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A FINITENESS THEOREM FOR THE SPECTRAL
SEQUENCE OF A RIEMANNIAN FOLIATION

BY
JESUS A. ALVAREZ LOPEZ

Introduction

Let M be a smooth closed manifold which carries a smooth foliation % of
dimension p and codimension ¢. A differential form w of degree r is said to
be of filtration > k if it vanishes whenever r — k + 1 of the vectors are
tangent to %. In this way the deRham complex of the differential forms
becomes a filtered differential algebra and we have the spectral sequence
(E,(%),d,) which converges after a finite number of steps to the (finite
dimensional) cohomology of M.

It is clear that EQO(F), EX%&F), Ef 1 P(F) and E§ P(F) are of finite
dimension but there are another vectorial spaces Ej>’(%#) that may be
infinite-dimensional as shown in the examples of G.W. Schwarz [7].

In [6], K.S. Sarkaria proves that E,(%) is finite-dimensional when % is
transitive. He uses techniques of functional analysis (constructing a 2-parame-
trix).

In [2], A. El Kacimi-Alaoui, V. Sergiescu and G. Hector prove that the
basic cohomology, [which is equal to E;°(%)) is finite-dimensional. They
prove it step to step for Lie foliations, transversely parallelizable foliations and
Riemannian foliations.

This paper establishes the following improvement of the two results above.

THEOREM. If a smooth closed manifold M carries a Riemannian foliation %
then E (&) is finite-dimensional.

To prove it we assume that & is transversely oriented and construct an
operation of a Lie algebra in E,(% ), where # is the horizontal lift of % to
the principal fiberbundle of oriented orthonormal frames with the transverse

Received January 9, 1987.

© 1989 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

79



80 JESUS A. ALVAREZ LOPEZ

Levi-Civita connection [4]. Then E,(% ) and E2(.¢ ) can be related by results
of [1] and by the above result of [6], the theorem follows.

This result has also been obtained recently by Sergiescu [6] but using
different techniques.

Finally, I want to express my deep gratitude to Xosé M. Masa Vazquez, who
is guiding me through this subject.

1. The spectral sequence associated to a foliation

Let M be a smooth manifold which carries a foliation % of dimension p
and codimension q. We may describe # by the exact sequence of vectorbun-
dles

0-TF>TM - Q - 0, (1.1)

where T% C TM denotes the integrable subbundle of vectors of M tangent to
F,and Q = TM /T is the normal bundle.

The spectral sequence (E;(&), d;) associated to & arises from the follow-
ing filtration of the deRham complex (A4, d) of M:

Fk(A4")y = {a€A/i,(a) =0 forv=X, A -+ AX,_ .1, X, € TTF}
(1.2)

With this decreasing filtration, (A4, d) is a graded filtered differential algebra.
Since F9*}(A) = 0,(E,(¥), d;) collapses at the (¢ + 1)-th term and is con-
vergent to Hpp(M).

The choice of a Riemannian metric on M defines a subbundle » = T# * C
TM and a splitting o: Q — TM of (1.1) such that 0(Q) = ». Then (4,d)isa
bigraded differential algebra if we define

Au,v —_ I‘(AUT*.dfr® Auv*) = I‘A"T*f®cm(M)I‘A“V* (13)

for0<u<gand0<v<p.

The exterior derivative d may be decomposed as the sum of the bihomoge-
neous operators dg, d,, and d, _; of bidegrees (0,1), (1,0) and (2, —1)
respectively, which satisfy

d}= 0, d22,_1 = 0, dfdl,o + dl,od‘g': O, (1 4)

di0dy 1+ dy _1d1 =0, dlo+dy dg+dgd, =0.
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The filtration of 4 may be represented by

FH(A) = @ A% .

u=k

Hence we have the following well known theorem.

(1.6) THEOREM [3]. We have the following identities of bigraded differential
algebras.

(@) (Eo(F), do) = (4, dy),

(i) (E(F), d)) = (H(4,dg), dy )

It follows that E,(¥)= H(H(A,dg), d; o), Ep%F)=A,(F), and
E;%(F) = H,(F), where A,(F) and H,(F) are respectively the algebra of
basic forms and the basic cohomology of %.

2. Riemannian foliations

Assume that in Section 1, # is Riemannian and transversely oriented. Let
m: M — M be the pnnc1pal SO(g)-bundle of oriented orthonormal transverse
frames. We have on M the transverse Levi-Civita connection « with curvature
Q and the transversely parallelizable foliation %, where T'# is the horizontal
lifting of T.% [4], which satisfy

dim(#) =p and codim(F) = q + ¢,,

where g, = dim(SO(q)) = 3q(q — 1). Let # denote the horizontal lifting of »
and V the vertical subbundle. T#, # and V are preserved by the action of
SO(g) on TM.

Let (A, d) denote the deRham complex of M, which is a trigraded algebra
if we set

A5 = T(NT*#F® N5* @ NV*) (2.1)
for 0 < s < g4, 0 <t <gqand 0 < v < p. Thus, if we define
A= @ A (22)

st+t=u

A A

for0<u<gqgy+qgand0<v<p,(4,d)isa blgraded differential algebra

A

from which the spectral sequence (E,( %), d, ;) arises according to Section 1.
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The exterior derivative d may be decomposed as the sum of the bihomoge-
neous operators dg, d1 o and d2 _1 of bidegrees (0,1), (1,0) and (2, —1)
respectively, satisfying the analogue of (1.4). Then (1.6) shows that

(E(F),d)) = (H(4,dg), d, ). (2.3)

Let (so(q),1, 6, A, d /) be the operation of so(q) associated with the princi-
pal SO(g)-bundle #: M — M and w* the algebraic connection, with curvature
Q*, corresponding to w, (Section 8.22 of vol. III of [1]). Let (E, (A,_O), d)
denote the spectral sequence corresponding to the bigraded differential algebra
(Ag-o» ).

The homomorphism 7*: 4 — A can be regarded as an isomorphism

7*: A —> A;_0.9-0- (2.4)

We will let 4 = 4;_ 4.0

For Z € s0(q), i, and 8, are trihomogeneous of tridegrees (—1,0,0) and
(0,0,0) respectively. Hence, comparing bidegrees in i;d + di; = 6, and df,
= 0,d we obtain

0,dg=dgl,, BZJI,O = ‘il,ooz’

from which we can derive in cohomology the operation (so(q), i,
01’ 1('9- )’ dl)
The algebraic connection w*: so(q)* = A% c A satisfies

Im(w*) € 4%° N Ker(dg) = EX(F) [2];
then
wf = w*: s0(q)* - EP(F)

is an algebraic connection for (so(q), i;, 0, El(j' ), dl).
We have the isomorphism of graded algebras (Section 8.4 of vol. III of [1]):

fiAo® Aso(q)* =5 4, a® ¢~ a-wt(s). (2.6)



A FINITENESS THEOREM 83

According to the identification given by f we obtain (Section 8.7 of vol. 111
of [1]):

iz =Ww ® iso(q)Z’ (2.7)
0,=0,21+1®86,,,;, (2.8)
d=w®d,,\+dyg+hy+V,,®1, (2.9)

where Z € so(q), w is the degree involution, V is the covariant derivative in
A associated with w*, and dsoq)» 4o and dg are defined by

so(q) 2 Zlu‘(e ) so(q)e;? (2.10)
= 2wh, ® p(e*), (2.11)

l
- Zz"w”(ﬂ*(e*[)) ® Lo(grer (2.12)

being e*/, e, a pair of dual bases for so(q)* and so(q), and p(e*') is the
multiplication by e*'.
Over Ay_, we have

d=-w®d,,+hg+V,.,®1. (2.13)

For all X,Y € I'TM, w(X) = 0 and Y € I'TF implies that (X, Y]) = 0
[4]. Hence we can regard Q* as

Q*: 50(q)* - TAZ%* = 4%20 = 429 ® 1, (2.14)

and so kg is trihomogeneous of tridegree (—1,2,0).

According to the bigradation of 4,_,, V,_, may be decomposed as the sum
of the bihomogeneous operators V;_o.¢.1, V,;=0,1,0 and V,_., —; of bidegrees
(0,1), (1,0) and (2, —1) respectively. Then, by comparing bidegrees in (2.9)
and (2.13) we obtain that over 4,

dji'= Vi-O;O,l ®1= dﬁ@ 1, (2.15)

dig=w®d,,,+dy+Vig10® 1+ hg, (2.16)
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and over 4,_,,
dig=-w®d, g+ Vieg,100 1+ hg. (2.17)
We have analogous results for (so(q), i}, 8;, E;(%#), d,) with w}.

(2.18) PROPOSITION. H(El(f )o,=0) is finite-dimensional if and only if
H(E(F )i, =0,6,=0) IS ﬁmte-dzmenszonal

Proof. Since so(q) is reductive it follows that H(El(ﬂA' )8,-0) has finite
type if and only if H(E,(# )i, =0,6,=0) has finite type (Corollary VI of Section
9.5 of vol. III of [1]). The proof is completed because we have that E* "(.9" )=
Oif u>g+qgyorv>p. O

3. Invariant cohomology

Let M and N be smooth manifolds. N is assumed to be connected,
oriented and of dimension n. Let m,, and 7, denote the canonical projections
of M X N over M and N respectively. By f: A, (M X N) = A(M) we
mean the integration along the fiber of the trivial oriented fiberbundle =,,:
MXN - M.

For r > 0 and any ¢ € A(N) we may define the linear homogeneous
operator of degree r — n

I,: A(MMXN) > A(M), aw fNaAw;}‘(¢). (3.1)

Now let ¢ denote a fixed element of A%(N) such that [y¢ = 1. Then
I,d=dl, and I;m} =1. Fix b€ N and let j,: M - M X N denote the
inclusion opposite b.

(3.2) THEOREM (Section 4.4 of vol. II of [1]). There exists a linear homoge-

neous operator I: A(M X N) —> A(M) of degree —1 such that I, — j* =
dl + ld.

Proof. Let U be a contractible open neighbourhood of b. Given y € AX(U)
such that [,y = 1 there exists X € A" '(N) such that ¢ — ¢ = dX.
Let A: M X U —» M X N denote the inclusion. ¢ determines an operator
I, A(M x U) - A(M)

such that  \* =1,
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Let H: UX I — U be any homotopy connecting 1, with cte,: U — b
(I = [0,1]). Thus we have the homogeneous linear operator of degree —1,

h: A(M X U) > A(M X U), a= fis,,(1y X h)*a - dt,
I

satisfying (1,, X cte,)* — 1 = dh + hd. If we define [ = I,w — I;ﬁ}\*, the
theorem follows. O

Let G be a compact Lie group of dimension n and T: M X G - M an
action. For each a € G we define T, to be the diffeomorphism of M given by
the restriction of T to M X {a}, and let R, and L, be the right and left
translations of G. Assume that G has a left-invariant orientation and let A
denote the unique left-invariant n-form such that [;A = 1. We obtain the
homogeneous linear operator

p=LT*: A(M) > A(M), ¢~ fT*eAnzA. (3.3)
G

By A;(M) and H,;(M) we mean the differential subalgebra of T-invariant
differential forms and the T-invariant cohomology of M respectively. Let j:
A,(M) - A(M) be the inclusion.

(3.4) PROPOSITION (Section 4.3 of vol. Il of [1]). pj = 1.

(3.5) THEOREM (Section 4.3 of vol. Il of [1]). If G is compact and connected
then

j*: Hy(M) > H(M).

Proof. From (3.4) we obtain p,j, = 1. Let e denote the identity element
of G. According to (3.2) we can define a linear homogeneous operator

I: A(M X G) - A(M)

of degree —1 such that I, —j* = dl + ld. Then for h = IT* we obtain
je—1=dh+hd. O
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Let J: G X G = G be the smooth map defined by (a, g) = a~'ga. For any
a € G the restriction of J to {a} X G determines the interior automorphism
J, = R,L,-1,. Then we define the homogeneous linear operator of degree 0,

n = IJ* A(G) > A(G), ¢~ fI*eAnzd. (3.6)
G

We have the differential subalgebra of A(G) given by
Ap_1(G) = ) Ker(J* - 1). (3.7)
aeG

Let H;._,(G) denote its cohomology and let it A,.,(G) = A(G) be the
inclusion. With the same arguments as in (3.4) and (3.5) we get the following
two results.

(3.8) PROPOSITION. 17i = 1.

(3.9) THEOREM. If G is compact and connected then iy: Hj.1(G) 5 H(G).

(3.10) LeMMA. If G is compact and connected for defining I in the proof of
(3.5) (following the proof of (3.2)) we can choose Y and X belonging to
Ay i(G) and H: U X I — U satisfying R ,H, = L, H, ., for any a € G and
any g € U where H,: I — U is the restriction of H to {g} X I.

Proof. Because G is compact we can take the canonical biinvariant Rie-
mannian metric on G. For ¢ > 0 such that exp: B(0, ¢) = B(e, ¢), U = B(e, ¢)
is contractible and we can take the homotopy

H:UXI-> U, (g,t)~exp((1-1)-log(g))

connecting 1, with cte,: U — e.

For g € U, H, is the unique geodesic in U joining g with e and defined in
I. Hence R, H, = L, H; ,: I > B(a,¢) because both ones are the unique
geodesic in B(a, &) joining ga with a and defined in I.

Let © be the biinvariant volume form corresponding to the above Rieman-
nian metric on G. Then A = (1//;0) - © is biinvariant and thus nA = A.

Let us take ¢ € 4,(U) and X € A" Y(G) such that [;¢ =1 and dX = A
— ¢. For any a € G, since J, is an isometry with e as fixed point we have
ny € A%(U). From (3.8) and (3.9) we obtain [;ny = ;¢ =1, and on the
other hand dnX = ndX = A — ny. So we can define / using 7y, nX and
this H. O

(3.11) PROPOSITION. In the proof of (3.5) I can be taken such that T,h = hT,
for any a € G.
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Proof. Assume that [ is defined as in (3.10). Fix ¢ € A"(M) and x € M.
Then

(T*¢), € Y 4°(G,NT*M),

st+i=r

and its component of degree 1 may be represented by

(T*¢), = Ea ®y, € NTIT*M ® A4(G).

For any a € G we have T,T = T(1 X R,) and T = T(T;,-1, X L,), so we
obtain

T*T* = (1 X R,)*T* and (T, X L,)*T*.

On the other hand, since G is connected the right and left translations in G are
orientation-reserving. Hence we have

(LDT2)(x) = [(T*T9); - X
= JAXR)(T*), - X
G
= L. R *
;a, fG o
= Ea,- . fy,. . R{a-x)X
i G
= Yo [ LgyX
i G
= Ta*ZT:‘l)ai : f(L:Yi) - X
i G
= Ta*/(Ta'l) X La)*(T*(#)]J; <X
G

=T [(T*)a- X
G

= T,*(IxT*¢)(xa)
= (T*IxT*$)(x).
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Let £ = I;I;)\*T*Ta*qb and { = Ta*f‘&fzk*T%. We have
¢(x) = j;;(flia/ar(l X H)*T*T*¢ - dt)x Yy
= f(fia/ar(l X H)*(1 X R,)*(T*¢), - dt) Y
G\’I

= ;W(“i) : L(ﬁia/azH*R:Yi : dt) Y,
¢(x) = T ([, AN T*¢)(xa)

= Ta*‘/;;(flia/ar(l X H)*(T*‘i’)ia . dt) Y

= Ta*,/G()[Iia/ax(l X H)*(Tigm1y X L,)*(T*$)} - dt) Y

= Zw(ai) : L(flia/axH*L:Yi ' dt) Y.

For any g € U and for any i it is easy to prove that
(ia/a:H*RZ‘Yi - dt) .= HSRZv,,
(iajaH*LY; - dt) = HFLYY;

in AY(I). Then
(j;ia/axH*R:Yi : dt)(g) = j;Hg*R:Yi = LHJfg)L:Yi

- (fl,-a/a,H*L:y,- : dt)(J(g))

and 0 we obtain
€(x) = Zw(a) - [ (( fissau*LyY,- dt)f,,) Y
g ([ fonin- o) o

= Zw(a)- [, ( flia/a,H*L:vi'dt) = 8(x).

Therefore, recalling the definition of / and A, the theorem follows.

a
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4. Ez(f‘fa-o) = Ez(j)

We consider a Riemannian and transversely oriented foliation % of a
manifold M. In this section the notation established in Section 2 remains in
force. Then, let T: M X SO(q) > M be the action of SO(q) on M. It
follows that the algebra Ao-o is equal to the algebra of T-invariant differential
forms on M, and let j: A,_, — A be the inclusion. Since SO(q) is compact
and connected, according to Section 3 we can construct the linear homoge-
neous operators p: A- Ao-o and h: A > A4 of degrees 0 and —1 respec-
tively, such that pd =dp, p j=1land jp—1= dh + hd.

The deRham complex of M X SO(q) may be decomposed as the direct sum
of the following spaces

A”"“"’(M X SO(q)) = I‘(A"(T*fx S0(q)) ® A“(%* x SO(q))

A (V* x SO(q)) ® A°(M x T*SO(q))) (4.1)
for s,t,u,v > 0, where SO(q) and M are identified with the trivial vector-
bundles over themselves. Then, recalling the definitions of p and & we have an
analogous decomposition for the deRham complex of M X U and the follow-
ing three lemmas have easy but tedious proofs.

(4.2) LEMMA. T*(A"*“°) C Ty, ., A%~ % (M X SO(q)).
(4.3) LEMMA. If ¢ € A(SO(q)) then
I¢(As,t,u,v(M X So(q)) - /ft,u,v,
and it is 0 if s # q, — deg(¢).
(4.4) LEMMA. A(A5>%°(M X U)) € A°~L5%9(M X U).
Applying (4.2), (4.3) and (4.4) we get:

(4.5) PROPOSITION. p and h are trihomogeneous of tridegrees (0,0,0) and
(—1,0,0) respectively.

Therefore for all i > 0 we have
A .j[ A
Ei(A0=0) ? E(%) (4.6)
where p, j; = 1. And comparing bidegrees we have

dgh+hdg=0 and d, oh+ hd) ,=jo — 1. (4.7)
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Hence for u, v > 0 we obtain
hy: Ef(F) —» Ef~Lo(F) (4.8)

where hlcf1 + aflh1 =j,p, — 1. Thus j,p, =1 and we have the following
result.

(4.9) THEOREM. j,: Ey(dy_o) — Eo(F).

5. E,(%) is finite-dimensional for % Riemannian and M closed

A smooth foliation is called transitive if evaluating all its infinitesimal
transformations at each point we get all the tangent vectors [5].

(5.1) THEOREM [5]. If a smooth closed manifold carries a transitive foliation
then the second term of its spectral sequence is finite-dimensional.

Clearly every transversely parallelizable foliation is transitive, (this is false
for Riemannian fohatlons) Then, going back to our cases in Sections 2 and 4,

we see that & is transitive, and if M is closed so is M. Thus we have the
following consequence.

(5.2) COROLLARY. If M is closed then E2(.9?'A' ) is finite-dimensional.

By (3.11), h: A — A can be taken such that 6, = 6,k for each Z in so(q),

hl(El(j)01=0) = El(-aj)ofo- (5~3)

(5.4) PrOPOSITION.  j,: Ez(/fo_o) 3 H(El(.”f )6,=0)-

Proof. It follows because we have the restrictions

A

j A A
EI(A0=0) *Tll—" El(j)&-o and  hy: E\(F)e,-0 = Ei(F)e,-0

where p,j, =1 and j,p, — 1 = hyd, + dlh1 O

By (2.6), (2.8) and (2.15) we have A= A,_Q ® Aso(q)*, 1, =1® i,z
for Z € so(q), and dg=dz® 1. Then E\(F) = H(A;-¢, d#) ® Aso(q)*
and iz =1 ® i,z SO

E(F)i-o=H(A,_o dg). (5.5)
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Since ff,._o = A%>" and p preserves the trigraduation of 4 we have the
restrictions

A=4;54-0 # Aico, (5.6)

which are compatible with dz and dg, and such that pj = 1. Hence we
obtain the homomorphisms of bigraded differential algebras,

jl A A
E(F) &= H(A;_g, dg) gm0 = Ei(F)i1=0,0,0, (57

where p, j;, = 1. Also, since & is of tridegree (—1,0,0) we have h(/f,._o) =0,
and by (5.5),

hy(E,(#)i=0,6,-0) = 0. (5.8)
Thus, as in (5.4), we obtain

El(‘g‘) =E1('¢)i1‘0,01"0 and E2(‘g)=H(E1(‘¢)i1'0»01'0)' (59)

(5.10) THEOREM. If a smooth closed manifold M carries a Riemannian
foliation F then E,(F) is finite-dimensional.

Proof. Let % be the lift of # to the 2-sheeted covering M of transverse
orientation of & Since M is closed so is M, thus from (2.18), (4.9), (5.2), (5.4)
and (5.9), E,(%) is finite-dimensional. Then so is E,(%#) by standard
arguments. 0O

6. The spaces E) () and E3 (F)
In the preceding section we have ffo_o =A@ (/f,._o ® A*so(q)*)y-owWhere

dg=dg over A and dg=dz® 1 over (A,_, ® A*s0(g)*)y—,. This implies
that for0 <v <pand0 <u < g,

E¥*(dgeo) = EFY(F) O H* 10 - @ H"O? (6.1)
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where H®"' = H"((/f}’_’o ® N50(q)*)gng, d#) for s+ t=u. Then, from
(2.17), for 0 < v < p, we obtain

EX(Ago) = EX*(F)
aﬁl dll

E}°(Agop) = EPY(F) @ HYO0

(Vi=0,1,0®)x

Py

d, dy —(W®d5(5))e

E}'(dg_0) = E}'(F) ®  H'M o H 62)

where the derivative Jl is decomposed as the sum of the operators on the right
side. Hence we have the following result.

(6.3) PrOPOSITION. (i). E;’ (%) = EY (F). X
() Ey(#)=Ey(F)e Ker(d;: H**" > E}*(4,_,)).

REFERENCES

1. W. GREUB, S. HALPERIN and R. VANSTONE, Connections, curvature and cohomology, Academic
Press, Orlando, Florida, 1973-1975.
2. A. EL KaciMi-ALaoul, V. SERGIESCU and G. HECTOR, La cohomologie basique d’un feuilletage

ri ian est de di ion finie, Math. Zeitschrift, vol. 188 (1985), pp. 593-599.

3. F. KAMBER and P. TONDEUR, Foliations and metrics, Progress in Mathematics, vol. 32 (1983),
pp. 103-152.

4. P. MOLINO, Feuilletages riemanniens, Cours de ITléme cycle, Montpellier 1983.

5. K.S. SARKARIA, A finiteness theorem for foliated manifolds, J. Math. Soc. Japan, vol. 30 (1978),
pp. 687-696.

6. V. SERGIESCU, Thesis, Lille, 1986.

7

. G.W. SCHWARZ, On the deRham cohomology of the leaf space of a foliation, Topology, vol. 13,
(1974), pp. 185-187.

UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
LA CorufNa, SPAIN



