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PLURIHARMONIC SYMBOLS OF COMMUTING
TOEPLITZ OPERATORS

Boo RIM CHOE AND YOUNG Joo LEE

1. Introduction and Results

Our setting throughout the paper is the unit ball Bn of the complex
n-space cn; dimension n is fixed and thus we usually write B Bn unless
otherwise specified. The Bergman space A2(B) is the closed subspace of
L2(B) L2(B, V) consisting of holomorphic functions where V denotes the
volume measure on B normalized to have total mass 1. For u L=(B), the
Toeplitz operator Tu with symbol u is the bounded linear operator on A2(B)
defined by Tu(f) P(uf)where P denotes the orthogonal projection of
L2(B) onto A2(B). The projection P is the well-known Bergman projection
which can be explicitly written as follows:

fB (W) dV(w)P()(z)
(1 (z)n+l (zB)

for functions 0 L2(B) Here (,) is the ordinary Hermitian inner product
on Cn. See [7, Chapters 3 and 7] for more information on the projection P.

In one dimensional case, Axler and (ukovi6 [3] has recently obtained a
complete description of harmonic symbols of commuting Toeplitz operators:
if two Toeplitz operators with harmonic symbols commute, then either both
symbols are holomorphic, or both symbols are antiholomorphic, or a nontriv-
ial linear combination of symbols is constant (the converse is also true and
trivial). Trying to generalize this characterization to the ball, one may
naturally think of pluriharmonic symbols. A function u C2(B) is said to be
pluriharmonic if its restriction to an arbitrary complex line that intersects the
ball is harmonic as a function of single complex variable. As is well known, a
real-valued function on B is pluriharmonic if and only if it is the real part of
a holomorphic function on B. Hence every pluriharmonic function on B can
be expressed, uniquely up to an additive constant, as the sum of a holomor-
phic function and an antiholomorphic function.
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In the present paper we consider the same problem of characterizing
pluriharmonic symbols of commuting Toeplitz operators on the ball. Our first
result is a necessary condition in terms of ’-harmonicity (see Section 2 for
relevant definitions) for such symbols.

THEOREM 1. Let f, g, h, and k be holomorphic functions on B such that
f + , and h + k are pluriharmonic symbols of two commuting Toeplitz opera-
tors on A2(B). Then hy, is e/g-harmonic on B.

The proof in [3] shows that the converse of Theorem 1 is also true in one
dimensional case. Unfortunately, we were not able to prove or disprove the
converse of Theorem 1 on the ball in general. However, Theorem 1 is enough
to produce a simple characterization in case one of symbols is holomorphic
(or antiholomorphic which amounts to considering adjoint operators). Its
proof will make use of a recent characterization (see Proposition 7) of Ahern
and Rudin [2] on /-harmonic products.

THEOREM 2. Suppose that u and v are pluriharmonic symbols of two
commuting Toeplitz operators on A2(B). If u is nonconstant and holomorphic,
then v must be holomorphic.

Recall that a bounded linear operator on a Hilbert space is called normal
if it commutes with its adjoint operator. Since the adjoint operator of the
Toeplitz operator with symbol u is the Toeplitz operator with symbol , the
following is an immediate consequence of Theorem 2 whose proof is there-
fore omitted.

COROLLARY 3. The Toeplitz operator with holomorphic symbol u is normal
on A2(B) if and only if u is constant. D

In Section 2 we collect some facts about /’-harmonic functions which are
needed in Section 3 where we prove Theorems 1 and 2. In Section 4 we
conclude the paper with some remarks and discussions related to the con-
verse of Theorem 1 and a possible pluriharmonic version of Corollary 3.

2. /-Harmonic Functions

For z, w B, z 4= 0, define

 z(W)
z -Izl-2(w, z)z V/1 -Izl 2 (w -Izl-2(w, z)z)

1- (w,z)

and q0(w) =-w. Then qz ’, the group of all automorphisms
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(= biholomorphic self-maps) of B. Furthermore, each q ’ has a unique
representation q U rpz for some z B and unitary operator U on C".
For u C2(B) and z B, we define

(au)(z)

where A denotes the ordinary Laplacian. The operator z is called the
invariant Laplacian because it commutes with automorphisms of B in the
sense that (u q) (u)o q for q /. We say that a function u C2(B)
is c/e-harmonic on B if it is annihilated on B by z. One can easily see that
/-harmonic functions are precisely harmonic ones in one dimensional case.
As is the case for harmonic functions, -harmonic functions are character-
ized by a certain mean value property (see [7, Chapter 4]): a function
u C(B) is g-harmonic on B if and only if

(uo r#)(O) fs(UO p)(r) do’() (0 _< r < 1)

for every r# . Here o- denotes the rotation invariant probability measure
on the unit sphere S, the boundary of B. This is the so-called invariant mean
value property. The following area version of this invariant mean value
property also gives a characterization of ’-harmonicity of functions continu-
ous up to the boundary (see [7, Proposition 13.4.4]): a function u C(B) is
.e’-harmonic on B if and only if

(uo )(0) fB(U p) dV

for every p ’.
The key step to our proof of Theorem 1 is adapted from that of [3]. That is,

we will use a slight variant of the characterization of -harmonicity given by
the area version of invariant mean value property. To state it, let us
introduce some notations. We associate with each v C(B) its so-called
radialization ,/(v) defined by the formula

’( v)( z) fz( v U)( z) dU (zeB)

where dU denotes the Haar measure on the group of all unitary operators
on Cn. Using Proposition 1.4.7 of [7], one can easily verify that

(v)(z) fs(Izl) do’() (z B)
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and hence W’(v) is indeed a radial function on B. We write ’(v) C(B) if
’(v) has a continuous extension up to the boundary.

PROPOSITION 4.
on B if and only if

Suppose that u C(B) LI(B). Then u is /g’-harmonic

(1) f,,(uo dV (uo

and

(2) ’(uo p) C(B)

for every

Proof. We first prove the easy direction. Suppose that u is ’-harmonic
on B. Let q ’. By the invariant mean value property, we have

(uo q)(O) fs(U rp)(r() dr(()

for every r [0, 1). Integrating in polar coordinates, we have (1). The above
also shows that z’(uo0) is constant on B, with value (u orp)(0), and
therefore (2) holds.
To prove the other direction (which we need for the proof of Theorem 1),

suppose that (1) and (2) hold. Let q and put v ’(u q). We first
show that v is ’-harmonic on B. Since v C(B) by (2), it is sufficient to
show the area version of invariant mean value property of v. To do this, fix
q ’. Then

(3) fn( v q) dV fsf@(uo Fv) (z) dUdV(z)

where Fv q U 0 ’.
For a fixed unitary operator U on Cn, consider the inverse mapping

Gv " of Fv and put a Fv(0)= (q U q)(0). Then, since I-X(0)l--
I(0)l, we have ([7, Theorem 2.2.5])

1 -la[ 2 (1 -I o(0)12)(1 -I g,(O)12)
11 (-;--i;i-{ )(0))12 (1 [q(0) [2)(1
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On the other hand, we have [7, Theorem 2.2.6]

JRGv( w) .w, a- ,2 <
1 -lal z

n+l

(weB)

where JRGv(w) denotes the real Jacobian of Gv at w B. It follows that
the function JRGv is bounded on B uniformly in U. Therefore, since
u LI(B) by assumption, a change of variables shows that

f flu Fvl dVdU f fnlUlJRGts dVdU < .
Now one can interchange the order of integrations on the right side of (3)

to obtain

where the second equality holds by (1). Hence v is /-harmonic on B. Since
v is radial, the invariant mean value property shows that v is constant.
Consequently,

(uo q)(O) v(O) v(z) fs(UOq)([z[)dr() (zeB).

Since 0 / is arbitrary, the above shows that u has the invariant mean
value property and hence that u is -harmonic on B as desired, t3

3. Proofs

First, we recall some well known facts on the Hardy space H2(B) consist-
ing of holomorphic functions f on B for which

sup fslf(r ) 12 dr(sr) <
0<r<l
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Note that H2(B) c A2(B) by an integration in polar coordinates. To each
f HE(B) corresponds its boundary function f* on S defined by f*(sr)
limr ,1 f(r) for tr-almost every sr S. In addition, we have f* L2(o") and

lim fs f(r) f*()12
r,l

dtr(’) 0.

See [7, Chapter 5] for details. One can easily verify by using the above that if
f, g H2(B), then

lim f/(r),(r) dcr() f/*,*
and hence ’(f) C(B).

Next, before turning to the proof of Theorem 1, we prove a couple of
lemmas. For q /, let U, denote the linear operator on A2(B) defined by
U,f (fo q)j, where J, is the complex Jacobian of q and write U* for its
adjoint operator.

LEMMA 5.
A2(B).

Let q g’. Then UU UU is the identity operator on

In other words, the conclusion of the lemma is that U is unitary on
A2(B).

Proof. Since IJql 2 is the real Jacobian of q, a change of variables yields

fBl( f )121jql 2 dV folfl 2 dV

for every f A2(B), and hence U is an isometry of A2(B) into A2(B).
Clearly U- is the inverse operator for U. An invertible linear isometry on a
Hilbert space is a unitary operator (see for example [5, Theorem 12.13]). The
proof is complete.

LEMMA 6. Let q " and let u L(B). Then

U ruUg Lo.
Recall that P denotes the Bergman projection of L2(B) onto A2(B).

Proof Define V: L2(B) - L2(B) by Vf (f q)Jq. As in the proof of
Lemma 5, V is unitary on L2(B). Since V, U when restricted to
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we see that V takes A2(B) onto A2(B) and hence

(4) PV VP.
If f A2(B), then we see from (4) that

T,o,Uof To((f h)Jq) P((u p)(f o q)Jq)

P(V,c(uf)) V,(P(uf)) U,Tf.

Thus T.oU U,T., and since U is unitary by Lemma 5, we have Tuo
UCT,U*. The proof is complete.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let u=f+ and v=h+k. Since u and v are
bounded on B, functions f, g, h, and k must be in HZ(B) by an application
of the Korfinyi-Vagi theorem (see [7, Theorem 6.3.1]). In particular, functions
f, g, h, and k are all in AZ(B). Let 1 denote the constant function 1 on B.
Then we have

TuT,,1 Tu(Pv ) ,Tu(h + (0)) P(fh + (O)f + h + (0)(0)).

Note that fBFdV F(0) for holomorphic functions F LX(B). Since the
projection P is orthogonal, it follows that

fBT,,TI dV fSh + (O)f + h + (0)(0) dV

=f(O)h(O) + f(O)k(O) + (O)k(O) + hdV.

Similarly,

(6) fBToL1 dV=f(O)h(O) + h(O)(O) + (0)(0) + fJdV.
Since TuTv TvT by assumption, letting a fk hg, we have by (5) and
(6) that

(7) fna dV a(O).
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We also have (by a remark at the beginning of this section) that

(8) C(B).

Let ’. Multiplying both sides of the equation TuT,, T,Tu by U, on
the left and by U* on the right, we obtain by Lemma 5 that

and therefore by Lemma 6

(9) Tuo,T o, T o,Tuo,.

Equations (7) and (8)were derived under the assumption that TuTv T,,Tu.
Thus (9) says that (7) and (8) remain valid with a q in place of a. That is,

and sC’(a ) C(B) for any ’. It follows from Proposition 4 that a is
’-harmonic on B. This completes the proof.

Having proved Theorem 1, we now turn to the proof of Theorem 2 which
states that if one of symbols of two commuting Toeplitz operators is noncon-
stant and holomorphic, then the other one must be also holomorphic. In the
proof we apply a consequence of the following recent theorem of Ahern and
Rudin [2] on /-harmonic products.

PROPOSITION 7. Let f and g be holomorphic functions such that fg is
d’-harmonic on B.

(a) If n <_ 2, then either f or g is constant.
(b) ff n >_ 3, and if both f and g are nonconstant, then there exist an integer

2 < rn < n 1, a unitary operator U on Cn, and entire functions F on Cm- 1,
and G on Cn-m, such that

Z2 Zm )f(Uz) F 1-zl’"" 1--Z
Zm+l Zn )g(Uz) G 1 Zx 1 z

Moreover, f(B) F(Cm-1), g(B) G(cn-m), and (f,)(B) C or
c \ {o1.

Combining Proposition 7 with Liouville’s theorem, we have the following:

LEMMA 8. Letfand g be holomorphic functions such that f, is ’-harmonic
on B. If one of them is bounded on B, then either f or g is constant.
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Proof of Theorem 2. Write v h + k where h, k are holomorphic on B.
Then, by Theorem 1, uk is .’-harmonic on B. Since u is bounded and
nonconstant on B by assumption, we see from Lemma 8 that k must be
constant and hence v is holomorphic on B. Conversely, since Toeplitz
operators with holomorphic symbols are simply multiplication operators, it is
straightforward that two Toeplitz operators with holomorphic symbols com-
mute on AZ(B). 3

4. Some related remarks

Throughout the section f, g, h, and k denote holomorphic functions on
B, normalized so that f(0) g(0) h(0) k(0) 0 for simplicity. In view of
Theorem 1 one may ask (under additional boundedness hypothesis as in
Lemma 8 if desired) whether there is any further description of such
functions for which

(10) /(f/ ) ,( h, ).

Both sides of the above are assumed to be not identically zero; otherwise we
are back to Proposition 7. In one dimensional case, it is elementary to verify
that condition (10) implies f Ah and g Ak for some constant . In
higher dimensional cases, we do not know whether the same is true in
general. This question can be rephrased as follows: does it follow from (10)
that fk- h is pluriharmonic? The answer is known to be yes if an
additional smoothness condition of certain order, depending on dimension n,
is satisfied up to the boundary: if a function u C(B) is c/x-harmonic on B,
then u is pluriharmonic on B. See [1] or [4]. We also remark in passing that
there is in fact a more precise version of this fact ([6]): if u is ’-harmonic on
B and if the nth radial derivative _nu satisfies the LZ-growth condition

I(.nu)(r)l2
dr(’) o log 1 r (r 1),

then u is pluriharmonic on B. Note that Tf+Th+ Th+Tf+ if and only if

TfT- TTf= ThT -TTh for functions f, g, h, and k bounded on B.
Thus, for example, we have the following:

Iff, g, h, and k are of class Cn on B, and if TfT TTf
A2(B), then f ,h and g "k for some constant . ThT T,Th on

Trying to obtain a pluriharmonic version of Corollary 3, one is led to a
special case of (10) which may be of some independent interest. That is, the
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question is now whether the condition

(11) zlfl 2 zlgl 2

implies f Ag for some unimodular constant A. We could prove only in
some special cases that the answer is yes. Those are included in the rest of
the paper with hope that they may serve as a motivation for someone to
settle the question in the affirmative or negative direction. We first prove a
couple of lemmas.

LEMMA 9. Let 12 be a given connected open subset of_. C". If F. and Gj
(1 < j < m_) are holomorphic functions such that Eim= 1Fj’G 0 on f, then
.,jm= Fj(z)G1(w) 0 for all z, w 1.

Proof. Assume, without loss of generality, that an open ball/3 with center
at the origin is contained in f. Define

m

E a).
/’=1

It is sufficient to show that H(z, W) 0 for all z, w /3 by real analyticity.
Let L be the invertible linear operator on Cn Cn defined by

L(z,w) (z + iw, z -iw).

Then, since H(z, ) 0 for all z /3 by hypothesis, we have H L 0 on
V N (Rn Rn) where V L-1(/3 /3). Note that the function H L is
holomorphic on V. A consideration of Taylor coefficients therefore shows
that H L vanishes on V. In other words, H 0 on/3 /3, completing the
proof.

LEMMA 10. Let 1 be a given connected open subset of Cn. If Fj and G
(1 < j < m) are holomorphic functions such that Em=I[F.[2 m=lIG.12 on
then there is a unitary operator U on Cm such that (FI,...,Fm)
U o(G1,... Gm) on

Proof The lemma is trivial if rn 1. To proceed by induction on m, let
rn > 1 and suppose that the lemma is proved for rn 1. Let F (F1,..., Fm)
and G (G1,..., Gm). We may assume that f contains the origin. We may
further assume that IF(0)[ [G(0)[ 1. Pick unitary operators U and U2 on
Cm such that UI(F(0)) U2(G(0)) (1, 0,..., 0). Let

UIF= (fl,’’’,fm) and U2oG (gl,’",gm)"



434 BOO RIM CHOE AND YOUNG JOO LEE

Then we have E.m=f.3. Eim=lgigi on 12 and hence, by Lemma 9,

m m

E L.(z)f,.(w) E
j= j=l

for all z, w fl. Taking w 0, we obtain fl g on 12. Thus, by induction
hypothesis, there exists some unitary operator U on Cm-1 such that
(f2,’", fro) U (g2,... gin) on f. Now let

1 0 0
0

v
0

Then U3 is a unitary operator on Cm and we have F U1-1
proof is complete. []

U Uz G. The

In what follows, we let Vf= (Dxf,..., Dnf) and f ET=lZiDif where

D denotes the differentiation with respect to z-variable. With these nota-
tions, equation (11) becomes

(12) IVfl 2 + I,.gl 2 -IVgl 2 -4-I,.fl 2.

We assert the following:

Suppose that (12) holds on B2. If Vf(0) Vg(0) 4 0, then f g on B2.

Proof
that

By (12) and Lemma 10 there is a unitary operator (aii) on C3 such

(13)
/ 0/11 0/12 0/13

0/21 0/22 0/23
0/31 0/32 0/33

lg /D2g

Assume that Vf(O) Vg(O) (1, 0)without loss of generality. Then, evaluat-
ing both sides of (13) at the origin, one can easily find that all 1 and
0/12 O/13 0/21 0/31 0. It follows that Dlf Dig. Hence Dzf- D2g
does not depend on Zl-variable. In order to prove D2f D2g it is therefore
sufficient to show that Dzf(O, z2) D2g(0, z2) for Iz21 < 1. Evaluating both
sides of (12) at points (0, z2), we obtain that .IDzf(0, z2)l ID2g(0, z2)l and
thus there exists a unimodular constant h such that

(14) D2f(O, z2) AD2g(O, z2)
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for [Z21 < 1. Assume that both sides of (14) are not identically zero; other-
wise we are done. By (13),

z2D2g(O, z2) a32D2g(O z2) + a33z2D2f(O, z2).

Insert (14) into the above. A little manipulation yields a32 "-O23--’--0 and
a33 a,. Thus, we have o@f )t.@g. Evaluating both sides of this at points
(Zl, 0), we obtain A 1. The proof is complete.

We now conclude the paper with another special case"

Iff + 0 and f. 4= 0 for some 1 < j < where fm denotes the ruth degree
term in the homogeneous expansion of f on B, then (12) implies f hg for
some unimodular constant h.

Thus, if there were counter examples, then there would be no
their homogeneous expansions.

"gap" in

Proof
yields

First note that the invariant mean value property of Ill 2

lfml
do" fsIgml 2 do" (m 1,2,...)

where gm denotes the mth degree term in the homogeneous expansion of g
on B. Hence gt+l 0 and gj 4= 0 by hypothesis. Now, by Lemma 10 as
before, there exists a unitary operator U on Cn/l such that (Vf,..@g)=
U o(Vg, .@f). In particular, there are some vectors a,/3 Cn and a constant
h with la[ 2 / IAI 2 1/312 / IA[ 2 1 such that

(15) ,.@f= (Vg, a) + a,.g and ..g (Vf,,8} + a._f.

If lal 1, then a =/3 0 and (15) shows o@f hg, hence f hg. So, we
assume lal < 1 and derive a contradiction. Equate terms of the same degree
in the homogeneous expansions of both sides of two equations of (15) to
obtain

mfm (Vgm+lm,ot) + ,mgm and mgm (Vfm+l,/) + ,mfm,

so that

m(1 l*12)fm (Vgm+l, a) / ,k(Vfm+l >
for m 1, 2, Since fl+ gl+ 0, the above shows that fm gm 0
for all 1 < m < l, which is a contradiction. The proof is complete.
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