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ON SEMIMARTINGALE DECOMPOSITIONS OF CONVEX
FUNCTIONS OF SEMIMARTINGALES

BY

ERIC CARLEN AND PHILIP PROTTER2

Let X be a semimartingale with values in Rd, and let X Xo + M + A
be a decomposition of X into a local martingale M and a chdlhg, adapted,
finite variation process A, with M0 A0 0. Let f: Rd --. R be convex. P.A.
Meyer showed in 1976 [6] that f(X) is again a semimartingale. We will give a
new proof of this result which moreover gives the semimartingale decomposi-
tion of f(X) in terms of uniform limits of explicitly identified processes.
The case where d 1 is already well understood. Indeed, the Meyer-

Tanaka formula allows us to give an explicit decomposition of f(X):

(1)

where f’ is the left continuous version of the derivative of f, L is the local
time of X at the level a, the measure/x is the second derivative of f in the
generalized function sense, and the term in brackets {... is the finite
variation term in a decomposition of f(X). See [8] for details on this
formula. Moreover in the case d 1 if B is a standard Brownian motion and
f(B) is a semimartingale, then f must be the difference of two convex
functions (see [3]), hence convex functions are the most general functions
taking semimartingales into semimartingales.
We now turn to the case d > 2, where f: Rd R is convex. Except in very

special cases (see [2], [4], [5], [7], [9], [10]) no formula such as (1) is known to
exist, except of course when f is if,2, and then the Meyer-It6 formula gives
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an explicit decomposition of f(X):

(2)

f(x,) =f(Xo) + s
j=

Of 1

i O2f+ fo + fo OXiOxj(Xs_)d[xi, x’]:
j=l

O<st

where X/= Xo + M/+ A{ denotes the semimartingale decomposition of the
jth component of the vector X of d semimartingales.

Let F denote the set of convex functions on Rd, and recall that convex
functions are always continuous. We equip F with the topology of uniform
convergence on compacts. A standard metric p for this topology is given by
p(f g) ]=12-npn(f g) where

sup If(x) g(x)l
Ixl <nOn(f; g)

1 + sup If(x) g(x)l"
Ixl <n

By an obvious convolution argument, 2 convex functions are dense in
(r, p).
We show here that if {f} is a sequence of d2 convex functions converging

to f in (F, p), and if fn(Xt) fn(Xo) + Nt + S’; is an appropriately chosen
decomposition of fn(Xt), then the corresponding local martingale terms N
and finite variation terms S converge respectively to N and S, where
f(Xt) f(Xo) + N + St, a decomposition of f(X). This gives a decomposi-
tion of f(X) in terms of limits of explicitly identified processes. The proof
consists essentially of verifying the hypotheses of a recent theorem of Barlow
and Protter [1].
To do this, we require the following lemma:

LEMMA. Let fn} be a sequence of j2 convex functions on Re, f convex on
Re, and lim P(fn, f) O. Then for each a > O,

sup sup Vfn(X) <-- C(a) < o,
n Ixl <,

where C(a) depends only on a and f.
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Proof Since P(fn, f) tends to 0, the variation of fn on (Ixl + 1} is
uniformly bounded in n by, say, V(a). Let x be some point in (Ixl _< } such
that

sup
Ixl

Let Un denote Vfn(Xn)/lVfn(Xn)l. Define q9 by n(t) fn(Xn + tUn). Then
q, is a (2 convex function on R. Therefore, for > 0, q,(t) > q’n(0)=
fn(X)" U If(Xn)l. Since qn is convex, q’,(t) > IVf(x)l for all positive
t. Thus

L( Xn "]- Un) fn( Xn) On( ) dt

Since Ixn + u,l a + 1 we have Ifn(Xn + Un) --fn(Xn)l V(a), and there-
fore [fn(xn)l < V(a). t3
The next theorem is our principal theorem. Because we wish to use the

result of [1], and also because of the simplifications entailed in the existence
of canonical decompositions, we consider in Theorem 1 the case where the
semimartingale X is in o1; (that is, X has a decomposition X Xo + M
+ A where Xo, [M,M]/2 and fldAsl are all in L1.) In Theorem 2 we
consider the general case where X is locally in o1; that is there exists a
sequence (Tn)n of stopping times increasing to z a.s. such that Xt/ T,ltTn > 01
is in 1 for each n. Note that if X is a continuous semimartingale, the X is
automatically at least locally in 1. We let I1" Ilov denote the H norm
(see [8]), and At* sups<tlAsl.

THEOREM 1. Let X be an Rd-valued semimartingale in o1. Let Xo 0
and X N + S be its canonical decomposition. For a > O, let

T inf{t > O" IXI > }.

Let f be a convex function, and let {fn} be a sequence of .2 convex functions
with limn P(fn, f) O. Then f(X) is a semimartingale with canonical
decomposition f(Xt) f(Xo) + M + At, and moreover, for each a > O, we
have,

lim II(Mn M)TIII 0,
noo

lim E{( A --A)-o, O,
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where

M[’ f Vfn(X_ ) dN

and

(3)

Proof We need to verify only that the hypotheses of Theorem 1 of
Barlow and Protter [1] are satisfied; specifically we must show that for each
a>0,

(4) lim E{ sup If(X)-f(X)[} =0,
n < T

and that there is a K < such that

(6)

supE{f0W"l dZ7 I} -<
n

supE{ sup IMtn I}
n t<_T

First observe that (4) is a trivial consequence of limn__,= P(fn, f) 0. Also,
note that using the lemma together with the Davis inequality,

E{ sup
<T f V.( X_) N <_ cE T’IVf(X_)I:Zd[N,N]s

<_ cC( a) E([ N, N];/2},
since IX_ is bounded by a on [0, T,]. The above holds for each n and since
the bound is independent of n, we have (6).
We next turn to (5). We treat separately the three terms in (3). First, again

using the lemma,
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which is independent of n. Second, let B denote the process

1 /yfor a2fn XjcB? -- Ox Oxj ( Xs- ) d[X Is.

Since fn is convex,

e2fn

is a positive matrix, and also d[Xi, xJ] is positive in the sense that for any
constants ai,..., ad, E.d,y=laiay[s i, XJ] is an increasing process. Thus B is
an increasing process. Next, let O denote the third term in (3); that is,

O<s<t

E
O<s<t

{fn(Xs) fn(X -) axe}

e2f
OX OXj (Ks-+ s) AXis AXis

where a AX for some A e [0, 1] by Taylor’s theorem. The convexity
of fn yields that D is also an increasing process.
Next observe that, letting V denote total variation on [0, T]:

(7) V,(AT) V,(fAfn(Xs_ ) dSs + B’ + D’)
< _,,.._.C(a]ISIT + B + D

However by the Meyer-It6 formula (2) and since the expectation of the (true)
martingale term is zero,

Since fn tends uniformly to f, and since E{f. Vfn(Xs_)dSs} is bounded by
C()E{ISIr.} independently of n, the right side of (8) is bounded by a K for
n sufficiently large, and hence for all n. Combining this with (7) and taking
expectations yields (5) and completes the proof, rn

We next turn to the general case which is handled by "prelocal" stopping:
Suppose X is a semimartingale with X0 0. Then as is well known (see, e,g.
[8, p. 192]) there exist stopping times Tk increasing to a.s. such that X7
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is in 1, each k, where

XtTk-__ X l(t < Tk) + XTk_ l(t > Tk)

Therefore, by taking Tk’’ to be T, A Tk, we can further assume without loss
that ]xrk’"- _< a, for a sequence T, as given in Theorem 1. We combine the
sequences to get T, increasing to oo a.s. such that [Xr.- < a andXr,,- 1,
each a. We then have:

THEOREM 2. Let X be an Rd-valued semimartingale with Xo O. Let T
be stopping times increasing to oo such that [xT"-I <_ a and Xr,- a1. Let
Xr-= N + S be the canonical decomposition, f be a convex function, and
fn a sequence of 2 convex functions with limn_,oo P(fn, f) O. Then f(X) is
a semimartingale with prelocal canonical decompositions

f(x)r’-= f(Xo) + M +A,;

moreover

where

lim IIMn, M II a,al 0
n

lim E{(An’a A")*} 0
n

Mt’ Vfn(X_) dN,

fo Vfn(Xs-) dat

lfo zf T-+ " .,j OXiOXj (xs-)d[xi’Xj]’

Of )T- }+ E A(x,) fn(X -) E
O<s<t

Proof. This is merely a localization of Theorem 1; since f is continuous
f(X)T-= f(Xr-). D

Remarks (i) Note that in case X is continuous the situation is much
simpler:

nA %(Xs) aSs,
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since there are no jump terms; decompositions are unique, hence there is no
need to invoke "canonical" decompositions; there is no need of "pre-local"
stopping, since stopping at T- is the same as stopping at T.

(ii) The general case where X0 need not be zero is easily handled: take
f(X) f(X) f(O), so that without loss of generality we can assume f(0)
0. Since X0 4: 0, one cannot assume that Is-I _< , however one can
construct T tending to a.s. such that Xr- r.> 01 < a. Since f(0)= 0
and f is continuous, f(xT-I{T>O)= f(x)T-I{I{-T>O}, and the proof now
proceeds analogously.

(iii) "Knowing" M and A in the decomposition f(X)r-=f(Xo)+
M / A also means we "know" a decomposition for f(x)T": namely, we can
take

(9) f(Xt) r’ =f(Xo)+ Mt + {A: + (f(Xr.) -f(Xr,_))llt>_r,,}.

Note however that we cannot in general combine these decompositions (9) to
obtain only one, because of the lack of a canonical way to choose them. (Of
course, in the continuous case this is not a problem.)

(iv) Finally we would like to point out that we have used the convexity of f
in two ways in the proofs of Theorems 1 and 2: first through the lemma to
control the size of f Vfn(Xs_)dSs; second, to establish that An-

f fn(Ss_)dS is an increasing processmthis gave us the estimate (7) which
in turn allowed us to take expectations in the Meyer-It6 formula.
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