ILLINOIS JOURNAL OF MATHEMATICS
Volume 42, Number 3, Fall 1998

HANKEL OPERATORS AND BERGMAN PROJECTIONS
ON HARDY SPACES

WILLIAM S. COHN

1. Introduction and statement of results

Let D denote the unit disk in the complex plane and T its boundary, the unit circle.
For 0 < p < oo, H” will be the usual Hardy space of functions holomorphic on the
unit disk; i.e., a holomorphic function f belongs to H? if its non-tangential maximal
function belongs to L”(T'). (See the definition given by equation (7) below.) Let P,
denote the “Szego projection” given by

L[ g
Prg@ =5 [ £kl

for a function g € L'(T). If u is an L' function on T and f is a function in H™ then
the Toeplitz operator with symbol u is defined by the formula 7, f (z) = Pyuf(z).
The Hankel operator H, with symbol u may be defined to be the boundary distribution
of the function

u(z) f(z) = Pyuf(2).

In particular, if u € L%(T) and f € H®™ then H, f is the function defined by the
formula

H, f(€") = uE®) f(?) — Pruf ().

It is well known that the operator 7, extends to be a bounded operator on H” for
1 < p < oo to H” if and only if u is a bounded function. On the other hand, if
u € L2(T) then the Hankel operator H, extends to be a bounded operator on H” for
1 < p <ootoL”ifandonlyifu = g, + g, where g, € H? and g, € BMOA. See
[CRW] or [P].

Here, BMOA is the space of holomorphic functions of bounded mean oscillation
on the unit disk. See [G] for the definition of BMOA and its various characterizations
in terms of Carleson measures, as well as (1) and (4) below.

In [C2], some operators on Hardy spaces which are analogues of the operator 7,
were obtained by using the projections associated with the weighted Bergman spaces
L2(dmy). Fors > 0let z = re® be a point in the unit disk and let dm, be the

§

measure dm(z) = 5~ (1 — r2)*~'dz Adz. L?(dmy) will denote the Lebesgue space
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494 WILLIAM S. COHN

of measurable functions defined on the unit disk integrable with respect to dm; and
L% (dmy) will denote the Bergman space of holomorphic functions in L” (dm;). The
orthogonal projection of L2(dm) to L2(dm) is given by the formula

s (1 =1gP-!
s =5 [0 g

Notice that if F is continuous on the closed disk then

dc ndc.

lim P, F(z2) = P+ F(2),

so the Szego projection P, can be considered as the limiting case of the projections
Py.

If u is any function in L'(dm;) and if f is a function in H*, then the operator
T f is defined to be

_ s—1
T f(0) = =— [ (;)f(c)‘—&dmd;.

)v+l

The following result was obtained in [C2].

THEOREM A. Lets > 0,1 < p < o0, and suppose u = h + G is in L'(dmy)
where h is harmonic and G is the Green potential of a non-negative measure d .
Then T} is a bounded operator from HP to H” if and only if h is a bounded harmonic
function and (1 — |z])du(z) is a Carleson measure.

Here, the Green potential refers to the Green’s function of the unit disk; see [C2].

In this paper we study operators on H” which may be regarded as analogues of the
Hankel operator H, obtained by using the weighted Bergman projections Py, s > 0,
in place of P,. Thus, fors > 0,z € D, and f € H* define

H} f(2) = u(@) f(2) — Pyuf)(2).

For a function v defined on D and 0 < r < 1, let v, be the function defined on
T given by v,(e'?) = v(re’®). This definition will give a well defined measurable
function in each context we apply it. We shall say that H;} f has boundary distribution
in L?(T) provided that

lim(H, £,

exists in L7(T).

The operator H; is interpreted as taking a function f to the boundary distribution
of H} f.

Our main result is the following theorem.
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THEOREM 1. Let 1 < p < oo and s > 0. Suppose u = ¢ where ¢ isin H'.
Then H} extends to a bounded operator from HP to LP(T) if and only if ¢ € BMOA.

Note thatif s > 0 and ¢ € BMOA then the operator Hj is bounded from H'toL'
if ¢ € BMOA but this is not true in general for the operator Hy.

The dual of this result is also of interest. Suppose s > 0. Let C f the operator
defined by

_ f (@)
Cr® =5 [ ol

If f is holomorphic with power series representation f(z) = > o, f(n)z" then we
expect C, f to behave like R* f, the fractional derivative of f of order s given by the
formula

o0
R f()=) (n+ 1) fm)z".
n=0
For a function ¢ let My denote the multiplication operator My f = ¢f. Finally,
let H” (resp. BMOA_;) be the space of holomorphic functions f whose fractional
integral of order s, I* f, is in H” (resp. BMOA_;). Here, I’ is the inverse of the
fractional derivative operator R® and is given by the formula

. I !
1 f(z)=f_,—(;5](; (10g7) ftz)de.

In the rest of the paper we will not distinguish between a bounded operator and an
operator which extends to be a bounded operator.

THEOREM 2. Let 1 < p < oo and s > 0. Suppose ¢ € H'. Then the following
conditions are equivalent.

1. The operator [Mg, C,] is bounded from L? to H’.

2. The operator [My, C,] is bounded from L™ to BMOA _;.

3. The function ¢ belongs to BMOA.

For a smooth function g on T, the commutator [My, C;] is given by the formula

My, C518(5) = ¢(§)Cs8(5) — Cs(#8)(£),

for |¢| < 1.

Results by other authors concerning commutators of the form [M,, K] where K
is a singular integral operator or a Riesz potential are discussed in [T], chapter XVI.
The methods employed by these authors do not seem to yield Theorem 2.

If g € H” then [My, C(1g(¢) = ¢'(¢)¢g(¢). Thus Theorem 2 implies that if
l < p<ooand g € H” and ¢ € BMOA, then a function of the form g¢’ is the
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derivative of an H” function. In fact this is true for all 0 < p < oco. (See [C4] for a
converse to this fact.) This result was proved in [C2] and a stronger result is used in the
proof of Theorem 1 and 2; see Theorem B below. It can be shown that if ¢ € BMOA
then the operator [My, C;] is bounded from H” to H’_ forall0 < p < oo whenever
s is a positive integer. We do not know, however, if the condition ¢ € BMOA implies
that the operator [My, C;] is bounded from H?” to H’” for0 < p < 1in the general
case of a non-integral s.

Since the commutator [M,, C,] is essentially multiplication by ¢', it is natural to
ask about the holomorphic multipliers of H” into H” . We have the following result.

THEOREM 3. Let 0 < p < oo and suppose s > 0. Let ® be holomorphic on
the unit disk. Then My, defines a bounded operator from HP to H”_ if and only if
® € BMOA_,.

Our proof of Theorem 1 leads to an interesting formula for the difference operator

4‘-:“ f = T; f. In what follows we will let T be the usual Toeplitz operator, T,, and

H,? be the usual Hankel operator, H,,.

THEOREM 4. Let ¢ € H'. Suppose | < p < oo. Then Tq-jI - Td'? is a bounded
operator from H? to H? if and only if ¢ € BMOA.

In [C2] it was shown that the Toeplitz operator Td‘-: is bounded from H” to H”
whenever ¢ € H*® and (s + 1)p — 1 > 0. It follows that there is no extension of
Theorem 4 to Hardy spaces H” for p < | since in general, the operator Td'? is not
bounded from H' to H' for ¢ € H™; see [S]. On the other hand, given the results in
[C2], it is natural to expect there to be some type of theorem for H” when0 < p < 1.
In this direction we have the following result.

THEOREM 5. Lets > Oand suppose (s+1)p—1 > 0. Suppose ¢ is holomorphic
in D and ¢ € L' (dmy). Then Tq‘-;“ — T(g is a bounded operator from H” to H" if

and only if |¢'(0)] = O((1 — |¢D7H).

We also consider the operator H for some symbols u that are not necessarily
antiholomorphic. Recall that Gu denotes the Green potential (with respect to the
Green’s function of the unit disk) of the measure .

THEOREM 6. Lets > OQand 1 < p < oo. Supposeu = h+ Gu € L'(dmy)
where h is a harmonic function and  is a non-negative measure on D. Then H; is
a bounded operator from HP to L if and only if h = g + ¢ where ¢ € BMOA and
(1 — |z])du(2) is a Carleson measure.
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2. Background and preparation for proofs of Theorem 1-6

We will adopt the following conventions. The notation A = B means that there
is a constant C such that C"!B < AC < CB. The letter C will be used to denote
various numerical constants that change in value depending on the context.

It will be convenient to characterize the functionsin H?, Hf_c ,BMOA, and BMOA _;
in terms of tent spaces.

Forn € T, let I"'(n) be the approach region

T ={¢: 11—¢nl<1-1¢1),

contained in D. If u is a function defined on D then we say u € T, if

1 dz ndz \"*
Null?, =/ (——[ lu(z) | ——= ) ldn| < oo.
T  \27i Jrep (1 —1z))? "

If 1 is a subarc of the circle T then let | /| equal the length of / and let 7 (1) be the
“tent” over I; see [CMS]. If u is a function defined on D then we say u € T;° if

1 1 dzndz
il = su —(——.f uP ) . (1)
g p|1| 27i Jray —Iz|

Thus u € T;° if and only if —i|u 2 ‘ﬂz—fl‘j—lz is a Carleson measure. We will need the fact

that if 1 < p < oo, then the dual space of T, is 7y’ with the pairing

di Adg
= ¢|

and the same pairing gives the duality between the spaces T2l and T;°. See [CMS].
Recall if 0 < p < oo then a necessary and sufficient condition for a function f
holomorphic in the disk to belong to the Hardy space H?” is that for each k > O the
function (1 — |z|)* D* f belongs to the tent space T,”; see [AB]. Let p be the function
given by p(z) = (1 — |z|?). Then for a fixed k we have the equivalence of norms

(u, v)———/ U@~ 2

I e = llo* RE 7. €)

Similarly, a necessary and sufficient condition that a holomorphic function g belong
to H”, is that p°g € T, and we have equivalence of norms

lgllur, = llo*glizs- “

The spaces BMOA and BMOA_; may be be characterized in terms of the spaces
T;°. We have the following equivalences of norms (see [J]):

ligllamon = llo* R*glizse o)
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and

lgllemon_, = llp*gllrse. 6)

Let Nu(z) be the non-tangential maximal function

Nu(n) = sup |u(¢)l. @)
¢el(n)

If u is a continuous function on D then we say u € T4 if

lull?, = / (Nu(m)?ldn] < oo.
T
We will need the following result from [C2].

THEOREM B. Let 0 < p < oo and suppose u € TL. Suppose that h > 0
is a function defined on D and that h € T;°. Then hu € T2” and ||hu||T2p <
C(Phlir<llullzy.

We will also need some recent results of Ahern, Cascante and Ortega [ACO]
concerning invariant Poisson integrals and tent spaces. Although the main point of
[ACO] was to get results for functions defined on the unit ball in C" where n > 1,
it is the results for the case n = 1 that we need here. If | + « + 8 > 0 and nelther
1 + « or 1 4+ B is a negative integer then define

(1 —Jg)tters
Pa =i+ =g+t

Pot.ﬁ({’ 7)) =¢q

where ¢, 4 = _“r—?ﬁ%i For g € L'(T) define

1
Popg(§) = E/Tg(z)Pa.ﬂ(K, 2)ldz|.

Let Df () = §(0) and Df (§) = $£(©).
The following result is proved in [ACO].

THEOREM C. Let 1 < p < oo and suppose g € L' (T). Then there are constants
C(p, a, B) and C(a, B) such that the following inequalities hold.

1. lp|D Py pgl + pIDPopglllyy < C(p,a, BligllLr

2. | Pupglizz < C(p,a, B)ligliL.

3. lp|DPopgl+ pIDPopgllire < Cla, Bligliamo-

Finally, we will need the following result proved in [C1] in a more general form.
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THEOREM D. Lets > 0and 0 < p < oo. Suppose K(z,¢) is a kernel of the
form

(1 — Iz = ¢!
a1-¢ Z)s+2
where W is a C* function defined on C2. Then the operator defined by

K(z,8) =¥(z,0)

Ku(z)=/Du(§)K(z,€)dm(C)

maps Ty 1o itself.

3. Proofs of Theorems 1-6

We start by proving Theorems 1 and 2. Our first goal is to establish the duality
between the operators Hg and [My, C;]. This is done in Lemmas 5 and 6 below.
Lemmas 1-4 will give us some necessary machinery.

The following lemma follows easily from Stokes’ theorem and the fact that

D1 — ¢ = —st(1 = ¢

We will henceforth use the term “smooth” to mean infinitely differentiable.

LEMMA 1. Suppose that f is holomorphic in a neighborhood of the closed disk
and that ¢ € H'. Then:

1. P,p f (z) extends to be C® in the closed disk.
2.lim, | Ps@ f — Py fllne = 0.

Proof. Let D' = {¢: % < |¢| < 1}. To see the first statement, we just need to
notice that for any k > 0, Stokes’ theorem gives
(1- m Hsldg adg
C)v+l Z-k
where E(z) is a sum of terms which are all smooth on the closure of D’. The second
statement is proved in a similar manner. [

Ppf(z) = — f ¢(§)D"f(s“) + E@)

Lemma 2 also follows from Stokes’ theorem.

LEMMA 2. Let ¢ € H' and let f be a function holomorphic in a neighborhood
of the closed disk. Then

HSf(2) = 5— ] f(C)M — e B2 L 0@ - 0.
{Z)H" ;—
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Let
I f (@) = Hy f(2) = f(0)((2) — $(0)).

It follows that Jgf = Hgf if £(0) =
For two functions f and g defined on T let < f, g > be the usual pairing

1
(f:8) = 5= / F@E@ |dzl.
T Jr

LEMMA 3. Suppose ¢ € H'. Let f be holomorphic in a neighborhood of the
closed disk and suppose g is a smooth function on T. Then

—1 d
(J3f.8) = / Df ()M, Clg(@)(1 — [ 12 ‘;? ¢

Proof. Suppose that f is holomorphic on a neighborhood of the closed disk and
that g is a smooth function on 7. Then

uiro =i [ [ @222 800 epy L2 Ligon, )

;z)l+v
Since f and g are smooth functions and
(=P l 1
(1 =¢g)+s 1-¢z)’

the hypothesis ¢ € H' shows that the absolute value of the integrand in (8) is
integrable with respect to d¢ A d¢|dz|. We may interchange the order of integration
to get the desired formula. O

LEMMA 4. Lets > 0,¢ € H',and 1 < p < oo. Suppose Jc‘-z is bounded from
H? to L?. Then ¢ € BMOA.

Proof. Let f be holomorphic in a neighborhood of the closed disk and suppose
f(©) =0. Then J‘gf = H‘; Setg = H;f. Let P_ = I — P, where [ is the identity.
Observe that

8&r = &rfr - (qu-sf)r
and P_(P;¢ f), = 0. It follows that

P_(g) = l'_',“l P_(gr)
= lim P_(¢, f,)
= P_(¢f).
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Thus
I1P-@llr = IP-@llr < Cligler < ClifllLr.

Thus ¢ is the antiholomorphic symbol of a bounded Hankel operator and therefore
¢ € BMOA. This completes the proof. O

In the sequel, if 1 < p < oo then p’ will denote the conjugate index: p’ = F—Ll if
l<p<ooand p' =c0ifp=1.

LEMMAS. Let¢ € H' and s > 0. Suppose [My, C,] is bounded from L" to
H?' for some p' such that 1 < p’ < oo or bounded from L™ to BMOA_, if p’ = oo.
Then:

1. Jg is bounded from H? to LP.

2. ¢ € BMOA.

Proof. Suppose 1 < p’ < 0o. Let f be holomorphic on a neighborhood of the
closed disk and suppose g is asmooth functionon T. If [M,, C,]is abounded operator
from L? to Hf_; then it follows from Lemma 3 and the tent space characterizations
of HP and H”, given by (3) and (4) and the duality between T, and T, given by (2)
that

(3£, &)l = ClloDf Iz ll0* (Mg, Cilglizy < ClLf v liglier-

It therefore follows from Lemma 3 that J ; is bounded from H” to L?. If [My, C;]
is bounded from L* to BMOA_; then the same argument shows that J (‘; is bounded
from H' to L'. This proves the first assertion of Lemma 5.

For 1 < p’ < o0, the second assertion follows from Lemma 4. For the remaining
case where p’ = oo, if [My, C,] is a bounded operator from L*> to BUOA_; then
the constant function 1 € L*, and therefore ¢ — C;¢p = [My, Cs11 € BMOA_;.
Since ¢ € BMOA _;, it follows that C;¢ € BMOA_;. We show that this implies that
¢ € BMOA. From Lemma 2.1 in [AC] we have the formula

1 1 (] _t)s—l
¢ “’fo A= "

Therefore if || < 1 then

1
$(0) =sf0 (1 — 1= Cope) dt.

Since C;¢ € BMOA _;, it follows that I°C,¢p € BMOA, where

1! 1\
15C.v¢(§)=m[) (108;) Ciop(te)de.
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et l s—1
(1—1) (logt)

for 1/2 <t < 1 shows that

The estimate

<C{-0f

I'(s)

1
|¢>(€)— TI"CAP(C) = C/(; (1 = 0)*|Cs9(t8) |dt + Cli@ll

where C is a constant independent of ¢. Since C;¢ € BMOA_;, it follows that
|Csp(t8)] < (1 —¢|¢])~°. Therefore ¢ — f—_ﬁ“—)l"cgq) is a bounded function and it
follows that ¢ € BMOA . This proves the second assertion if p’ = occ. O

LEMMA 6. Let¢p € H',s > 0,and |1 < p < 0o. Suppose H q-; is bounded from
H? to L?. Then: )

1. [My, C;] is bounded from L” to H”,.

2. ¢ € BMOA.

Proof. First, since H (‘13’1 = ¢ — ¢(0), it follows from the hypothesis that ¢ € H”.
Let g be smooth on T'. It can be verified that

IIMy, Cs12(0)| < CliglinrlighLy- &)
Let & be the holomorphic function on D given by

h(§) = ¢ (M4, C,1g() — [My, C18(0)).
Then the tent space characterization of Hf; and (9) show that

NEMy, Colgl o | = Wl g + Il g o
Suppose 1 < p < oo. It is enough to show that

Al < Clidlinelighy

for a constant C independent of g. The characterization of Hf; in terms of tent space

and the duality between T, and T, " shows that there is a bounded function F with
compact support in D and || F "Tz” < C such that

Iy, = [ FOBEIA ~ 6Py~ dE nde.

We claim that & € L'(dm,,,). To see this let ¢ = rn where n € T. Since g is
smooth on 7', we may write

1RO < |Cse (g — MO + 18(MCip (D).
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It is easy to see that

ICsp (g — M) =CU =) @lin-

Also, the arguments used in Lemma 2.1 and 2.2 of [AC] show that

ICsp() <= C( =) "Ne().

It follows that & € L'(dm,,,) and we may use the weighted Bergman projection
P, to write

1 — 2\s _
h(¢) = f hon ( g'"')c)ﬂ dij A dn.

We may use this formula to express

/ FORDI( — [P~ dF Ade
D

as an iterated integral and since F' has compact support we may interchange to order
of integration to get

Wl = /D Ghm)( — n*) dij Adn

where
_ 2ys—1 _
G = —f ( M;))w dt Andz.

It follows from Theorem D that the T2" norm of the function pG is less than C|| F ||T2/>.
Therefore by (3), G(n) = Df(n) where f is holomorphic on the closed disk and
| fllz» < C. Thus

Wl e = ‘ fD Df (mh(n)(1 -—Inlz)“dﬁ/\dnl

\“%f’ g) - My, C,1g0) fD Df ()(1 = In*)* dij A dn|.

The estimate |Df (re®)(1 — r)| < CNf(e'®) shows that the second term in the sum
on the right hand side above is less than a constant times ||@ || g» ||l » | f Il #». Since
J 5 is bounded from H” to L”, the same estimate holds for the first term and it follows

that [My, C,] is a bounded operator from L" to Hf_;. The same argument shows that
if Hg is bounded from H' to L' then [My, C,] is bounded from L™ to BMOA_,.

This proves the first assertion. The second assertion follows from the first assertion
and the second assertion of Lemma 5.
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With Lemmas 5 and 6 established, to finish the proof of Theorems 1 and 2 it is
enough to show that if ¢ € BMOA then H é is a bounded operator. By Lemma 1, it
is enough to prove that there is a constant C such that if f and ¢ are holomorphic in
a neighborhood of the closed disk and g is a smooth function on T then the apriori
estimate

KHf, @) < CllflaeligllLr @l moa

is verified. Here, C must be independent of f, ¢, and g. We may also assume
f(0) = 0 to simplify matters when we apply Stokes’ theorem.
Lemma 7 below is based on the fact that El——z is a fundamental solution to the

equation Du = 27is,.

LEMMA 7. Suppose s > 0, and f and ¢ are holomorphic on a neighborhood of
the closed disk. Then for |z| < 1,

- lrglz)“ dg ndg

S () = — ran
@ =5 [ 1@ (‘”(1—;1 —

Proof. Suppose W is smooth on the closed disk. Then for |z| < 1,
— 122\ 4t
v = / D(\p(;)(l 151 ) )d; Adt
D 1-2¢z {—z
= l—ICIZ)"df/\dC f -(I—ICIZ)"dE/\dK
= DV = v(¢)D =
/D (g)(l—Cz {—z +D «© 1—-¢z -z

_ 1P\ dE
- f Dwm(' il ) dENAE_ oriPw().
D 1—-¢z —z

Applying this formula with ¥ = f¢ yields the result for |z] < 1. The full
statement follows from the dominated convergence theorem and the fact that, by
Lemma I, H“g [ is smooth on the closed disk.

We now complete the proof of Theorem 1.

Suppose f and ¢ are holomorphic on a neighborhood of the closed disk, f(0) = 0,
and g is smooth on T. Let h(z) = zg(z). Apply Lemma 7 to get

I

- 1 _ 2\s 3 _ -
c f f OFE- AR 45 ndr 5@dzl
TJD

—(HSf, _
W 8) I~z —¢2)

C fD FOP Q) P_ioh(L)dE Ade.
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Apply Stokes’ theorem to get

(Hf.6) = € [ OFrOF PR

_ - d d
T @DEIRON — ¢y L%

It follows that
I(H;,-jf, g = CUpDfllzy ”p¢,Ps~l.0h”T2P’ + I|p¢'fllr; IIPDP.Y-LohIIT;fl

The desired apriori estimates follow now from Theorems Band C. O

Proof of Theorem 3. Let0 < p < oo. If ® € BMOA_; then p*® € T;° and it
follows from Theorem B that

ol = 10 Pglzy < Cllo* Pz llgll -

Conversely, if || Dg|| H, < Cligllg» for all g in H? then it follows that

f('/ |“d>|2dZAdZ)g|d|<Cf|(>|"|d|
r \2mi r(n)p 8 (1 —1z))? = Tg'7 1

forall g € H”. Let g = q. Since every G € HY is of the form G = Ig* where I is
an inner function and g € H”, it follows that

i _ dzi ndz\!
f(—/ T yatel ) sC/IG(n)I" |,
T \27i Jrgp 1 —|z| T

forall G € HY. It follows from [C3] that —ip?>*~!|®|?dZ A dz is a Carleson measure
and therefore ® € BMOA_;. This completes the proof. O

Lemma 7 leads to a useful formula for the difference T-‘LI f - T- f. In what

follows we will let T2 be the usual Toeplitz operator 7, and H,? be the usual Hankel
operator H,.

LEMMA 8. Let s > 0. Suppose f is holomorphic in a neighborhood of the
closed disk. Assume that ¢ is holomorphic on D and that ¢ € H' if s = 0, and that
¢’ € L'(dmy) ifs > 0. Then

2
— ¢l ) dE/\dg.
Cz

541 _Ts
Q- T3 = o [ ro#© (4
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Proof.  First assume that ¢ is holomorphic on a neighborhood of the closed disk.
Using Lemma 7 and the fact that 7! — TS = HS — H:*! it follows that

(1 —g?°
(1 —EZ)“'H

The formula of the lemma now follows from Stokes’ theorem, since D((1—|¢|?)*+!) =
—(s + DZ(1 — |¢]?)*. The result for general ¢ follows by applying the result to ¢,
where ¢,(z) = ¢(rz) and taking the limit as r — 1. (The case s = 0 is included
since ¢ € H' implies ¢’ € L'(dm,); see the proof of Lemma 6.) O

1 - _ _
@)~ T f(2) = — / £ @) dt A dg.
¢ ¢ 27Tl D

Proof of Theorem 4. Suppose ¢ € BMOA. Since T, = T? = H?— H/, it follows
from Theorem 1 that T&' - TJ? is bounded from H” to H”. Conversely, if Td-)l - Td? is
bounded from H” to H”, then it follows from Lemma 8 and Fubini’s theorem that

fD F @O &)1 — ¢ dT Ade

= CUT} f -T2 1.9
< CIfNuelighr

for all functions f and g which are holomorphic on the closed disk. Let G be the
holomorphic function vanishing at 0 such that G'(¢) = ¢'(¢)g(¢)¢. Then applying
Stokes’ theorem twice as in the proof of Lemma 8 yields

lim /T &G = f FOF @O =g dE A de
r— D
and it follows that

lim VT f(g“)é(rC)dc‘ < Clflarlighn

for all £ holomorphic on the closed disk. Thus G € H” and 1Gllgr < Cligllyr-
We have shown therefore that there is a constant C, independent of g such that

l$'gll ur = Cliglar

for all g holomorphic in a neighborhood of the closed disk. Theorem 3 implies that
¢’ € BMOA_, and this completes the proof. O

Proof of Theorem 5.  First suppose that Tq‘-;“ — T7 is a bounded operator from
H? to HP. Then there is a constant C independent of z and f such that

1T f @) = T3 f@1 < CA = 1z2D7 I f Iy
If f is holomorphic on the closed disk, then the proof of Lemma 8 shows that

=13 - r .
(1 — z7)*! de Adg| = CU = 1zD7 I I (10)

/ )¢
D
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If we let £(¢) = (1 — z¢£)™*~2 in equation (10) then we get
‘ ()2

(l — |Z|2)S+|

p
<C—|z)7"'(1 = |z~ P72+

which implies that |¢'(z)| = O((1 — |z)™").
Next, suppose that |¢'(¢)] = O((1 — |¢])~"). By Lemma 8, if f is holomorphic
on the closed disk, then

s+1 TS o |c|2> -
M@ - 1350 = g [, FOF© (TR ) dE e

Thus

(1=
C )v+l

where v(¢) = mf (€)' ()1 — [¢|)?2. Since [¢'(Q)] = O((1 — |gh7h, it

follows that there is a constant C independent of f such that

lvllzy < Cllfllae.

The desired conclusion follows now from Theorem D and the tent space characteri-
zationof HP. O

@ -Tf@ = f (c) d¢ Ad¢

Proof of Theorem 6. First suppose that (1 — |z|)d(z) is a Carleson measure and
h = g + ¢ where g is holomorphic and ¢ € BMOA. By Littlewood’s theorem, (see
[Ts] Theorem IV.33), lim,_, | |G, ||, = 0. It follows that

H) = H} - T},

which is bounded by Theorems A and 1.

Conversely, suppose # = h + G and H; is bounded from H” to L”. We argue
very much as in the proof of the sufficiency statements of Theorems 1 and 2 in [C2].
Use Littlewood’s theorem again to deduce that if f is holomorphic on the closed disk
then

Hif = H)f ~ T8, .
Since H;} is a bounded operator, we have the pointwise bounds

|HS f(2)|” < C I Fl%s (n

1—|z|

for all functions f that are holomorphic in a neighborhood of the closed disk. Let

3 1—|Z|2 s+
o = (T25)
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By Lemma 7 of [C2],

H, f.(2) = =Tg, f.(2).

This combined with (11) yields the estimate

T3, f:()] < C

for a constant C independent of z. The argument on page 18 in [C2], beginning with
equation (10) of that paper, shows that (1 — |z|)d . (z) is therefore a Carleson measure.
By Theorem A, Té# is bounded and therefore Hj is bounded. Let h,(z) = h(rz).

Then Hjl = lim,,, Hj 1 = ¢ — ¢(0) and it follows that ¢ € H'. Therefore
h = g + ¢ with both g and ¢ in L'(dm,) and it is easy to see that H} = H(‘l—:. It
follows from Theorem 1 that ¢ € BMOA and this completes the proof. O
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