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A FINITENESS THEOREM FOR THE SPECTRAL
SEQUENCE OF A RIEMANNIAN FOLIATION

BY

JESOS A. ALVAREZ L6VEZ

Introduction

Let M be a smooth closed manifold which carries a smooth foliation - of
dimension p and codimension q. A differential form 0 of degree r is said to
be of filtration > k if it vanishes whenever r- k + 1 of the vectors are
tangent to -. In this way the deRham complex of the differential forms
becomes a filtered differential algebra and we have the spectral sequence
(Eg(-), d) which converges after a finite number of steps to the (finite
dimensional) cohomology of M.

It is clear that E2’(’), E2L(’), E-x,P(") and E2q’P(") are of finite
dimension but there are another vectorial spaces E’() that may be
infinite-dimensional as shown in the examples of G.W. Schwarz [7].

In [6], K.S. Sarkaria proves that E2(") is finite-dimensional when " is
transitive. He uses techniques of functional analysis (constructing a 2-parame-

In [2], A. E1 Kacimi-Alaoui, V. Sergiescu and G. Hector prove that the
basic cohomology, [which is equal to E’(’)) is finite-dimensional. They
prove it step to step for Lie foliations, transversely parallelizable foliations and
Riemannian foliations.

This paper establishes the following improvement of the two results above.

THEOREM. If a smooth closed manifold M carries a Riemannian foliation
then E2(’) is finite-dimensionaL

To prove it we assume that ’^is transvers^ely oriented and construct an
operation of a Lie algebra in E(’), where " is the horizontal lift of " to
the principal fiberbundle of oriented orthonormal frames with the transverse
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Levi-Civita connection [4]. Then E2(") and E2(") can be related by results
of [1] and by the above result of [6], the theorem follows.

This result has also been obtained recently by Sergiescu [6] but using
different techniques.

Finally, I want to express my deep gratitude to Xos6 M. Masa Vfizquez, who
is guiding me through this subject.

1. The spectral sequence associated to a foliation

Let M be a smooth manifold which carries a foliation " of dimension p
and codimension q. We may describe - by the exact sequence of vectorbun-
dles

0 TS’-’> TM "-> Q 0,

where T’c TM denotes the integrable subbundle of vectors of M tangent to
’, and Q TM/T" is the normal bundle.

The spectral sequence (Ei(’), di) associated to " arises from the follow-
ing filtration of the deRham complex (A, d) of M:

Fk(Ar) {a Ar/iv(a) 0 for v X A AXr_+I, X e rT }
(1.2)

With this decreasing filtration, (A, d) is a graded filtered differential algebra.
Since Fq+I(A) 0,(Ei(’), di) collapses at the (q + 1)-th term and is con-
vergent to HoR(M).
The choice of a Riemannian metric on M defines a subbundle v T" .t C

TM and a splitting o: Q TM of (1.1) such that o(Q) v. Then (A, d) is a
bigraded differential algebra if we define

A"’= F(AT*,"(R) N’v*) rAT*,’@coo(M)rA"v* (1.3)

for0 <u<q and0<v<p.
The exterior derivative d may be decomposed as the sum of the bihomoge-

neous operators dsr, dx,0 and d2,_ of bidegrees (0,1), (1,0) and (2,-1)
respectively, which satisfy

dl,od2,_ + d2,_ldl, 0 0,

d22,-1 O, ddl,o + dl,od= O,
(1.4)

d 2 +d ld+dd 1=01,0
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The filtration of A may be represented by

e (a) e a",

u>_k

Hence we have the following well known theorem.

(1.6) THEOREM [3]. We have the following identities of bigraded differential
algebras.

(i) (Eo(’), do) (A, dsr),
(ii) (E(), d) (H(A, ds), dx,o.).

It follows that E_(’) H(H(A, dsr), dx, o. ), E,(") At,(3z), and
E’(-) Hb(-), where Ab(’) and H(3z’) are respectively the algebra of
basic forms and the basic cohomology of

2. Riemannian foliations

Assume that in Section 1, " is Riemannian and transversely oriented. Let
or: M --, M be the principal SO(q)-bundle of oriented orthonormal transverse
frames. We have on M the transverse Levi-Civita connection with curvature
f and the transversely parallelizable foliation , where T is the horizontal
lifting of T" [4], which satisfy

dim() =p and codim() =q+q0,

where qo dim(SO(q)) 1/2q(q 1). Let denote the horizontal lifting of v
and V the vertical subbundle. T’, and V are preserved by the action of
SO(q) on TM.

Let (.,, a?) denote the deRham complex of M, which is a trigraded algebra
if we set

A’t’v... r(hT*(R) At* () hsV*) (2.1)

for0<s<qo, 0<t<q and0<v<p. Thus, ifwedefine

2u’-’ a"s’t’ (2.2)

for 0 < u < qo + q and 0 < v < p, (, a) is a bigraded differential algebra
from which the spectral sequence (E(’), d) arises according to Section 1.
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The exterior derivative d may be decomposed as the sum of the bihomoge-
neous operators ds, ax,0 and d2,_1 of bidegrees (0,1), (1,0) and (2,-1)
respectively, satisfying the analogue of (1.4). Then (1.6) shows that

(2.3)

Let (so(q),-i, O, .., d) be the operation of so(q) associated with the princi-
pal SO(q)-bundle r" M --) M and to* the algebraic connection, with curvature
fl*, corresponding to to, (Section 8.22 of vol. III of [1]). Let (Ei(o_o), di)
denote the spectral sequence corresponding to the bigraded differential algebra
(Ao_o, d).
The homomorphism r*" A ---) A can be regarded as an isomorphism

(2.4)

We will let A -’i-o,o-0.
For Z so(q), z and 0z are trihomogeneous of tridegrees (-1,0,0) and

(0, O, O) respectively. Hence, comparing bidegrees in zd + diz Oz and aOz
Ozd we obtain

izd+ d.iz O, izcl, o + d,oiz Oz,

Ozd= dseOz, Ozdl,o cl,oOz,
(2.5)

from which we can derive in cohomology the operation (so(q), 1,

01, Ex(’),
The algebraic connection to*" so(q)* ,,0,0 c .,0 satisfies

Im(to*) c 1,0 N Ker(d-) E’() [21;

then

tot to*" so(q)* E’()

is an algebraic connection for (so(q), 1, 01, EI(), d).
We have the isomorphism of graded algebras (Section 8.4 of vol. III of [1])"

f: ,-o (R) Aso( q )* - ., a (R) q a to. ( q). (2.6)
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According to the identification given by f we obtain (Section 8.7 of vol. III
of [ll)"

z W (R) iso(q)Z (2.7)

0Z 0Z (R) 1 "Jr I (R) Oso(q)Z (2.8)

d’-- W * dso(q -[-- d; -1- h a -[-- Vi=0 (R) 1, (2.9)

where Z so(q), w is the degree involution, V is the covariant derivative in
associated with o*, and dso(q), do and de are defined by

1 (2.10)dso(q - EI.t( e*l)Oso(q)et,

do EwOe, (R) a(e*’), (2.11)

ha Ew/ (a*(e*t)) (R) iso(q)e,, (2.12)

being e*t, e a pair of dual bases for so(q)* and so(q), and (e*t) is the
multiplic.ation by e*t.
Over Ao..o we have---- --w (R) dso(q -t- h a + Vg=o @ 1. (2.13)

For all X, Y FTJr, o(X) 0 and Y FTff implies that o([ X, Y]) 0
[4]. Hence we can regard f* as

a*’so(q)* a?,_o (R) 1, (2.14)

and so ha is trihomogeneous of tridegree (- 1, 2, 0).
According to the bigradation of Ai_o, Vi-o may be decomposed as the sum

of the bihomogeneous operators V-o;o,1, V-o;1,0 and V-o;z,-1 of bidegrees
(0, 1), (1, 0) and (2,- 1) respecti.vely. Then, by comparing bidegrees in (2.9)
and (2.13) we obtain that over A,

d= ’7i_0;0,1 (R) 1 d(R) 1,

dr, o w @ do(q + da + V=o.l,o (R) 1 + ha,

(2.15)

(2.16)
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and over As_o

dl,o -w (R) dso(q + Vi-o;1,o (R) 1 + h a (2.17)

We have analogous results for (so(q), 1, 01, EI(# ), all) with w.
(2.18)^PROPOSITION. H(EI(#’)01_0) is finite-dimensional if and only if

H(EI( o:)i-o, ol-o) is finite-dimensional.

Proof. Since so(q) is reductive it follows that H(EI(#’)ol_0) has finite
type if and only if/-/(E1(,)i1_o,01..o) has finite type (Corollary VI of Section
9.5 of vol. III of [11). The proof is completed because we have that E’()
0if u>q+qoorv>p.

3. Invariant cohomology

Let M and N be smooth manifolds. N is assumed to be connected,
oriented and of dimension n. Let ,rM and ,rN denote the canonical projections
of M N over M and N respectively. By ] : Aco(M N) A(M) we
mean the integration along the fiber of the trivial oriented fiberbundle
MNM.
For r > 0 and any Ar(N) we may define the linear homogeneous

operator of degree r- n

a /NaArff(). (3.1)

Now let denote a fixed dement of A’(N) such that f 1. Then
I,d=dI, and I,,r--1. Fix bN and let Jb: MMXN denote the
inclusion opposite b.

(3.2) THEOREM (Section 4.4 of vol. II of [1]). There exists a linear homoge-
neous operator 1: A(M N) A(M) of degree 1 such that 1 j’
dl+ M.

Proof. Let U be a contractible open neighbourhood of b. Given tk Ag(U)
such that fv 1 there exists X Ag-I(N) such that dX.

Let h" M U M N denote the inclusion. k determines an operator

such that Ih* I. " A(M U) "-) A(M)
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Let H: U I--) U be any homotopy connecting Iv with cteb: U---) b
(I [0,1]). Thus we have the homogeneous linear operator of degree -1,

v) V), " [ia/o,(l x h)*a. dt,

satisfying (1u x cteb)* 1 d + d. If we define Ixw [)*, the
theorem follows. [3

Let G be a compact Lie group of dimension n and T: M x G- M an
action. For each a G we define Ta to be the diffeomorphism of M given by
the restriction of T to M x (a), and let R a and La be the fight and left
translations of G. Assume that G has a left-invariant orientation and let A
denote the unique left-invariant n-form such that fGA 1. We obtain the
homogeneous linear operator

O /AT*: A(M) -) A(M), (h /GT*Ar*A. (3.3)

By At(M) and HI(M) we mean the differential subalgebra of T-invariant
differential forms and the T-invariant cohomology of M respectively. Let j:
AI(M) A(M) be the inclusion.

(3.4) PROPOSITION (Section 4.3 of vol. II of [1]). pj 1.

(3.5) THEOREM (Section 4.3 of vol. II of [1]).
then

If G is compact and connected

j*" HI(M) - H(M).

Proof From (3.4) we obtain p,j, 1. Let e denote the identity element
of G. According to (3.2) we can define a linear homogeneous operator

1: A(M G) A(M)

of degree -1 such that IA--Je* d/+/d. Then for h IT* we obtain
jo- l =dh + hd. [2
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Let J: G G --, G be the smooth map defined by (a, g) a-lga. For any
a G the restriction of J to { a } G determines the interior automorphism
Ja RaZ(a-1)" Then we define the homogeneous linear operator of degree 0,

q fJ*qArA. (3.6)

We have the differential subalgebra of A(G) given by

Aj,=I(G) Ker(Ja* 1). (3.7)
aG

Let Hj,=(G) denote its cohomology and let i" A,=(G)-o A(G) be the
inclusion. With the same arguments as in (3.4) and (3.5) we get the following
two results.

(3.8) PROPOSITION. li 1.

(3.9) THEOREM. If G is compact and connected then i." H._I(G) H(G).

(3.10) LEMMA. If G is compact and connected for defining in the proof of
(3.5) (following the proof of (3.2)) we can choose tp and X belonging to
Ay._I(G) and H: U I U satisfying Rang Lanja(g for any a G and
any g U where Hg: I U is the restriction of H to (g } 1.

Proof Because G is compact we can take the canonical biinvariant Rie-
mannian metric on G. For e > 0 such that exp" B(0, e) --, B(e, e), U B(e, e)
is contractible and we can take the homotopy

H: UI-o U, (g,t)--exp((1-t).log(g))

connecting 1v with ctee" U e.
For g U, Hs is the unique geodesic in U joining g with e and defined in

I. Hence Rang Lanja(g): I-’ B(a, e) because both ones are the unique
geodesic in B(a, e)joining ga with a and defined in I.

Let 19 be the biinvariant volume form corresponding to the above Rieman-
nian metric on G. Then A (1/fO) O is biinvariant and thus A A.

Let us take Ac(U) and X A’-X(G) such that foq 1 and dX A
6. For any a G, since Ja is an isometry with e as fixed point we have

rp Ac(U). From (3.8) and (3.9) we obtain fo,/tp-- ftp 1, and on the
other hand d,lX ,ldX--A- r/6. So we can define 1 using r/p, /X and
this H. E]

(3.11) PROPOSITION.
for any a G.

In the proof of (3.5) can be taken such that Tah hTa
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Proof
Then

Assume that is defined as in (3.10). Fix At(M) and x M.

E
s+t=r

and its component of degree 1 may be represented by

(T*O) _.ai (R) "i Ar-ITTM (R) AI(G)X

For any a G we have TaT T(1 X Ra) and T T(T(a-X X La) so we
obtain

r*Ta* (1 X Ra)*T* and (T(a-1) X ta)*r*.

On the other hand, since G is connected the right and left translations in G are
orientation-reserving. Hence we have

(Ixr*r.*q,)(x) (r*r.*q,)* X

(1 x Ra)*(T*dp)lx S

E Ol fGRa’ * X

ai" fi "Ra-x)X

fJ ’Z Za-  X
Ta*ET(-I)I fG(LaYi) X

ra* fG(r(a-. ) La)*(T*rk) X

Ta*(T*q)a X

Ta*(IxT*eO)(xa )
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Let .*T*Ta*tk and ’ Ta*X*T*,. We have

,(x)= f(io/at(l X H)*T*ra*. at)

w(a,). f(io/otH’R,,i, dt).,
(x) Ta*(&X*T**)(xa )

Ta*fv(to/ot(lX H)*(T*,)’.xa

Za*fG(lO/o,(l X n)*(a-1)X ta)*(Z**)lx

For any g U and for any it is easy to prove that

(io/otH*R:yi dt) g H:Ra Yi,

, ,o/oH L. dr) HsLa
in AX(I). Then

(lo/otH*R,Ti dt)(g)= HR,, Hs)L,,
(io/o,H*L,, dt)(J(g))

and so we obtNn

w(a,). f::((io/otH*L,,,.dt)

Therefore, recang the defiNtion of and h, the theorem follows.
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4. E/(a=o)=E()
We consider a Riemannian and transversely oriented foliation - of a

manifold M. In this section the notation established in Section 2 remains in
force. Then, let T: ]r SO(q) 371 be the action of SO(q) on 2r. It
follows that the algebra 0=0 is equal to the algebra of T-invariant differential
forms on 2Qr, and let j: 0-0 ’" be the inclusion. Since SO(q) is compact
and connected, according to Section 3 we can construct the linear homoge-
neous operators 0: A -o and h" --, of degrees 0 and -1 respec-
tively, such that 0d-- d0, 0j^ 1 and j0 1 dh + hd.
The deRham complex of M SO(q) may be decomposed as the direct sum

of the following spaces

SO(q)) F(A(T*, SO(q)) (R) N’(9* SO(q))

(R)At(V* SO(q)) (R) AS(/tr T’SO(q))) (4.1)

for s, t, u, o > 0, where SO(q) and 2kt are identified with the trivial vector-
bundles over themselves. Then, recalling the definitions of 0 and h we have an
analogous decomposition for the deRham complex of 3r U and the follow-
ing three lemmas have easy but tedious proofs.

(4.2) LEMMA. T*(t’u’) C Eo<s<tAS’t-s’u’v(]lTl SO(q)).

(4.3) L.MMA. If A(SO(q)) then

SO(q))

and it is 0 if s

(4.4) LEMMA. (A’t’"’(hTI U)) c As-l’t’u’v(] X V).

Applying (4.2), (4.3) and (4.4) we get:

(4.5) PROPOSITION.
(- 1, O, O) respectively.

p and h are trihomogeneous of tridegrees (0, O, O) and

Therefore for all > 0 we have

(4.6)

where PiJi 1. And comparing bidegrees we have

d#h + hd#= 0 and dq,oh +hdl, o (4.7)
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Hence for u, v > 0 we obtain

(4.8)

where hlc + dhl =jtpt- 1. Thus J202 "--1 and we have the following
result.

(4.9) THEOREM. J2: E2(o=0) E2()-

5. E2(#’) is finite-dimensional for 3r Riemannian and M closed

A smooth foliation is called transitive if evaluating all its infinitesimal
transformations at each point we get all the tangent vectors [5].

(5.1) THEOREM [5]. If a smooth closed manifold carries a transitive foliation
then the second term of its spectral sequence is finite-dimensional.

Clearly every transversely parallelizable foliation is transitive, (this is false
for Riemannian foliations). Then, going back to our cases in Sections 2 and 4,
we see that #" is transitive, and if M is closed so is M. Thus we have the
following consequence.

(5.2) COROLLARY. IfM is closed then E2() is finite-dimensional.

By (3.11), h" - can be taken such that hOz Ozh for each Z in so(q),
then hlOz Olzhx and

(5.3)

(5.4) PROPOSITION. J2" E2(0-o) - H(EI()ol-o).
Proof. It follows because we have the restrictions

Et({o=o) Ex(,)a..o and

where PlJl 1 and jp 1 hc + h.^ 3
By (2.6), (2.8) and (2.15) we have A A;= (R) Aso(q)*, lz 1 (R) iso(q)z

for Z so(q), and d#= d#(R) 1. Then Ex(-) H(Ai=0, d#) (R) Aso(q)*
and ilz 1 (R) so(q)Z so

=/-/(L-o,
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Since Ai_o
restrictions

0, .,. and p preserves the trigraduation of we have the

(5.6)

which are compatible with d and d, and such that 0j 1. Hence we
obtain the homomorphisms of bigraded differential algebras,

Jx U(i d,d)ox o El(,)ix.-o, ox-o,-o, (5.7)

where PlJl 1. Also, since h is of tridegree (-1, 0, 0) we have h(i_0) 0,
and by (5.5),

hl(El()il..o,o=.o) O.

Thus, as in (5.4), we obtain

EI(. ) El()ix_o, ox.. 0 and E:(’) H(El()ix...o,o.=o). (5.9)

(5.10) THEOREM. If a smooth closed manifold M carries a Riemannian

foliation then E2(") is finite-dimensionaL

Proof Let o be the lift of - to the 2-sheeted coveting A of transverse
orientation of ’. Since M is closed so is M, thus from (2.18), (4.9), (5.2), (5.4)
and (5.9), Ez(o’) is finite-dimensional. Then so is E(o’) by standard
arguments.

6. The spaces E’ "(’) and E1’ (.’)

In the preceding section we have o=o A (i=o (R) A+so(q)*)o=o where
de= d over A and d= de(R) I over (Ai_ o (R) A+so(q)*)o_o This implies
that for0<v<p and0<u<q,

E,(o_o) E’() H’U-’ * H"’’ (6.1)
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where Hs’t’= H((.,.o (R) ASso(q)*)o_o, d#) for s / u. Then, from
(2.17), for 0 < v < p, we obtain

x,0(R)i),

where the derivative dl is decomposed as the sum of the operators on the right
side. Hence we have the following result.

(6.3) PROPOSITION. (i). E"() E"(’).
(ii) E"(,) E"(-) $ Ker(dl: Hl’’o -, E?’O(,e_o)).
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