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L p WEIGHTED NORM INEQUALITIES FOR THE
SQUARE FUNCTION, 0 < p < 2

BY

J. MICHAEL WILSON

1. Introduction

In a recent paper [4], the author has settled the following question.of C.
Fefferman [2]: what is the "smallest" homogeneous, positive operator M such
that

flf*l Vdx <_ fs (f) Vdx (1)

for all weights V and all f C? It was conjectured [2] that (1) might hold for
M M, the Hardy-Littlewoo.d operator, but this turned out to be false [1].

However, the "minimal" M’s discovered in [4] are only slightly larger than
M. Therefore, it is either very surprising or very natural that the L P version of
(1) does hold, if 0 < p < 2; and this is the result which we shall prove.
We shall now define our terms. For Q c Rd a dyadic cube, we let I(Q)

denote its sidelength and QI its Lebesgue measure; Q will always denote a
cube and all cubes are assumed dyadic. For f L]oc(Rd) and Q a cube we
define

If k is an integer we let

A E  oxo
/(Q)=2-k

where Xo is the characteristic function of Q. We set

f*(x) sup IA(x)I.
k
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For I(Q) 2 -k we define

aQ(f)=(fk+l--f)Xa.

We define the dyadic square function

1/2

Lastly, the dyadic Hardy-Littlewood maximal operator, Mf, is defined by

Mf(x) sup Iflo.
Qx

All of these are standard definitions. This next one is not quite so standard.
For every cube Q and non-negative weight V we set

Y(Q, V)

 oM(xoV)
fQV if fov > 0

if fQV= O.

The functional Y(Q, V) measures how "peaky" V is on Q: Y(Q, v) is large if
v has most of its mass, relative to Q, concentrated on a small set. It is a
natural object to look at when studying weighted inequalities for the square
function, because for any weight V [5],

jlf*12Vdx
sup Y(Q, V); (2)sup

fW fS2(f)Vdx Q

i.e., the left-hand side of (2) is bounded above and below by constant multiples
of the right-hand side, where the (positive) constants depend only on d.

Let k" [0, ) [1, ) be increasing and satisfy k(2x) < A4,(x) for some
A. Define

M,V(x ) sup (log Y(Q, V)) VQ.
Qx

In [4] it is proved that, if Y’.l/q(k) < 1 then

flf*l-Vdx <_ C(A, d)fS(f)M+Vdx (3)
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for all f and V as above, and that (3) fails, for any finite constant, if
E1/k(k) m.
An immediate consequence of this theorem is that (1) holds when /

M(M). (Indeed, any Mq, is going to be much smaller than M(M).) These
operators Mq are just a little larger than M. It turns out that when 0 < p < 2,
we get an extra factor out in front, of the form 2(p-2)khere k is a positive
integer which depends on Qwthat completely washes out the +(log Y(Q, V))
(the meaning of this will become clear in the next section). This is what makes
the theorem true.
We prove our theorem in Section 2. We give as a corollary (of the proof) a

sufficient condition for the two-weight inequality

flf*lPVdx <_ fs(f)Wdx
to hold.
At the end we make some remarks about the analogues of these results for

the continuous square function, and when p > 2.

Acknowledgement. We wish to thank the editor and the referee for helpful
suggestions regarding the exposition and style of this paper.

2. The theorem

We shall prove:

THEOREM. For every 0 < p < 2 there is a C(p, d) < o, such that

flf*lPVdx <_ C(p, d) fSP(f)MVdx
for all f rg and non-negative V L]oc(Rd).

Our first and only lemma is an analogue of Lemma 1 in [4].

LEMMA. Let 0 < p < and let A be a positive number. Let be a family
of cubes such that Y(Q, V) <_ A for all Q . If

f= E aQ(f ),

and iff* LP(Vdx), then

flf*lPVdx <_ C(p, d)Ap/2 fsP(f )Vdx.
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Proof. Let V{... } denote Vdx measure. By standard arguments, it is
enough to show that, for all 2 > O,

(4)

for some 3’ > C(p,d)A-1/2. Let (Q} be the maximal cubes such that
IfQ,l > X. It is enough to show that

V{x Q: (f-fo,)* > (.9),, S(f ) < 3’,} < e(p)V(Q) (5)

for all Q such that Ife.l < (1.1)2. So fix Q as above, and let (Qk) be the
maximal subcubes of Q, which are elements of -. A little thought shows that
we must have fQk foA, and therefore

left-hand side of (5) < E V{ x Qk" (f fQk)* > (.9) X, S(f) < 3’X }
k

By Theorem 3.1 of [1], each Ek satisfies

IEkl -2

Okl <- B exp(-C )

where B and C are positive constants that depend on d. We have Y(Qk, V) <
A for each k, and therefore [3, p. 23]

V(Ek) < C(d)A(log(l + lEvi V(Qk),

and thus we can get (4) by taking ,/-- A-1/2. QED.
Henceforth we shall assume that p is fixed, 0 < p < 2.
We shall need one more definition. Let f be as in the lemma, i.e.,

f= E aa(f)
Q"

for some o. For any cube Q* we define

Ca,(f) E
Q*cQ
Q* =/= Q

2Ila0(f)ll 
IOl

p/2
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Clearly, SP(f) ,QcQ(f), and each CQ >_ O. More importantly, cQ(f) 0
if Q ’.
By the monotone convergence theorem, it is enough to prove our theorem

when V is bounded. For k a non-negative integer, let ’k be the collection of
cubes Q such that 2k _< Y(Q, V) < 2+ 1; every Q will be in some -k since
V L. Set

If f ego and some f(,) LP(Vd.x), then S(f) LP(Vdx), and there is
nothing to prove. Therefore we may assume that each f(k) LP(Vdx) We
write

flf* lPgdx <_ CE (1 + k )2flf(’)lPVdx
k

<_ C( p, d E (1 + k)2P/- fsP( f(, ) Vdx
k

(6)

C(p, d)E(1 + k) E cQ(f(k))Y(Q, V) p/2-1 fQM(XQV) dx
k Q’k

(7)

_< C(p, d) Y’ (1 + k)22k(P/2-1) E Co.(f(k)) foMVdxk O-’-’k
(8)

C(p, d)E(1 + k)22’(P/2-’fsP(f(k))MVdx
k

<_ C(p, d)fSP(f)MVdx
since p/2 1 < 0. (Inequality (6) follows from the lemma and (7) is from the
definition of Y(Q, V).) The theorem is proved. QED.
The astute reader will have observed that inequality (8) has the following

consequence.
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COROLLARY.
all cubes Q,

then

for all f

Let rl > p/2 and let V and W be non-negative weights. Iffor

Y(Q, V) nfQVdX < fQWdX,

flf*lPVdx <_ A(p, t, d)fSP(f)Wdx

Remark. The author has a "machine" which turns dyadic results like the
preceding into corresponding inequalities for the continuous square function(s).
This machine, along with applications to singular integrals and Sobolev
inequalities, will appear elsewhere [6].

Remark. If 2 < p < o then the right /r is

M, pV sup q (log Y( Q, V)) Y( Q, v) p/2-1VQ
Qx

where q: [0, o) [1, o) is increasing, q(2x) < Aq(x), and

Eq (k) 1/(p-1) 1. (9)
k

The proof follows from arguments like those here and in [4], plus the
additional fact that

k

when p >_ 2. If the sum in (9) is infinite, then essentially the same construction
as in [4] shows that the corresponding weighted norm inequality fails. We
leave the details to the interested reader.
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