Idzl.

LEMMA 3. Suppose E H Let f be holomorphic in a neighborhood of the
closed disk and suppose g is a smoothfunction on T. Then

4n.2 Df()[M, Cs]g(()(l -l(12) d( A_ d(

Proof Suppose that f is holomorphic on a neighborhood of the closed disk and
that g is a smooth function on T. Then

(Jf, g}
4zr2i

z) $) ), d/x d
(l z) TM

(l --I1 (z)ldzl. (8)

Since f and g are smooth functions and

(1 -1(12)
(1 z) +, <C

the hypothesis 4 E H shows that the absolute value of the integrand in (8) is
integrable with respect to d/ d( Idzl. We may interchange the order of integration
to get the desired formula.

LEMMA 4. Let s > 0, q 6 H , and < p < o. Suppose J is boundedfrom
HP to LP. Then

_
BMOA.

Proof Let f be holomorphic in a neighborhood of the closed disk and suppose
f(0) 0. Then Jf H. Set g Hf. Let P_ I P+ where I is the identity.
Observe that

gr -"rfr --(esf)r
and P_(Pbf)r 0. It follows that

P_ (g) lim P_ (gr)
r--+l

lim P_ (r fr)
r--+!
P_ (f).
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Thus

IIP-(f)IIL,’- IIP-(g)IIL,, _< CIIgllL,, _< CIIfll.,,.

Thus q is the antiholomorphic symbol of a bounded Hankel operator and therefore
dp BMOA. This completes the proof. El

In the sequel, if < p < cx then p’ will denote the conjugate index" p’ if

<p <andp’=oifp= 1.

LEMMA 5. Let qb H and s > O. Suppose [Ms, C.] is boundedfrom LP’ to
np’ for some p’ such that < p’ < x or boundedfrom L to BMOA_. if p’ o.
Then:

1. J is boundedfrom Hp to LP.
2. qb BMOA.

Proof Suppose < p’ < x. Let f be holomorphic on a neighborhood of the
closed disk and suppose g is a smooth function on T. If [Ms, C. is a bounded operator
from LP’ to H_PI then it follows from Lemma 3 and the tent space characterizations

of H’ and H_PI given by (3) and (4) and the duality between T2p and T2p’ given by (2)
that

I(Jf, g)l _< CIIpDflIT’IIP’*[M, C.,]gllr,’ <_ CIIflln,’llgllL,,’.

It therefore follows from Lemma 3 that J is bounded from H’ to LP. If [Ms, C.,]
is bounded from L to BMOA_. then the same argument shows that J is bounded

from H to L . This proves the first assertion of Lemma 5.
For < p’ < o, the second assertion follows from Lemma 4. For the remaining

case where p’ x, if [Ms, C.] is a bounded operator from L to BMOA_. then
the constant function L, and therefore CL [Ms, CL]I 6 BMOA_.
Since 6 BMOA_., it follows that C.qb BMOA_.. We show that this implies that

BMOA. From Lemma 2.1 in [AC] we have the formula

=s f01 (1 -t)s-I

( (1 t()TM
dt.

Therefore if I(I < then

1.-() --s (1 -t C.qb(t()dt.

Since C.qb BMOA_., it follows that 1-3 C.qb BMOA, where

I’C’dP(()
F(s)

log
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The estimate

(l-t)’-I- log <C(l-t)

for 1/2 < < shows that

F(s)
IS f0’tp(() CCtP(() < C (1 t)’lC(t()Idt + CIIIIH,,

S

where C is a constant independent of (. Since CP BMOA_s, it follows that
16,4(t)1 _< (1 tl’l) -’. Therefore r’--)IsC. is a bounded function and it
follows that BMOA. This proves the second assertion if p’ x. I"1

LEMMA 6. Let H , s > O, and < p < oo. Suppose H is boundedfrom
Hp to LP. Then"

1. M, C,] is boundedfrom LP’ to
2. BMOA.

Proof. First, since H q q(O), it follows from the hypothesis that 6 Hp.

Let g be smooth on T. It can be verified that

I[Mo, Cs]g(0)l _< clll[,,llgl],,,. (9)

Let h be the holomorphic function on D given by

h(’) ’-I ([Me, C,]g(’) -[Me, C,]g(0)).

Then the tent space characterization of H_PI and (9) show that

,’ / IIll,,llgll,,’II[M C.]gllH,,_ll llhllH,_.
Suppose < p < oo. It is enough to show that

h n’_’j. -< C n g ,,’

for a constant C independent of g. The characterization of H__PI in terms of tent space
and the duality between T2p and T2

p’ shows that there is a bounded function F with
compact support in D and F T" --< C such that

fo F(’)h(’)(l -l’12)’- d/ d’.

We claim that h e L (dm.+). To see this let " rr/where r/ T. Since g is
smooth on T, we may write

Ih(’)l _< IC(g g(0))()l + Ig(r/)C.b(’)l.
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It is easy to see that

IC.cP(g g(r/))(’) < C(I r)-’llllH,.

Also, the arguments used in Lemma 2.1 and 2.2 of [AC] show that

IC.(’)1 C(- r)-SN(r/).

It follows that h L(dm.+) and we may use the weighted Bergman projection
p+ to write

s -I- fo (1 --Ir/12)
h(’)

2zri
h(r/)

(l -O)s+2 d/x dr/.

We may use this formula to express

F()h()(1 -1’12)’- d/ d"

as an iterated integral and since F has compact support we may interchange to order
of integration to get

Ilhll"’-’i fD G(r/)h(r/)(l -It/12) dO m dr/

where

s + f ( I" 12)-G(r/) 2rci F(()
(1 q),+2 d A d(.

It follows from Theorem D that the T2p norm of the function pG is less than C
Therefore by (3), G (r/) Df (r/) where f is holomorphic on the closed disk and

f ,’ _< C. Thus

Df(r/)h(r/)(l Ir/12) dO m dr/

(Jf, g) [M4,, C,]g(0) fD D.f(r/)(l -Ir/12) dO m dr/

The estimate IDf(rei)(l r)l _< CNf(ei) shows that the second term in the sum
on the right hand side above is less than a constant times IIlln,,llgllH,,’ IIfIIH,,. Since

J is bounded from Ht’ to LP, the same estimate holds for the first term and it follows

that [M, C. is a bounded operator from LP’ to H_PI. The same argument shows that
if H is bounded from H to L then [M, C.] is bounded from L to BMOA_..
This proves the first assertion. The second assertion follows from the first assertion
and the second assertion of Lemma 5.
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With Lemmas 5 and 6 established, to finish the proof of Theorems and 2 it is
enough to show that if q 6 BMOA then H is a bounded operator. By Lemma 1, it

is enough to prove that there is a constant C such that if f and are holomorphic in
a neighborhood of the closed disk and g is a smooth function on T then the apriori
estimate

I(Hf, g)l _< CIIfll,’llgll,,’ llqbllnMoA

is verified. Here, C must be independent of f, , and g. We may also assume
f (0) 0 to simplify matters when we apply Stokes’ theorem.
Lemma 7 below is based on the fact that is a fundamental solution to the

equation/)u 2zr iSz.

LEMMA 7. Suppose s > 0, and f and qb are holomorphic on a neighborhood of
the closed disk. Thenfor Izl _< 1,

Hf(z) 27ri
f(()q(()

(z " z

Proof. Suppose q is smooth on the closed disk. Then for Izl < 1,

-z ( -z +fD q(()/(l- 1(12) dmd(
-z -z

z ( -z
2zriP, q(z).

Applying this formula with q f yields the result for Izl < 1. The full
statement follows from the dominated convergence theorem and the fact that, by
Lemma 1, Hf is smooth on the closed disk.
We now complete the proof of Theorem 1.
Suppose f and q are holomorphic on a neighborhood of the closed disk, f(0) 0,

and g is smooth on T. Let h(z) zg(z). Apply Lemma 7 to get

C fo f(()-v(f)p_,oh()d A

d / de g(z)ldzl
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Apply Stokes’ theorem to get

(Hf, g) C (Df()’()P_,oh()

+ .f()-7()Dp_,oh())(1 1.12) d A= d"

It follows that

I(nf, g)l < C(IIPDfIIT’IlPq)’P,-.ohlIrf 4-IlPq)’fllr’llPbe.-l.ohllTf).
The desired apriori estimates follow now from Theorems B and C. I--I

Proofof Theorem 3. Let 0 < p < cx. If 6 BMOA_, then p’ 6 T2 and it
follows from Theorem B that

IIgllH’_’, IIP’gllr" --< CIIP’llTllgll,,’.

Conversely, if IIgllH,_’, < CIIglln,’ for all g in Hp then it follows that

d / dz
gl2

)(1 -Izl)2 Idol < C f Ig(o)l p Idol

for all g 6 HP. Let 2 q" Since every G Hq is of the form G Ig2 where I is
an inner function and g 6 HP, it follows that

f( fr p2S-ll12lG]
(0)

d A dz q

l-lzl
< C f IG(r/)l q Idrl,

for all G Hq. It follows from [C3] that -ip2s-I 112d/ dz is a Carleson measure
and therefore (I) 6 BMOA_.. This completes the proof.

Lemma 7 leads to a useful formula for the difference .T+f T.f. In what

follows we will let T be the usual Toeplitz operator T, and H be the usual Hankel
operator H,.

LEMMA 8. Let s > O. Suppose f is holomorphic in a neighborhood of the
closed disk. Assume that is holomorphic on D and that 49 H if s O, and that
qb’ L (dm,) ifs > O. Then

T2+1 f (z) Tf(z)
(s + 1)27ri z
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Proof. First assume that q is holomorphic on a neighborhood of the closed disk.
Using Lemma 7 and the fact that T+ T,; H H+ it follows that

fo (1 1’12) d A d"r+’,f(z)- rf(z)= f()’()
(1- z),+’

The formula ofthe lemmanow follows from Stokes’ theorem, since D((1-1 I:)TM)
-(s + 1) (1 I 12)’. The result for general follows by applying the result to r
where r(Z) (rz) and taking the limit as r 1. (The case s 0 is included
since H implies ’ L(dm2); see the proof of Lemma 6.)

Proofof Theorem 4. Suppose BMOA. Since T T H H, it follows
from Theorem that T T is bounded from HP to H’. Conversely, if T T is

bounded from HP to HP, then it follows from Lemma 8 and Fubini’s theorem that

f’()’()()(l d cl(r f T.f, g)ll12) d
Cllfll,’llgllH,,’

for all functions f and g which are holomohic on the closed disk. Let G be the

holomohic function vanishing at 0 such that G’() ’()g()ff. Then applying
Stokes’ theorem twice as in the proof of Lemma 8 yields

lim f .f()(r)d f f’()’(()()(l- [12)d A d
rl

and it follows that

rl

for all f holomohic on the closed disk. Thus G Hp’ and llGI,,,
We have shown therefore that there is a constant C, independent of g such that

for all g holomohic in a neighborhood of the closed disk. Theorem 3 implies that

’ BMOA_ and this completes the proof.

Pro(fof Theorem 5. First suppose that _T2+ T is a bounded operator from
Hp to HP. Then there is a constant C independent of z and f such that

+f(z) f(z) < C(l -zl)- I/1 p
HP

If f is holomohic on the closed disk, then the proof of Lemma 8 shows that

(I -II:)f()’()
(I z),+ d d < C(I -Izl)-111fll ’n,,. (I0)
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If we let f (() $()-s-2 in equation (1 O) then we get

(1 Izl=)TM
P

5 C(l Izl)-(l Izl) -’w-2p/

which implies that I#(z)l O((1 Izl)-).
Next, suppose that Ib’(()l O((1 I(I)-). By Lemma 8, if f is holomorphic

on the closed disk, then

T+ f(z)- Tf(z)--
(s + l)2zri -z d( m d(.

Thus

T2+’ f (z) T2f(z) v(g)
(1 I’1)
( z),,/

d/ d

f, 2)2.where v(() (s+l)2zri (’)’(’)(1 -I1 Since I#(g’)l O((1 -I1) ), it
follows that there is a constant C independent of f such that

Ilollr,’ CIIfllz,,.

The desired conclusion follows now from Theorem D and the tent space characteri-
zation of HP. I--i

ProofofTheorem 6. First suppose that (1 Izl)dlx(z) is a Carleson measure and
h g + q where g is holomorphic and 6 BMOA. By Littlewood’s theorem, (see
[Ts] Theorem IV.33), limr__, IIG/zrll/, 0. It follows that

which is bounded by Theorems A and 1.
Conversely, suppose u h + G/z and H/ is bounded from HP to LP. We argue

very much as in the proof of the sufficiency statements of Theorems and 2 in [C2].
Use Littlewood’s theorem again to deduce that if f is holomorphic on the closed disk
then

H2 f Hif Tuf
Since H is a bounded operator, we have the pointwise bounds

Inf(z)l p < C Ilfll pn,’ (11)
-Izl

for all functions f that are holomorphic in a neighborhood of the closed disk. Let

Izl2)’+1L() -
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By Lemma 7 of [C2],

Hf (z) Tf (z).

This combined with (11) yields the estimate

IT.fz(z)l <_ C

for a constant C independent of z. The argument on page 18 in [C2], beginning with
equation (10) of that paper, shows that (1 -Izl)d#(z) is therefore a Carleson measure.
By Theorem A, Ta is bounded and therefore H/, is bounded. Let hr(Z) h(rz).
Then H/,I limr H,. q (0) and it follows that q H . Therefore
h g + with both g and 4 in L(dm.) and it is easy to see that H H. It
follows from Theorem that 4 6 BMOA and this completes the proof. 12]
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