L^{p} WEIGHTED NORM INEQUALITIES FOR THE SQUARE FUNCTION, $0<p<2$

BY

J. Michael Wilson

1. Introduction

In a recent paper [4], the author has settled the following question of C . Fefferman [2]: what is the "smallest" homogeneous, positive operator \tilde{M} such that

$$
\begin{equation*}
\int\left|f^{*}\right|^{2} V d x \leq C(\tilde{M}) \int S^{2}(f) \tilde{M} V d x \tag{1}
\end{equation*}
$$

for all weights V and all $f \in C_{0}^{\infty}$? It was conjectured [2] that (1) might hold for $\tilde{M}=M$, the Hardy-Littlewood operator, but this turned out to be false [1].
However, the "minimal" \tilde{M} 's discovered in [4] are only slightly larger than M. Therefore, it is either very surprising or very natural that the L^{p} version of (1) does hold, if $0<p<2$; and this is the result which we shall prove.

We shall now define our terms. For $Q \subset \mathbf{R}^{d}$ a dyadic cube, we let $l(Q)$ denote its sidelength and $|Q|$ its Lebesgue measure; Q will always denote a cube and all cubes are assumed dyadic. For $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{d}\right)$ and Q a cube we define

$$
f_{Q}=\frac{1}{|Q|} \int_{Q} f
$$

If k is an integer we let

$$
f_{k}=\sum_{l(Q)=2^{-k}} f_{Q} x_{Q}
$$

where χ_{Q} is the characteristic function of Q. We set

$$
f^{*}(x)=\sup _{k}\left|f_{k}(x)\right| .
$$

Received April 27, 1987.

For $l(Q)=2^{-k}$ we define

$$
a_{Q}(f)=\left(f_{k+1}-f_{k}\right) \chi_{Q}
$$

We define the dyadic square function

$$
S(f)=\left(\sum_{Q \ni x} \frac{\left\|a_{Q}(f)\right\|_{2}^{2}}{|Q|}\right)^{1 / 2}
$$

Lastly, the dyadic Hardy-Littlewood maximal operator, $M f$, is defined by

$$
M f(x)=\sup _{Q \ni x}|f|_{Q}
$$

All of these are standard definitions. This next one is not quite so standard. For every cube Q and non-negative weight V we set

$$
Y(Q, V)= \begin{cases}\frac{\int_{Q} M\left(\chi_{Q} V\right)}{\int_{Q} V} & \text { if } \int_{Q} V>0 \\ 1 & \text { if } \int_{Q} V=0\end{cases}
$$

The functional $Y(Q, V)$ measures how "peaky" V is on $Q: Y(Q, V)$ is large if V has most of its mass, relative to Q, concentrated on a small set. It is a natural object to look at when studying weighted inequalities for the square function, because for any weight V [5],

$$
\begin{equation*}
\sup _{f \in \mathscr{E}_{0}^{\infty}} \frac{\int\left|f^{*}\right|^{2} V d x}{\int S^{2}(f) V d x} \sim \sup _{Q} Y(Q, V) \tag{2}
\end{equation*}
$$

i.e., the left-hand side of (2) is bounded above and below by constant multiples of the right-hand side, where the (positive) constants depend only on d.

Let $\psi:[0, \infty) \mapsto[1, \infty)$ be increasing and satisfy $\psi(2 x) \leq A \psi(x)$ for some A. Define

$$
M_{\psi} V(x)=\sup _{Q \ni x} \psi(\log Y(Q, V)) V_{Q}
$$

In [4] it is proved that, if $\Sigma 1 / \psi(k) \leq 1$ then

$$
\begin{equation*}
\int\left|f^{*}\right|^{2} V d x \leq C(A, d) \int S^{2}(f) M_{\psi} V d x \tag{3}
\end{equation*}
$$

for all f and V as above, and that (3) fails, for any finite constant, if $\Sigma 1 / \psi(k)=\infty$.

An immediate consequence of this theorem is that (1) holds when $\tilde{M}=$ $M(M)$. (Indeed, any M_{ψ} is going to be much smaller than $M(M)$.) These operators M_{ψ} are just a little larger than M. It turns out that when $0<p<2$, we get an extra factor out in front, of the form $2^{\varepsilon(p-2) k}$-here k is a positive integer which depends on Q-that completely washes out the $\psi(\log Y(Q, V))$ (the meaning of this will become clear in the next section). This is what makes the theorem true.

We prove our theorem in Section 2. We give as a corollary (of the proof) a sufficient condition for the two-weight inequality

$$
\int\left|f^{*}\right|^{p} V d x \leq \int S^{p}(f) W d x
$$

to hold.
At the end we make some remarks about the analogues of these results for the continuous square function, and when $p>2$.

Acknowledgement. We wish to thank the editor and the referee for helpful suggestions regarding the exposition and style of this paper.

2. The theorem

We shall prove:
Theorem. For every $0<p<2$ there is a $C(p, d)<\infty$, such that

$$
\int\left|f^{*}\right|^{p} V d x \leq C(p, d) \int S^{p}(f) M V d x
$$

for all $f \in \mathscr{C}_{0}^{\infty}$ and non-negative $V \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{d}\right)$.
Our first and only lemma is an analogue of Lemma 1 in [4].
Lemma. Let $0<p<\infty$ and let A be a positive number. Let \mathscr{F} be a family of cubes such that $Y(Q, V) \leq A$ for all $Q \in \mathscr{F}$. If

$$
f=\sum_{Q \in \mathscr{F}} a_{Q}(f)
$$

and if $f^{*} \in L^{p}(V d x)$, then

$$
\int\left|f^{*}\right|^{p} V d x \leq C(p, d) A^{p / 2} \int S^{p}(f) V d x
$$

Proof. Let $V\{\cdots\}$ denote $V d x$ measure. By standard arguments, it is enough to show that, for all $\lambda>0$,

$$
\begin{equation*}
V\left\{f^{*}>2 \lambda, S(f) \leq \gamma \lambda\right\} \leq \varepsilon(p) V\left\{f^{*}>\lambda\right\} \tag{4}
\end{equation*}
$$

for some $\gamma>C(p, d) A^{-1 / 2}$. Let $\left\{Q_{\lambda}^{i}\right\}$ be the maximal cubes such that $\left|f_{Q_{\lambda}^{i}}\right|>\lambda$. It is enough to show that

$$
\begin{equation*}
V\left\{x \in Q_{\lambda}^{i}:\left(f-f_{Q_{\lambda}^{i}}\right)^{*}>(.9) \lambda, S(f) \leq \gamma \lambda\right\} \leq \varepsilon(p) V\left(Q_{\lambda}^{i}\right) \tag{5}
\end{equation*}
$$

for all Q_{λ}^{i} such that $\left|f_{Q_{\lambda}^{i}}\right| \leq(1.1) \lambda$. So fix Q_{λ}^{i} as above, and let $\left\{Q_{k}\right\}$ be the maximal subcubes of Q_{λ}^{i} which are elements of \mathscr{F}. A little thought shows that we must have $f_{Q_{k}}=f_{Q_{\lambda}^{i}}$, and therefore

$$
\text { left-hand side of } \begin{aligned}
(5) & \leq \sum_{k} V\left\{x \in Q_{k}:\left(f-f_{Q_{k}}\right) *>(.9) \lambda, S(f) \leq \gamma \lambda\right\} \\
& =\sum_{k} V\left(E_{k}\right)
\end{aligned}
$$

By Theorem 3.1 of [1], each E_{k} satisfies

$$
\frac{\left|E_{k}\right|}{\left|Q_{k}\right|} \leq B \exp \left(-C \gamma^{-2}\right)
$$

where B and C are positive constants that depend on d. We have $Y\left(Q_{k}, V\right) \leq$ A for each k, and therefore [3, p. 23]

$$
V\left(E_{k}\right) \leq C(d) A\left(\log \left(1+\frac{\left|Q_{k}\right|}{\left|E_{k}\right|}\right)\right)^{-1} V\left(Q_{k}\right)
$$

and thus we can get (4) by taking $\gamma \sim A^{-1 / 2}$. QED.
Henceforth we shall assume that p is fixed, $0<p<2$.
We shall need one more definition. Let f be as in the lemma, i.e.,

$$
f=\sum_{Q \in \mathscr{F}} a_{Q}(f)
$$

for some \mathscr{F}. For any cube Q^{*} we define

$$
c_{Q^{*}}(f)=\left(\sum_{Q^{*} \subseteq Q} \frac{\left\|a_{Q}(f)\right\|_{2}^{2}}{|Q|}\right)^{p / 2}-\left(\sum_{\substack{Q^{*} \subset Q \\ Q^{*} \neq Q}} \frac{\left\|a_{Q}(f)\right\|_{2}^{2}}{|Q|}\right)^{p / 2}
$$

Clearly, $S^{p}(f)=\Sigma_{Q \ni x} c_{Q}(f)$, and each $c_{Q} \geq 0$. More importantly, $c_{Q}(f)=0$ if $Q \notin \mathscr{F}$.

By the monotone convergence theorem, it is enough to prove our theorem when V is bounded. For k a non-negative integer, let \mathscr{F}_{k} be the collection of cubes Q such that $2^{k} \leq Y(Q, V)<2^{k+1}$; every Q will be in some \mathscr{F}_{k} since $V \in L^{\infty}$. Set

$$
f_{(k)}=\sum_{Q \in \mathscr{F}_{k}} a_{Q}(f)
$$

If $f \in \mathscr{C}_{0}^{\infty}$ and some $f_{(k)} \notin L^{p}(V d x)$, then $S(f) \notin L^{p}(V d x)$, and there is nothing to prove. Therefore we may assume that each $f_{(k)} \in L^{p}(V d x)$. We write

$$
\begin{align*}
\int\left|f^{*}\right|^{p} V d x & \leq C \sum_{k}(1+k)^{2} \int\left|f_{(k)}^{*}\right|^{p} V d x \\
& \leq C(p, d) \sum_{k}(1+k)^{2} 2^{k p / 2} \int S^{p}\left(f_{(k)}\right) V d x \tag{6}\\
& =C(p, d) \sum_{k}(1+k)^{2} 2^{k p / 2} \int \sum_{x \in Q \in \mathscr{F}_{k}} c_{Q}\left(f_{(k)}\right) V d x \\
& =C(p, d) \sum_{k}(1+k)^{2} 2^{k p / 2} \sum_{Q \in \mathscr{F}_{k}} c_{Q}\left(f_{(k)}\right) V(Q) \\
& \leq C(p, d) \sum_{k}(1+k)^{2} \sum_{Q \in \mathscr{F}_{k}} c_{Q}\left(f_{(k)}\right) Y(Q, V)^{p / 2} V(Q) \\
& =C(p, d) \sum_{k}(1+k)^{2} \sum_{Q \in \mathscr{F}_{k}} c_{Q}\left(f_{(k)}\right) Y(Q, V)^{p / 2-1} \int_{Q} M\left(\chi_{Q} V\right) d x \tag{7}
\end{align*}
$$

$$
\begin{equation*}
\leq C(p, d) \sum_{k}(1+k)^{2} 2^{k(p / 2-1)} \sum_{Q \in \mathscr{F}_{k}} c_{Q}\left(f_{(k)}\right) \int_{Q} M V d x \tag{8}
\end{equation*}
$$

$$
=C(p, d) \sum_{k}(1+k)^{2} 2^{k(p / 2-1)} \int S^{p}\left(f_{(k)}\right) M V d x
$$

$$
\leq C(p, d) \int S^{p}(f) M V d x
$$

since $p / 2-1<0$. (Inequality (6) follows from the lemma and (7) is from the definition of $Y(Q, V)$.) The theorem is proved. QED.

The astute reader will have observed that inequality (8) has the following consequence.

Corollary. Let $\eta>p / 2$ and let V and W be non-negative weights. If for all cubes Q,

$$
Y(Q, V)^{\eta} \int_{Q} V d x \leq \int_{Q} W d x
$$

then

$$
\int\left|f^{*}\right|^{p} V d x \leq A(p, \eta, d) \int S^{p}(f) W d x
$$

for all $f \in \mathscr{C}_{0}^{\infty}$.
Remark. The author has a "machine" which turns dyadic results like the preceding into corresponding inequalities for the continuous square function(s). This machine, along with applications to singular integrals and Sobolev inequalities, will appear elsewhere [6].

Remark. If $2 \leq p<\infty$ then the right \tilde{M} is

$$
M_{\psi, p} V=\sup _{Q \ni x} \psi(\log Y(Q, V)) Y(Q, V)^{p / 2-1} V_{Q}
$$

where $\psi:[0, \infty) \mapsto[1, \infty)$ is increasing, $\psi(2 x) \leq A \psi(x)$, and

$$
\begin{equation*}
\sum_{k} \psi(k)^{-1 /(p-1)} \leq 1 \tag{9}
\end{equation*}
$$

The proof follows from arguments like those here and in [4], plus the additional fact that

$$
\sum_{k} S^{p}\left(f_{(k)}\right) \leq S^{p}(f)
$$

when $p \geq 2$. If the sum in (9) is infinite, then essentially the same construction as in [4] shows that the corresponding weighted norm inequality fails. We leave the details to the interested reader.

References

1. S.Y.A. Chang, J.M. Wilson and T.H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comm. Math. Helv., vol. 60 (1985), pp. 217-246.
2. C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc., vol. 9 (1983), pp. 129-206.
3. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.
4. J.M. Wilson, A sharp inequality for the square function, Duke Math. J., vol. 55 (1987), pp. 879-887.
5. \qquad , Weighted inequalities for the dyadic square function without dyadic A_{∞}, Duke Math. J.,
6. \qquad vol. 55 (1987), 19-49.

University of Vermont
Burlington, Vermont

