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BANACH LATTICES WITH PROPERTY (H) AND
WEAK HILBERT SPACES

BY

N.J. NIELSEN AND N. TOMCZAK-JAEGERMANN

Introduction

The notions of weak type 2 and weak cotype 2 were introduced and
studied by Milman and Pisier [10]. In [12] and [13] Pisier defined a weak
Hilbert space to be a Banach space, which is both of weak type 2 and
weak cotype 2 and developed an extensive theory of these spaces and weak
properties in general. In [12] he defined the so-called property (H) for
Banach spaces (which roughly says that for every normalized unconditional
basic sequence (x.) and for every integer n, llE.=xx>ll behaves like Vr-) and
proved that weak Hilbert spaces have this property; it was left as an open
problem whether property (H) is actually equivalent to the space in question
being a weak Hilbert space.
One of the major problems of the theory is the scarcity of known examples;

basically the only known weak Hilbert spaces are variations of the Tsirelson
construction (see e.g., [2]) and this raises the question whether every weak
Hilbert space has a basis.

In this paper we study the structure of unconditional sequences in Banach
spaces with property (H) and we give strong estimates of the tail behaviour
of such sequences. The estimates have the same order of magnitude as those
obtained for the unit vector basis of the 2-convexified Tsirelson space and its
dual. We then use these results to show that a Banach lattice has property
(H) if and only if it is a weak Hilbert space, thus solving the above question
of Pisier in the affirmative for Banach lattices. We also combine our esti-
mates with the results of W.B. Johnson [4] to investigate the structure of
subspaces of quotients of a Banach lattice with property (H). We show that
every such space has a basis and give estimates for the uniformity function of
the uniform approximation property. Again these estimates have the same
order of magnitude as in the Tsirelson case.
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We now wish to discuss the arrangement and contents of this paper in
greater detail.

In Section 1 we study property (H) for unconditional sums of Banach
spaces. In particular we discuss a quantitative finite dimensional version of an
interesting method, due to W.B. Johnson and presented in [12] and [13],
which often can be used in the study of weak Hilbert spaces and other weak
and asymptotic properties. Some related applications can be found in [5]. The
main result of the section states that if we have a "long" unconditional direct
sum of subspaces of equal finite dimension in a Banach space with property
(H), then at least one of the subspaces is close to a Hilbert space. This result
will be used heavily to obtain our main results.

Section 2 is devoted to the construction of subsymmetric and unconditional
direct sums from a direct sum of copies of a given Banach space. Construc-
tions of this kind are typically done using Ramsey’s theorem, following the
Brunel-Sucheston approach. However, while standard arguments are mostly
concerned with infinite sequences of vectors, we require here quantitative
results on finite direct sums of copies of a fixed finite dimensional space. Our
proofs are closely modelled on those of [11], Section 11. However, to keep
track of all the integer functions involved, we present short arguments which
refer directly to Ramsey’s theorem.

Section 3 contains the main results of the paper, namely the investigation
of the structure of unconditional basis sequences in Banach spaces with
property (H), as described above. In section 4 we prove the characterization
of Banach lattices with property (H). We also combine the results of Section
3 with [4] to obtain the results on bases and the uniform approximation
property of subspaces of quotients of Banach lattices with property (H).

Section 5 contains some additional properties of spaces with property (H)
and some open problems.
The authors are deeply grateful to Professor W.B. Johnson for many

discussions on the results of this paper and for his suggestions.
The first named author wishes to thank Professor B. Toft for discussions

on estimates of the Ramsey functions.

O. Notation and terminology

In this paper we shall use the notation and terminology commonly used in
Banach space theory as it appears in [8], [9], [11], [13] and [15].

Let G {-1, 1} TM, let m denote the normalized Haar measure on G and
define the sequence (rn) of Rademacher functions on G by rn(e) e(n) for
alle G and all n N.

Let X be a Banach space. By Rad(X)we denote the closed linear span of
{r (R) xili N, x X} in L2(m, X), while if n N, then Radn(X) denotes
the closed linear span of {r (R) xill < < n, x X} in L2(m, X).
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If E and F are isomorphic Banach spaces, we let d(E,F) denote the
Banach-Mazur distance between E and F and if F is a Hilbert space, we
put d(E) d(E, F).
One of the fundamental notions of this paper is that of a weak Hilbert

space. For our purpose the following definition will be convenient.

0.1 DEFINITION. A Banach space X is said to be a weak Hilbert space if
there exist 6 > 0 and C >_ 1 such that for every finite-dimensional subspace E
of X there exist a subspace F c E and a projection P: X F such that
dim F > 6 dim E, d(F) < C and IIPll _< c.

The definition is not the original one but is chosen out of many equivalent
characterizations proved by Pisier (cf. [12]).
Another notion which is basic for our investigations is the property (H),

also introduced in [12].

0.2 DEFINITION. A Banach space X is said to have property (H) iffor every
A > 1 there is c(A) so that for every n N, whenever {Ul, u2,... un}

_
X is a

A-unconditional normalized basic sequence, then

(1) c(X)-’ v _<
j=l

The smallest c(h) which satisfies (1) is denoted by nx(h), or by n(h) if no
ambiguity can occur. The constant x(1) is called the property (H) constant
of X and it is also denoted by (X).

It was proved in [12] that weak Hilbert spaces have property (H). In
general it is not known whether these two notions are equivalent, but as
mentioned in the introduction, one of the main results of this paper is that
they are indeed equivalent for Banach lattices.
A basis (x.) in an n-dimensional Banach space X is said to be C-equiv-

alent to the unit vector basis in l if for any sequence (tj)j= of scalars one
has

C-1 [tg.I 2 tixi
/=1 /=1

_< C [tg.[ 2
j=l

If A is a subset of a Banach space X, then [A] will denote the closed
linear span of A.
Throughout the paper, the function log denotes the logarithm with base 2,

andexpax=ax,for a > l (in most cases, a-2).Iff:R-Rand m N
then f(m) denotes the m-th iteration of the function f. Finally, if A is a set,
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then IAI stands for the cardinality of A, and if R, [t] denotes the integer
part of t.

1. Property (H) for unconditional sums of Banach spaces

As mentioned in the introduction, in this and the next section we shall
discuss a quantitative finite dimensional version of a method due to W.B.
Johnson, but recorded (and, according to Johnson, amplified) by G. Pisier in
[12] and [13]. This approach has many applications to problems concerning
property (H) and weak Hilbert spaces. It is based on an investigation of
Schauder decompositions and unconditional direct sums of Banach spaces.

In this section we consider a Banach space which is a A-unconditional
direct sum of given subspaces Ei. This means that every vector x is of the
form x .ixi with X E (i 1,2,...) and that liE/+ xill < A Ilxll. The
main result which is a finite-dimensional version of [12] Theorem 4.4 and [13]
Theorem 14.3 states.

1.1 THEOREM. Let X be a Banach space with property (H), which is a
A-unconditional direct sum of subspaces Ei, 1 < < k such that dim(E/)=
m < o for all 1 < < k. If mm+(1 +16m)m < k, then there is a Jo, 1 < Jo < k,
and a K so that d(Eio) < K. Moreover, one can take

g CA8/(( A)8/((CA2/((A)2)4,

where C > 1 is a universal constant.

The proof follows the line of the original argument although it requires
several modifications which we indicate below.
The next proposition is a finite dimensional version of [12] Proposition 4.3.

1.2 PROPOSITION. Let X be an n-dimensional Banach space. There is a
universal constant C >_ 1 such that d(X) < CK(Radn(X))4.

Proof To simplify the notation set K x(Radn(X)). From the definition
of property (H) we have

(1) (u)- v _< E t)x 
j=l

2 )
1/2

dm(t) _< uv/’

for all {Xl, X2,... Xm} X, with IIx.ll 1 for 1 < j < m, and for all 1 <
m<n.
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The right hand side inequality, combined with the results of Tomczak [14]
and Bourgain, Kalton and Tzafriri [1] Theorem 3.1, shows that there is a
universal constant c so that T2(X)< ClK, where T2(X) is the type 2
constant of X.
From K6nig and Tzafriri [7], if q 2 + 256(ClK)4 then Cq(X) 2 where

Cq(X) is the cotype q constant of X. Applying [14] and [1] again and the left
hand side of (1), together with known quantitative inequalities between
Gaussian and Rademacher averages (for example, see [11] Appendix 2 or [15]
Theorem 25.1), we have the existence of universal constants c2 and c so that

x3. Using a classical result of Kwapien (for example,C (X) <_ c2v/  <_ c2
see [15] Theorem 13.15)we get the required estimate

d(X) . T2(2)62(X) . C/(4 /.

The following lemma is familiar to specialists in the field. Its proof is a
straightforward modification of the known argument for compactness of the
Minkowski compactum of all n-dimensional Banach spaces (for example, see
[15] p. 278) and will be omitted.

1.3 LEMMA. Let m N and N(m)= m(l+16m)m. There exists a family-- {Ejl l1 _< j _< N(m)} of m-dimensional Banach spaces so that if E is an
arbitrary m-dimensional Banach space, then there is a Jo, 1 < Jo < N(m) with
d(E, Ejo) <_ 4.

Proof of Theorem 1.1. Let N N(m) be defined as in Lemma 1.3. This
lemma then implies that there is a subset I C {1,2,..., k} of cardinality at
least kN-1 so that d(Ei, Ej) < 16 for all i, j I.

Consider the subspace Z -,ii f]) Ei c_ X, which clearly forms a A-
unconditional direct sum; moreover, II1 > 2m. We will show that if 0 I
then Radm(Eio) is Ch2r(h)2-isomorphic to a subspace of Z. So it has
property (H)with the constant tc(Radm(Eio)) <_ CA21((A)21(z(CA21((A)2). Since
r(Z) < r(X), an application of Proposition 1.2 will conclude the proof of the
theorem with K (CA2/(A)2/((CA2/((A)2))4.
Assume for simplicity that I {1,..., III} and let us describe some

details of the construction of an isomorphism T of Radn(E1) into Z with
II TII II T- 111 < CAZ(A)2, where C is a universal constant.
Since Z has property (H) with the constant x(A), it follows from [12]

formula (4.3) that

A (A)ll(ti)i=2[12,1

for all m N, all A-unconditional normalized sequences {Xl, 22,..-, Xm} C_ X
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and all (ti)im=l Rm. (Here 11"112,oo and 112,1 denote the norms in the
Lorentz sequence spaces 12,oo and/2,1 respectively.)

Let now el, e2,... e2m be an enumeration of the elements of {- 1, l}m and
choose isomorphisms T/ of E onto E with IITII _< 16, IIT/-all 1 for all
1 < < III. Define T: Radm(E1) --) Z by

(2) T rj (R) xj 2 -m/2 E rj(Ei)Tixj
j=l i= j=l

for all ,=lrj (R) xi Radm(E1).
Formulas (1) and (2) give

(3)

< r rj (R)x

< 16h(h) rj(R)x
j L2, l(m, el

m

j L2, (m,)

j=l i=1 12,oo

i=1 12,1

By the classical result of Kahane (for example, see [11] Appendix 3, [15]
(4.7)), there is a universal constant C’ so that the L2,1- and L2,oo-norms are
C’-equivalent on Rad(E1). Together with (3) this gives that

(4) II TII II T- ill CA2m(A)2,
with C 16C’. This completes the proof of the theorem.

2. Subsymmetric and unconditional direct sums of Banach spaces

In this section we shall discuss how to construct subsymmetric and uncon-
ditional direct sums from a given "long" direct sum of copies of a given
Banach space E. We shall only consider finite direct sums; the case of infinite
sums was treated in Pisier [12], Section 3.
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Let (E,]]. liE) be a Banch space and let N N. Let EN denote the
product on N copies of E. Let II be a norm on EN for which there are
numbers a > 0 and b > 0, so that for all x- (x(1), x(2),..., x(N)) EN
we have

N

(a) a sup [Ix(n)liE < [[x[I < b Ilx(n)llE.
n<N n=l

Then (EN, II) is called a direct sum ofN copies of E.
If n < N we shall identify En with the subspace of EN consisting of those

x EN for which x(j) O for n < j < N.
If n < N and x E and (ij)]=l --- {1, 2,..., N} with < 2 < < in,

then the element x(il, i2,..., n) EN is defined by

x(ia, i2,.., )(k)= (x(j)
0

fork=ij.,1 <j<n,
otherwise.

If A _> 1 then (EN, I1" II) is called a A-subsymmetric direct sum, if for all
n _< N, all x E and all (ij)=l--{1,2,...,N}, < 2 < < in, we
have

(b) IIx(il, i2,..., i,)11 < A Ilxll.

(EN, II" II) is called A-unconditional provided that for every e {-1, l}N

and every x EN,

(c) II((j)x(j))ll < AIIxll.

An infinite direct sum of copies of E is defined in a similar manner;
indeed, consider a norm on the space E(N) of all finitely supported sequences
satisfying (a) and define the infinite direct sum to be the completion of E(N)

in that norm. Subsymmetricity and unconditionality are defined by (b),
respectively (c).

If A is a set and k N we shall let Atk] denote the set of all subsets of A
with k elements.
We shall use the finite version of Ramsey’s theorem as follows (for

example, see [3] Section 11.2, [11] Theorem 11.2).

2.1 THEOREM.
that if

For all k, n, rn N there is an N N, N R(k, n, m) so

f:{1,2,...,N}tk] {1,2,...,m}

then there is an M {1,2,...,N} with
singleton.

IMI--n such that f(Mtl) is a
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Estimates of the function R can be found in [3]. For convenience of the
notation let exp2(x) 2x. One has [3, pp. 90-91]

R(k, l, 2) < exp(g)((k 1)!l).

Moreover, a simple combinatorial argument yields

R(k,l,m) < R(’)(k,l,2).

Thus,

(d) R( k, l, m) < exP(2km)( ( k 1)!1).

2.2 THEOREM. For all d and n N there is N N(d, n) N with the
followingproperty. WheneverE is a d-dimensional Banach space and (EN, )
is a direct sum, then there is a subset A c_ {1, 2,..., N} with IAI n, so that
(EA, I1" II) is a 3-subsymmetric direct sum. The function N can be taken as
N exp(2S)(n), where s (3n)dn.

Proof For simplicity we shall assume that a b 1 in (a). By induction
we shall construct subsets {1, 2,..., N} A _D A2,... A

_
so that for
CAmwit.hC A (Jk)k=levery x EA" and 1 < r < m, and for any (tk)k= m,

il < i2 < < r, Jl < J2 < < Jr we have

(1) x(il, i2,"" ir)II 311 x(jl, J2,’’’, Jr)II.

We shall continue the process as long as

(2) IAml > m.

If we can ensure, by a suitable choice of N, that the integer n satisfies (2),
then any subset A of A with IAI n will satisfy the requirements of the
theorem.
Assume that A1, A2,..., Am_ have been constructed so that (1) and (2)

hold. To construct A we proceed as follows.
Let x EAm-l, X =it: 0 be a fixed element supported on m coordinates

of EAm-. Divide the interval [[[x[[oo, [[x[[] into at most m disjoint inter-
vals of length at most [Ixll. (Here Ilxl[-maxjAm_l[lx(j)l[, [[X[[1--
EA lllX(j)ll.) Define f: Atmm {l, 2,...,m} to be the function which to
each {), < 2 < < assigns the number of the interval to which
[[x(il, i2,..., in)l[ belongs. By Ramsey’s theorem there is a subset M _c Am_
such that all Ilx(ia, i2,...,im)]l belong to the same interval for (i) M.
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Hence if (ik) C_ M1, (Jk) C_ M1, < < im, Jl < < Jm, we obtain

(3) IIx(il, i2,..., im)ll IIxlI + IIx(j, J2,’’’, Jm)ll
_< 21Ix(j1, J2,..., Jm)ll

For this to be possible we need, by Ramsey, that

(4) [Am_l[ R(m, IMl[,m ).

Let 4/ be an (1/m)-net of the unit sphere of E of cardinality at most
rm (1 + 2m)a. (The existence of such a net is well known, e.g., see [11],
Lemma 2.6.) We now repeat the above construction for every x of the form
considered, the coordinates of which are in M/. That is, we have to repeat it
f rm times to get subset Am_l MI D_ D_ Me Am. An easy approxi-
mation argument shows that Am has the property

V(i,), (jg) C_Am, < < im, Jl < < Jm
VX EAm-l" [[x(il, i2,..., iml[ <_ 31Ix(j1, J2,’", Jml[

Moreover, by (4),

(6) IAm_ll > R(r)(m, IAml, m).

To complete the proof we have to estimate the number N. By (6) and (d) it
follows that the required condition IAnl > n is ensured by

ovr(rnn n2+2)/ovr(rn )[[A -1 R(r’7)( n, n, n) < ,.,,r, 2 k n ) < ,.,-r, 2 k ll )

By iteration we get

N < exp2S)(n)

where s =En-l((1 + 2k)ak 2 + 2) < (3n)an.
Theorem 2.2 can be used to construct unconditional direct sums. First we

need some more notation, stemming from [12].
Let E be a Banach space, n N and (EN, II) a h-subsymmetric direct

sum, where N is even. If x E let $ (-x, x) E2, and for 1 _< n _< N/2
define Sn(X ) EN by

Sn(x) 2(2n 1,2n) (0, 0,..., -x, x, 0, 0,... ),

where the non-zero coordinates are on the (2n 1)-th and 2n-th place.
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Denote SI(E) by E. We can now prove:

2.3 PROPOSITION. Let n N, let N n(n + 3) and let (EN, I1" II) be a
A-subsymmetric sum. Then {=lSk(xk)ll < k < n, xk E} is a (A2 +
2Aa-b)-unconditional sum of n copies of l. Moreover, d(E, t) < 2a-lb.

Proof
then

We will show that if A
_
B {1, 2,..., n} and x, x2,... x E

To prove (1) define a sequence {o-i}i B of subsets of {1, 2,..., N} such that:

(2)

(3)

(4)

< i’ max tr < min tri,.

If A then Iil,- 2, say r {j(i,1),j(i,2)}.

If B \A then I/I n + 1,

say o- {j(i,1),j(i,2),...,j(i,n + 1)}.

Note that to find subsets with these properties we need at least N n(n + 3)
terms in the direct sum.
By the A-subsymmetricity of (EN, II) we get for every 1 < k < n

(5) "i(j(i’ 1), j(i,2)) + .f,i(j(i, k), j(i,k+ 1))II
A B\A

Averaging (5) over all 1 < k < n we obtain

(6)
1E i(j(i,1),j(i,2)) + --ff

iA B\A
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Therefore

<A "i(j<i,1),j<i,2))[[
iA

iB SiXi Ilxill
B\A

iB Sixi + 2,Xba-ll[ iSixill
--(h2--2hba-1)lli.Sixill.

It is clear that d(E, 1) < 2a-lb and that the considered subspace is a direct
sum of n copies of/. m

Combining Theorem 2.2 with Proposition 2.3 we obtain the following
corollary which is one of the basic tools used in this paper.

2.4 COROLLARY. For all d and n N there is N N(d, n) N with the
following property. Whenever E is a d-dimensional Banach space and (EN, )
is a direct sum, then there is a subspace of (EN, II) which is a (9 + 3a-lb)-
unconditional direct sum of n copies of a space I such that d(J, E) < 2a-lb.
The function N can be chosen to satisfy N < exp(2S)(n(n + 3)), where s (3n)an.

3. Unconditional bases and property (H); main estimates

We are ready now to pass to the main results of this paper concerning
quantitative behaviour of unconditional bases and blocks of these in Banach
spaces with property (H). It turns out that in this general case the obtained
estimates coincide with the known theorems on the unit vector basis in the
2-convexified Tsirelson space [2].
We begin with some observations which are the starting points for all

further constructions. The first lemma is well known.

3.1 LEMMA. Let E and F be m-dimensional Banach spaces with normalized
1-unconditional bases (xj)im= 1, respectively (yj)im= 1" If T: E - F is the linear
map defined by Txi yi for all 1 <_ j < m, then there exists an x E such that

(i) 1 < Ilxll _< 3, IITII _< IITxll _< 311TII;
(ii) x belongs to the span of at most [log m] + 2 mutually disjoint blocks of

the xy’s with constant coefficients.
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Proof. Pick y E with Ilyll 1 such that IITyll IITII and write y
jm=ltiXi. By unconditionality we may assume that t >_ 0 for all 1 < < m.
For 1 < j" < k [log m] + 1 define the level sets

(1) Ej {i NI2-j < < 2-j-l)}

(2) Ek+ {1,2,...,m} [,.J Ei.
j=l

It is easy to see that

k 1
(3) x E 2--1) E Xi "Jr- -’ E Xi

j=l iEj iEk+

satisfies the requirements of the lemma.

Repeating the lemma several times we get the following corollary. In its
statement we denote by q: N - N the function defined by q(n) [log n] + 2
for all n N.

3.2 LEMMA. Let E and F be n-dimensional Banach spaces with 1-uncondi-
tional normalized bases (x.);’=l, respectively (J);’=l and let T: E - F be the
linear map defined by Txj y for all 1 < j < n. For every m N there exist
normalized block basic sequences {fll _< j _< (m)(n)} of (Xj) and {z[ 1 < j <
(m)(n)} of (y/) SO that if Tm" [f.] [z.] is the linear map defined by
Tmf z for all 1 < j < (m)(n) then

(i) (3(E)(F))-mIITII ]lZmll ((E)(F))mllZll

where (E) and K(F) are the property (H) constants of E and F respectively.

Proof Let (Ej]d/(n),j=l be as in the proof of Lemma 3.1. Put Uj
Ei EjYi for all 1 < j < q(n). Observe that

(1) (K(E)(F)) -1 < Ilu.llllyll - u(E)u(F) for all 1 <j < d/(n).

Let f; u;/llull, z; v/llvll for all 1 _< j _< q(n)(if E; set f; z;
0). Define the linear map TI: [f.] [zi] by Tl(f) zj for all 1 < j < O(n).
By (1) we get

(2) ((g)(F))-XllTull IITlull (g)(F)llTull for all u [f.].
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By Lcmma 3.1 this implies

(3) (3(E)(F))-’IITII <_ IIT, (E),c(F)IITII.

Applying Lemma 3.1 once more we find a subspace Y2---E spanned by
02)(n) blocks of (f.) with constant coefficients, so that T attains its norm up
to the constant 3 on Y2 and we proceed with an obvious induction. I

The following technical definitions are fundamental, in this section.

3.3 DEFINITION. Let X be a Banach space with an unconditional basis
(xj)j j and let K > 1, m N.

(i) (xj) is called (m, K)-Euclidean, iffor every subset A
_
J with IAI < m,

(xj)i A is K-equivalent to the unit vector basis of 112AI.
(ii) Let n N; (x) is said to have property E(n, m, K), if there is a set

I
_

J, III n, so that {xilj J\ I} is (m, K)-Euclidean.

3.4 DEFINITION. Let (x) be a 1-unconditional basis for a Banach space X.
We shall say that Xhas property (H) for blocks of the basis, if the conditions of
Definition 0.4 are satisfied for A 1 and all block basic sequences (ui) of (x).

If (Xi) is a normalized 1-unconditional basis for a Banach space X and
x X has the form x ,itixi then we shall write Ilxl12 (Y’.iltil2)1/2.
Our main aim in this section is to prove, in Theorem 3.11 below, that if a

Banach space X has property (H) and (x.) is a 1-unconditional basis in X,
then for a suitable K and every n N, (xj) has E(n, re(n), K), where m(’)
is a fast growing function of n and K depending only on the property (H)
constant. The proof of this fact is done in several steps which consist of
improving estimates for m(.) using blocking procedures.

Let us describe the first one. It requires the following lemma.

3.5 LEMMA. Let X be a Banach space with a 1-unconditional normalized
basis (xi) satisfying property (H) for blocks of the basis with constant K.

Let (ui)im=l be disjointly supported finite blocks of (xi), say u Y’.i,itixi
for 1 < < m. Assume that there is a K > 1 so that {xilj tri} is K-equivalent
to the unit vector basis of ll2il for all 1 < < m. Let a max/maxj iltjl and

minilluill2. There exists a universal constant C > 1 such that

U
i=l

Pro@ Our assumptions imply

(1) K-1lluill2 < Iluil[ < Klluil[2 for all 1 < < m.
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We shall define a blocking of ET=lUi as follows: Let 1 O’1 be a set of
smallest cardinality such that

(2) /3 <

If we let z Ej61tjxj, then from the minimality of 61 we get

(3)

Continuing in this manner we construct mutually disjoint
I1, 2, lnl of 0h SO that if we let o" U r=l

nl r, then
subsets

)1/2(4) /3 < It.l 2 < (a +/3) 1 < r < n
j6

and

)1/2(5) It.l 2 </3.
j

Now let 6 be a subset of r2 of smallest cardinality so that

)
1/2

ltyl2+ ltjI 2

Set n,+ I,.) 6] and continue as before. In this way we construct mutually
disjoint subsets ar, 1 < r <nm, such that if z Ej6rtjXj, then

(6)

and if a’m Tm J nmr=mm_l + lar and z0 Eja,mtyX, then

(7) Ilz0l]2 < .
This clearly implies that if r2 =/= r 4 0 then

(8) IlZr=ll2 ( + fl)-lllZrlll2.
From the construction it follows that each 6

therefore by (1),
intersects at most two r s,

(9) (v/g)-l[lzr[12 < IlZrll < vgllzkl]2 for all 0 < r < nm.
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If K denotes the property (H) constant, then by (8) and (9)

(10) (x/-KK(a +/3)/3-’)
-1

r>0 2

< x/-K( + 1)1-1 Z

Let u E= lUi It follows from (1) and (10) that

(11) Ilull IIz011 + r>oZr KIIz011 + v/K(a +

< K(1 + -(a +/3)/3-1)llulle.
r>0 2

Similarly,

> (2V-K(a + fl)fl-1)-lllull2,
completing the proof.

-1

r>0 2

3.6 PROPOSITION. Let X be a Banach space with a 1-unconditional normal-
ized basis (xj) satisfying property (H) for blocks of the basis (with constant ).
Let m N and K >_ 1 and assume that (xj) is (m, K)-Euclidean.

Let (ui)im=l be disjoin@ supported finite blocks of (x), say u Eitx
for 1 < < m. Assume that {xjlj tri} is K-equivalent to the unit vector basis

of llil for all 1 < < m. There exists a universal constant C >_ 1 such that

( CKK) - 2

U <_ CK
i=1 2

Proof. Put /x "--.mt=lRi,. without loss of generality we may assume that
u 2 1. Let J1 {ill tl _> m- 1/2}, J2 U ’= lri \ J1 and define

(1) zl tx, U t2x for all 1 < < m,
JJ1 J tri J2

(2) I il Ilvil12 < 2ml/2
I2 il Ilville > 2ml/2

(3) z E Ui, Z3--" E Ui"
iI iI
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Clearly u--z -at- z2 --z3. Since (xi) is (m, K)-Euclidean and
m Ilzlll -< m, we have

(4) K- 111z1112 Iiz111 KIIzl 2-

Further,

K-allvill2 Ilvill K[lvill2 for all 1 < < m.

The norm of z2 is estimated by Lemma 3.5, with /3 1/2m1/2 and a

l/m1/2. It follows that there is a universal constant C > 1 so that

(6)

By the definition of z3,

IIz3112 < ml/2/2m1/2 < 1/2.

Moreover, by (5) and property (H) we get

(7) [Iz3[[ maxllvill E Ui/[[Ui[[ < (K/2ml/2)Kf- =KK/2.
I

By (4), (6) and (7)we get

(8) Ilull Ilzlll + IIz211 + IIz311 cg(llzlll2 + Iiz2112 + 1)< 3CKK

and

(9)
1

Ilul[ > max{llZlll, IIz211 2 ---(CK)-l(llZlll + IIz211)

1 (1)1/2
> -(CK)

-1 1- - > (2CK/) -1.

This proves the result.

As an immediate consequence we get the following blocking principle.

3.7 COROLLARY. Let X be a Banach space with a 1-unconditional normal-
ized basis (x1) satisfying property (H) for blocks of the basis (with constant ).
If there is an n N and K >_ 1 so that (x1) is (n, K)-Euclidean, then (x1) is
(n2, I)-Euclidean as well, where I CK and C > 1 is a universal constant.
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Proof Let J
_

N, IJI n2, and fix x ,jjtjxj with Ejsltjl 2-- 1.
Consider any partition of J into n mutually disjoint subsets ri, 1, 2,..., n
with Ir/I n and define

(1) bli E tjxj.
o"

It is readily verified that (ui) satisfies the conditions of Proposition 3.6 and
hence there is a universal constant C > 1 so that

(2) ( CKl) -1

If X has (H) and A > 1, we put tc*(A)= I(C/2/(X)2) and tc*(X)=
(C(X)2), where C is the constant from Theorem 1.1.
The next proposition gives our first estimate of the function m(.) men-

tioned earlier in this section.

3.8 PROPOSITION. Let X be a Banach space with property (H). There is a
constant K > 1 such that whenever (Xj)jM=I, 1 < M < , is a normalized
unconditional basis for X, then (xj) has E(n,n,K) for all 1 < n < M.
Moreover, K <_ C/(*(X)17, where C > 1 is a universal constant.

Proof Let us first show that there is a constant K such that property
E(n2, n, Ka) holds for all 1 < n < M. Fix K’ to be defined later and assume
that for some n, E(n2, n, K’) does not hold. By induction we can then
construct n disjointly supported subspaces Ei, each spanned by n vectors of
the basis (xj) not K’-equivalent to the unit vector basis of l.

Let rn N be chosen independently of n, so that

(1) exp2((m)(n))N((m)) <_ n

where N(.) is the function defined in Lemma 1.3 (note that m 4 will do).
By Lemma 3.2 we can for each 1 < < n find a q(m)(n)-dimensional sub-
space F

_
Ei, spanned by a normalized 1-unconditional basis (a block basis

of (xj)), which is not K’(3K)-m-equivalent to the unit vector basis of f(m)(n)
2

where K is the property (H)constant of X.
Since the Fi’s form a 1-unconditional direct sum, we get from (1) and

Theorem 1.1 that there exist K2 < CI*(X)a2, Ca a universal constant, and
an 0, 1 < 0 < n, so that d(Fio) < K2. It is well known and easy to see that
this implies that every normalized 1-unconditional basis of Fio is Kz-equiv-
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alent to the unit vector basis of 1$2(m)(n). Hence, by the choice of the F/’s
-m

K’(3K) < K2

We can therefore conclude that whenever K > 3mClt*(x)m+12>
81CI*(X)16 then (x.) has E(nZ, n, K1) for every n. Corollary 3.7 and an
easy calculation now show that there is a universal constant C > 1 such that
(xj) has E(n, n, K) for all n and all K > CK*(X)17.

The second blocking procedure is performed for a specific ordering of an
unconditional basis with the intention of improving the tail behaviour of the
basis. To be more specific let us introduce the following definition which is a
modification of Definition 3.3.

3.9 DEFINITION. Let X be a Banach space with an unconditional basis ( xj).
Let K > 1 and let n,m N. We say that (x) has Et(n,m,K) provided

x Ij > n + 1] is (m, K)-Euclidean.

We also require a certain fast growing hierarchy of functions on N u {0}
defined as follows. Given a non-decreasing function 0 on N such that
limn aPo(n)/n 0% define, for j > 1,

(I(0)=1 and }j(n)=(._l-’(n))(n) for nN.

That is, for n N, .(n) is the i_l(n)-th iteration of the j-1.
The next result provides a general inductive tail blocking procedure.

3.10 PROPOSITION. Let X be a Banach space with a 1-unconditional nor-
malized basis (xj) satisfying property (H) for blocks of the basis (with the
constant ). Let dPo be a non-decreasing function on N such that
limn_oodp(n)/n oo and let K be a constant. Assume that (xi) has
Et(n dPo(n), K) for all n N. Then for every v N, (x) has Et(n (n), K)
for all n N. Here K, K(Ct), where t is the property constant (H) and
C >_ 1 is a universal constant.

Proof We proceed by induction on ,. For v 0 the statement is obvi-
ously satisfied.

Let , > 1 and assume that for some constant K_ 1, (x) has
Et(n gP,,_ l(n), K_ 1) for all n N. Fix n N and let I c_ {j NIj > n} with
[I[ _< (n). Let x Z,iitixi, with Eii[ti[ 2= 1. Define a partition of I
into mutually disjoint sets (%)]=1 as follows: O" consists of the first _l(n)
elements of I; if j > 1 and if rl, r2,..., %. are chosen then let %.+1 consist
of the first dP(i+l)rn),-1 elements of I\ 13 {=10"i, whenever the cardinality of the

(I)(J+ 1)/n otherwise set I \ 13 =latter set is larger than or equal to ,, %+ ri,
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if this set is non-empty. Continue this process as long as possible to exhaust
all of I.

It is clear from the definition of @ that the above construction ends after
at most s- _l(n) steps. Also, for all 1 <i < s, we have Iril < /_)l(n)
and r _]/_-11)(n), o[. Therefore, by the inductive hypothesis, {xjlj o"i} is
K_ 1-equivalent to the unit vector basis of 112’il.

Set

(1) U tjx 1 <_i <_ s.
j cr

Since (Xj)j6 I is (q_l(n),K_l)-Euclidean the blocks (Ui)]= satisfy the
assumptions of Proposition 3.6. Therefore there is a universal constant C >_ 1
such that

<_ CKu_ I.

This shows that (x.) has Et(n, (n), K)with K
this completes the proof.

CK,_ l(. By induction

We are now ready for the main theorem on the tail behaviour of uncondi-
tional bases in spaces with property (H). The fast growing functions q which
control this behaviour are defined, for u N, by

(**) q(0) 1 and oo(n ) =n, o(n) =(n) forn N.

(Here the functions are defined by (,), with o o.)

3.11 THEOREM. Let Xbe a Banach space with property (H) and let (xi) be
a normalized 1-unconditional basis for X. There is a permutation zr of N, so
that for every u N, there is a constant K, so that (x(1)) has Et(n, o(n), K)
for all n N. Moreover, K <_ C*(X)+19, where C >_ 1 is a universal
constant.

Proof From Corollary 3.7 and Proposition 3.8 it follows that there is a
universal constant C so that (xj) has E(n, n4, K) for all n N with
K Cltc*(X)19. For each n N choose J,_ N so that [J,[ < n and that
(x.)., is (n4, K)-Euclidean and set I U 7=1J. Since [I[ < n2 it follows
that if 7r is a permutation with r(I,)= {1,2,..., [I,[} for all n N then
(Xr(i)) has Et(nZ, n4, K) for all n N. Proposition 3.10 now gives the
existence of a universal constant C2 so that (x=(i)) has Et(n, q(n), K,,) for
all n N, u N with K CKtc(X) < C1CI.*(X)u+ 19. 1
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4. Applications for subspaces of lattices with property (H)

Here we shall apply the tail theorems from the previous section to
investigate some quantitative structure of subspaces of Banach lattices with
property (H). We get the results on the dimension of their Euclidean
sections, in particular on the weak Hilbert space property, on the existence of
bases and on the uniform approximation property.

It was discovered by W.B. Johnson that the results of Section 3 imply the
following proposition which we present here with his permission.

4.1 PROPOSITION. Let X be an order complete Banach lattice property (H),
let E

_
X be an n-dimensional subspace and let N. There exists a subspace

F
_
E of dimension k, where q%(k) >_ nn, and K >_ 1 such that d(E) <

Kd(F). One has K Ctc*(X)38+2, where C > 1 is a universal constant.

Proof From the order completeness of X it follows that there exist
mutually disjoint normalized elements Xl, x2,..., Xn2n X and an operator
T" E [xil 1 < < n2n] G such that

(1)
1

IlZx -xll llxll for all x E.

Since (x) is a 1-unconditional basis for G, we get from Theorem 3.11 that
(xi) has E(k,q(k),I), where /= C’*(X)19+ and C is a universal
constant. We may assume that the xi’s are enumerated so that (xilk + 1 <

]n2n-k Put< n2n} is /-cquivalent to the unit vector basis of 2

(2) G [xilk + 1 <_i< n2n]; F T-I(T(E) c G1).

G is clearly 1-complemented in G and T(E) N G is K-complemented in
G1; hence by (1), F is 3/(-complemented in E. Let P be a projection of E
onto F with IIPII -< 3/( and put F P-l(0). Clearly dim F <_ k and E
F ) F1.

Since d(F1) <_ 3K, an easy calculation shows that

(3) d(E) <_ 6/(3/( + 1)d(F).

As an immediate consequence of Proposition 4.1 we obtain:

4.2 THEOREM. Let X be a Banach lattice with property (H).
For every v N there is K, >_ 1 such that for every finite dimensional

subspace E
_
X there exist a subspace Y

_
E with q(dim E- dim Y)=

(dim E)2dimE and a projection P of E onto Y such that d(F) < K, and
IIPII <- K.. One had K, CVl(*(X)38+2v, where C >_ 1 is a universal constant.

In particular X is a weak Hilbert space.
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Proof. Without loss of generality we can assume that X is order com-
plete. Indeed, X** is order complete and by the principle of local reflexivity
[8], X** is finitely representable in X, which implies that it has property (H)
with the same constant. Now let v N and let E

_
X be finite dimensional,

say dim E n. Let K be as in Lemma 4.1 and let Y F be the subspace
constructed in the proof of that lemma. Then it follows that Y has the
required properties.
Theorem 2.7 of [12] now gives that X is a weak Hilbert space, m

Remark. For an arbitrary Banach space X to be weak Hilbert requires,
according to the definition, that given an n-dimensional subspace E of X,
the dimension of a "nice" subspace Y c E is proportional to n. The theorem
above shows that for a weak Hilbert Banach lattice a much stronger fact is
true" the dimension of a Hilbertian nicely complemented subspace Y c E is
"extremely large" with the same estimate as in the case of the 2-convexified
Tsirelson space and its dual.

Since by the classical John’s estimate (for example, see [15] Proposition
9.12), any k-dimensional space F satisfies d(F)< v/-, Proposition 4.1 also
immediately implies the following.

4.3 THEOREM. Let X be a Banach lattice with property (H).
For every N there is K > 1 such that if E c_ X is an n-dimensional

subspace then d(E) < Kf-, where the integer k satisfies q(k) >_ n2n. One has
CK*(X)38+2, where C > 1 is a universal constant.

Recall that a Banach space X is said to have local unconditional structure
(l.u.s.t), if there exists a )t > 1 so that every finite dimensional subspace
E

___
X is contained in a finite dimensional subspace F

_
X, which has a

A-unconditional basis. It is easy to see that the proof of Theorem 4.2 gives:

4.4 COROLLARY. A Banach space X with l.u.s.t, has property (H) if and
only if it is a weak Hilbert space.

In the sequel we shall need two notions introduced by W.B. Johnson [4] to
give a criterion for all subspaces of a given Banach space to have the uniform
projection approximation property (defined a little latter in this paper).

4.5 DEFINITION. Let X be a Banach space, let n N, and let K > 1, > 1.
(i) X is said to satisfy C(n, t, K), if there exist a subspace Y of X of

codimension n, so that every subspace E c_ Y with dim E < is the
range of a projection P on X with IIPII -< K.

(ii) X is said to satisfy H(n, t, K) if there is a subspace Y c_ X of codimen-
sion n, so that for every subspace E c_Y with dimE < we have
d(E) < K.
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For later convenience, in the definition above is not required to be a
positive integer. Johnson [4], Proposition 1.8, proved that the two notions
introduced in Definition 4.4 are in duality. In fact, if X has H(n, t, K), then
X* has n(5n, log5 t, 12K) and c(5n, log t, 12K). Hence, since these two
notions are hereditary, we get that if E is a subspace of a quotient of X, then
E has H(55", logs logs t, 144K) and C(55", log5 log5 t, 144K).
We recall that if A > 1 and E is a subspace of a Banach space X, then a

subspace F
___
X* is called A-norming over E, if

Ilxll Asup{Ix*(x)llx* F, IIx*ll 1} for all x E.

The following lemma is well known and standard.

4.6 LEMMA. Let X be a Banach space and E
_
X a subspace with dim E

n. There exists a 5n-dimensional subspace F
_
X*, which is 2-norming over E.

Proof Let (Xi)/521 be a (1/2)-net in the unit space of E. For 1 < < 5
pick y? X* with Ily?ll y?(xi) Ilxill 1 and set F [y?]. I

Let us introduce one more family of functions which plays a basic role in
quantitative results we come to now. We define %" N R+, for u N, as
follows. Set

S(0) =1 and S(k) =exp23)(4k) for kN.

For n N let k be the largest (non-negative)integer k satisfying

(A) expzS(’))(k) < n.

Finally, for u N and n N define %(n) by

(B) %(n) (log qg,,(kn)/2)1/2"

where q is defined in (. ).
We postpone a technical discussion of the functions % until the end of this

section. For the moment let us observe that [%(n)] < 1, whenever q(kn) <
28. Moreover, the %’s are fast growing, as n - ; in particular, already for
u 3 we have

(c) "r3(n) > exP222n)(n).

4.7 THEOREM. Let X be a Banach lattice with property (H) (or, equiva-
lently, which is a weak Hilbert space). For every , N there exists K so that X
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has H(n, (n), K) for all n N. One has K
C > 1 is a universal constant.

CVtc(21)12tc*(X)38+2v, where

Proof. Fix u N and n N. Assume that for some / > 1, X does not
have H(n, r(n), K). Put k k as defined above, let K’ be as in Proposi-
tion 4.1. Let r be the largest integer with 5kr < n.

Set L S(k)(expzSk)-3)(k))1/3 and observe that by (A),

kL < exP2Sk)-3)(k) < log 5 n.

Therefore

(1) r > L > S(k)expzSg))(2g(2k + 3)),

where s(k) (3 2)k2k.
We shall construct by induction a finite sequence (F.)= of k-dimensional

subspaces of X and a sequence (Y/ r-1)/=0 of subspaces of X* with Y/-I -Y/
forl<l<r- lsuchthat:

(i) F.
_

Yj--L1 and d(F.) >/(K’v)-1 for all 1 < j < r;
(ii) dim Yt < 5kt and Y is 2-norming over E=IF/for all 1 < < r 1.
Set Y0 {0}. By our assumption we can find a [%(n)]-dimensional sub-

space E of X with d(E1) > K.

,rv(n) 2r(n) <_ exP2(2’(n)2) qgu(kn).

Thus Lemma 4.1 yields the existence of a k-dimensional subspace F E
with K’d(F1) > d(E1) >/(. From Lemma 4.6 we obtain a 5k-dimensional
subspace YI X* which is 2-norming over F1.
Assume now that 1 < j < r and that F1, F2,..., F., Y0, YI,-.., have

been constructed to satisfy (i) and (ii). Since Y- is of codimension 5k < n,
our assumption gives a %(n)-dimensional subspace Ej+

___
yl with d(Ej+ 1)

>/. Again an application of Proposition 4.1 yields a k-dimensional sub-
space F..+I c E.+x with d(F. 1) > (K’)-1. Using Lemma 4.6 we find a+
5g+l-dimensional subspace E’ c X*, 2-norming over E-IE and we setj+

’+1 " + 1"
Clearly the .’s form a direct sum. Put F Ei=1 and let .: F E{=I.

and Q" F . be the natural projections. Then (i) and (ii) imply that

I1.11 2, hence IIQII 4.
Since S(k) k1 +16), by Lemma 1.3 there is a set A c_ {1,2, r} with

IA] r/S(k) so that if 0 A then d(Fio, .) 4 for all j A. By (1) and
Corolla 2.4 we get that there is a subspace of E A which is 4-isomorphic
to a space Y, say, where Y is an 21-unconditional sum of 2k copies of a
k-dimensional space E with d(E, Fo) 8.
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In particular Y has property (H) with Ky(h) _< 4Kx(h), for every h >_ 1.
Thus the proof of Theorem 1.1 implies that d(/)_< M C(21)a2 and

ghence < 8K’,,M C’K’..(21)a2, where C >_ 1 and C’ >_ 1 are universal
constants. I

We now turn our attention to the uniform approximation property for
Banach lattices which are weak Hilbert spaces. Recall that a Banach space X
is said to have the uniform approximation property (u.a.p.), provided there is
a function f: N - N and a constant K > 1 such that whenever E

_
X is a

finite dimensional subspace, then there exists an operator T on X with
[[T[[ <K, Tx=x for all xE and the rank rk(T)<f(dimE). In this
situation we shall also say that X has the (K, f)-u.a.p.

If the operator above can be chosen to be a projection we shall say that X
has the projection uniform approximation property (p.u.a.p.).
The smallest function f which can be used in the above definition is called

the uniformity function and denoted by kx(K, n) (by Px(K, n) if we consider
the p.u.a.p.).

It was proved by Pisier [12] that every weak Hilbert space has the u.a.p.,
and very recently by Johnson and Pisier [6] that proportional growth of the
uniformity function characterizes weak Hilbert spaces.
We shall combine our Theorem 4.7 with Johnson’s results in [4] to show

that Banach lattices which are weak Hilbert spaces have the p.u.a.p, with
extremely slow growth of Px; i.e., a behaviour as the Tsirelson weak Hilbert
spaces, see e.g. [2]. If u N and h denotes the inverse function to n
[log5 log5 %(n)- exp53)(n)], we define O(n)= exp(53)(h(n)). The definition
of % shows that O has a very slow growth.

4.8 THEOREM. Let Y be a subspace of a quotient of a Banach lattice X
which is a weak Hilbert space.
For every u N there exists a K, so that pr(Ku, n) < n + Ou(n) for all

n N. One has K Ctc(21)aE/*(X)38+2, where C >_ 1 is a universal
constant. In particular Y has p.u.a.p.

Proof Fix uN and n N. Let K be equal to the constant K from
Theorem 4.6. From this theorem and the remarks after Definition 4.5 it
follows that Y has

C(55n, log5 log5 %(n),/).

By Proposition 1.3 of [4], if F
_
Y is a subspace and h N is any integer

such that

n =dimF<log5log5%(h) -555h,
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then there is a projection P on Y with Px x for all x F, IIPII 4K + 3
and

rk (P) < dim F + exp(53)(h).

Thus rk(P) < dim F + O(dim F).

We also get the result on bases of subspaces of quotients of Banach lattices
which are weak Hilbert spaces.

4.9 THEOREM. Let Y be a (finite or infinite dimensional) subspace of a
quotient of a Banach lattice X which is a weak Hilbert space. Then Yhas a basis
with the constant less than or equal to K, where K depends on the property (H)
constants ofX. In fact, K < CKc(21)112, where C >_ 1 is a universal constant.

Proof Let K" denote the maximum of constants in Theorems 4.7 and 4.8,
for v 3. Let K’= 144K", that is, K’< CK(21)56, where C > 1 is a
universal constant. It is readily checked that O3(n) < (1/10)n and
log5 log 5 ,r3(log 5 log5 n) > 3 + 1. Hence, if is a subspace of a quotient of
X, then Y has H(n,3n+l,K’) and (K’,l.ln)-p.u.a.p. The argument of
Johnson’s on page 23 of [4] now shows that Y has a basis with constant less
than or equal to K’(2 + K’). m

4.10 COROLLARY. If X is a weak Hilbert space with l.u.s.t., then the
conclusions of Theorems 4.8 and 4.9 hold for every subspace ofa quotient ofX.

Proof Since X has 1.u.s.t. and is reflexive it is isomorphic to a comple-
mented subspace of a Banach lattice Z, finitely representable in X. Hence Z
is a weak Hilbert space and the corollary follows immediately from Theorems
4.8 and 4.9. m

To conclude this section let us make some observations on the growth of
functions %(n), as n . Observe that

exP(2S(k))(k) < exp(sk)+’)2 (2) < exP(2exo(24)(k))(2),

for k > 4, hence (A) implies that

(D) exP(2exP(24)(kn))(2) >__ n.

Furthermore, (,,) implies that for v > 2, and all k N,

(E) q,,(k) >_ exP(2-’(k))(k).
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Also q (k) k 2k2 exp(zZ)(k), for all k N. Combining with (D) and using
(E) twice, we get, for n sufficiently large,

q93(kn) > exP2(q92(kn))(kn) >_. exP(222"+2)(r/).

By (B), this implies (C). Estimates for the functions qgu(kn) for u > 4, can
then be obtained, by induction, from (E).

5. Some additional remarks

If X is a Banach space with a normalized unconditional basis (x.), and
n, m N, and K > 1, we shall say that (xi) has property Ht(n, m, K) if every
m-dimensional subspace of [xlj > n] is K-isomorphic to ln. Let in the
following X be a Banach space with a normalized unconditional basis (xi).
The following result holds:

5.1 PROPOSITION. IfX is a Banach space with property (H), then there is a
constant K and a sequence (m(n)) of natural numbers with m(n) --. o% so that
X has Ht(n, m(n), K) for all n N.

Indeed, if for some K this does not hold, then by induction we can
construct an infinite sequence (En) of mutually disjoint subspaces of the same
dimension with d(E,,) > K/2. This contradicts Theorem 1.1.
Using Lemma 3.1 twice, combined with the fact that every m-dimensional

subspace of X is almost contained in a subspace spanned by m2m disjointly
supported vectors, one can easily prove

5.2 PROPOSITION. IfX has property (H) then there is I such that whenever
(x) has Ht(n, m(n), K) for all n N, then (x) has Ht(n,2mn), KI) for all
nN.

This shows that if X has property (H) and there is a K, so that the
sequence (m(n)) from Proposition 5.1 tends to infinity faster than some
iteration of the logarithm, then to every s N there is a constant C so that
(x.) has Ht(n, exP2s)(n),C) for all n N. Then we could argue like in
Section 4 to get the results there. However it seems impossible to obtain any
growth condition of the sequence (m(n)) for a suitable K directly from
property (H). An argument by contradiction like in Proposition 3.5 will break
down if the low dimensional spaces constructed there are supported on
extremely long blocks. Hence we can pose:

5.3 PROPOSITION. Assume that X has property (H). Does X have an
unconditional basis (y), which is a permutation of (x), so that (y) has
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Ht(n, m(n), K) for some K and m(n) --, oo faster than some iteration of the
logarithm?

In [4], Johnson constructed Banach spaces X(kn) where (kn) is a sequence
increasing to oo (k n corresponds to the Tsirelson space). Calculations in
these spaces show that S((kn)) has property (H) if and only if kn

oo faster
than some iteration of the logarithm, so it is not possible to use these spaces
as eventual counterexamples to Problem 5.3.
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