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ON THE r/-INVARIANT OF GENERALIZED
ATIYAH-PATODI-SINGER BOUNDARY VALUE PROBLEMS

MATTHIAS LESCH AND KRZYSZTOF P. WOJCIECHOWSKI

1. Introduction. r/-invariants for Dirac operators on manifolds with boundary

We consider a compactRiemannian manifoldM withboundary N, dimM 2k+
odd. Moreover let (S, V) be a complex Dirac bundle over M (cf. [17, Def. 11.5.2]).
Then we can form the Dirac operator

D" C8 (S) - C8 (S)

associated to this structure. In order to obtain self-adjoint extensions of D we have to
impose boundary conditions. We assume that the metric is product near the boundary,
i.e., there is a collar U [0, 1) x N ofthe boundary where the metric and the hermitian
structure of S are product. Then on U the operator D has the form

(1.1) D =F +A

where F" SIN SIN is a unitary bundle automorphism (Clifford multiplication
by the inward normal vector) and A" C(SI N) ---> C(SI N) is the corresponding
Dirac operator on N. One easily checks the following identities

(1.2) -‘2 -I, 1"* =-F, I"A =-AF, A* A.

In order to define self-adjoint boundary conditions for D we first deal with the case
ker A {0}, i.e., A is invertible. This case is most similar to and there is a canon-
ical self-adjoint boundary condition. Let rI + be the orthogonal projection onto the
positive (negative) spectral subspace of A, i.e. I-l+ l(0,)(A), FI_ l(_,0)(A).
We use the pseudodifferential operator rI+ as elliptic boundary condition and put

D+ := D,
(1.3) 79(D+) := {s E HI(M,S)[ I-I+(slN) =0}.

where Hk denotes the k-th Sobolev space and 79(.) denotes the domain ofan opera-
tor. The elliptic boundary conditions for Dirac operators have been discussed in [3],
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and [3] also shows that D+ is a self-adjoint operator. In [9] it was shown that the

7-function of D+

(1.4) 7(D+,s)-- F((s + 1)/2) -1 t(s-1)/2Tr(D+e -t2+) dt

is well-defined for Re(s) large and has a meromorphic extension to the entire complex
plane, regular at s 0. For the last point it is crucial that we have a compatible Dirac
operator, since for these operators the local residues of the 0-function vanish [4].
Moreover [4] shows that (1.4) converges for Res > -2 and we thus may also write

fo Tr(D+e_tO+1.5) 7(D+, 0) t- dt.

It is a remarkable fact that 7 is more or less independent of the length of the
boundary cylinder. For R > 0 let

MR :--- ([--R, 0] x N) U M,

and

M :-- ((-o, 0] x N) t_J M

be a manifold with cylindrical end. Here the cylinder and M are glued together along
the common boundary in the obvious way since M is product near the boundary. By
virtue of (1.1) the Clifford structures and D have an obvious extension to M. The
manifoldM is complete, thus D is essentially self-adjoint on C(M, S). This is
classical by now. The standard reference is the beautiful paper by Chernoff [8] on
hyperbolic equations. Denote by D this unique self-adjoint extension of D and by

RD+ the operator D on MR with boundary condition (1.3). It was shown in [14] that
7(D, 0), the 7-invariant of D, is well defined. Moreover we have:

THEOREM 1.1 ([9, 18, 21 ]).

R 0) 7 (D 0).lim 7(D+, ,
R--->o

Modulo integers, 7 (D, O) is independent of R.

The situation is different in case of non-trivial kernel of A. (1.3) is not a self-
adjoint boundary condition any more and there exist a variety of self-adjoint boundary
conditions whichwe are going to describe now. First weneedthe Cobordism Theorem
for Dirac operators. This is due to Atiyah-Singer and was published in Palais book.
But there also exist fairly direct proofs by now.

PROPOSITION 1.2. [20, 13, 15, 3] We have

dim(ker(1-" i) fq ker A) dim(ker(F + i) N ker A).
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We pick a Lagrangian subspace ; of kerA with respec to F. This means that
1" (/2) is orthogonal to Z; and 12 + F/2 ker A. Let zrc be the orthogonal projection
onto Z; in ker A. Z; can equivalently be described by the reflection tr := I 2zrc. tr

is unitary, cr 2 and/2 is just the -1 eigenspace of tr. Moreover

Below we identify the Lagrangian subspaces ofker A withits reflections cr and denote
by Zro the orthogonal projection onto ker(tr + 1). Sometimes we consider Zro also as
projection in L 2(SI N) in the obvious way. Since ker A consists of smooth sections,
this projection has, of course, a smooth kernel. To tr we associate the projection

(1.7) rio := I’I+ + zro

and define the boundary condition

(1.8)
79(Do) := {s Hi(M, S) Flo(sIN) 0).

Again Do is a self-adjoint, unbounded Fredholm operator and the 0-function has
the same properties as in case of invertible A (see the Appendix A to [9]). A priori
there is no canonical choice for cr and the question how 0 depends on r naturally
arises.

0-invariants for global boundary conditions were first introduced by Cheeger in
the context of conical singularities [6], [7], including the emphasis on the role of
Lagrangian subspaces in ideal boundary conditions. He studies the 0-invariant of the
signature operator onmanifolds with conic singularities. Inorder to obtain self-adjoint
extensions, Lagrangian subspaces naturally occur. For general 1st order regular sin-
gular operators this has been worked out by the first named author 16].

More general any pseudodifferential projection P with the same principal symbol
as I-I+ and which satisfies

(1.9) FPF I P,

the equivalent of (1.6) in the terminology of projections, provides us with a self-
adjoint elliptic boundary condition. We denote the space of such P by ElF (D). This
space was studied in [21 and the Appendix B to [9] (see also [3]), where the homotopy
groups of Ell* (D) were computed. In particular zr (Ell* (D)) Z.

In the next section we study in detail the case ofa cylinder manifold where we can
compute 0(Do, 0) explicitly. This leads to a formula for the dependence of 0(Do, 0)
on tr which we then prove in Section 3 in general. Given two reflections r l, tr2
we construct a path connecting tr and cr2. The main idea then is to transform the
resulting family of operators into a family which is constant near the boundary. It
seems that many people in the community have the impression that now the result
just follows from the standard variation formula for 0. Morally, this is correct. But
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nevertheless, the problem is more subtle since the family of operators (3.7) is not
pseudodifferential. Moreover we mention that our formula for the dependence of r/
on the boundary condition is one of the ingredients of the general glueing formula
of the r/-invariant, which has been proved in the meantime using our result in the
cylinder case [5]; see also [21 for the case of invertible tangential operator.

Finally, we obtain a family of boundary conditions over S1, which provides us
with a generator of rr (Ell*(D)).

Acknowledgement. Peter B. Gilkey brought the problem of the dependence of r/
on the boundary condition to our mind. We are indebted to him for his stimulation and
constant encouragement to write this paper. For the first named author the starting
point was a visit ofP. Gilkey at Augsburg, December ’92, were the first named author
has learned a lot during a long session with J. Brtining and P. Gilkey. He is indebted
to both of them. Moreover he wishes to thank U. Bunke, G. Grubb and W. Mtiller for
useful discussions on the subject.

2. The cylinder case

In this section we discuss in detail the case of the cylinder M := [0, 1 x N. Here
we can relax our assumptions on the operators. We just assume that we have a first
order symmetric elliptic differential operator of the form (1.1), where A: C(E) --C(E) is a first ordersymmetric elliptic differential operator over thehermitian vector
bundle E and 17 is a unitary 0th order operator, 172 -I, 17A -AI". Furthermore
in this situation we have to assume that Proposition 1.2 holds. Then we choose two
reflections aj: kerA ker A, j 0, 1, as in Section and put

I’lo :-- l-I+ + 7fO.o, H1 :: I’I_ -+- 7fcrt

and

(2.1)
D=D

D(Da) ": [f6 HI(M, E)I Ho(f,{0} x N): 0, Hl(f.{1} N)= 0].
In this situation we can compute quite explicitly.

THEOREM 2.1. We put

U :’-" 6rO0"l, and u+ := u lker(r q: i).

Then the o-invariant of Da is given by the formula
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in particular,

rl(Da O) =-- -mtrlog(-u+) + dimker(u+ 1) mod2Z

log det(-u+) + dim ker(u + 1) mod 2Z.

Moreover dimker D, dim ker(u+ 1) and hence the reduced 7-invariant is given
by

1 1
logdet(-u+) modZ.(O, 0) (r/(D, 0) + dimker Do) modZ _= 2zr--

Proof. We choose an orthonormal basis (qn) of im 1-I+, consisting of eigen-n=l
F isansections of A, i.e. Aqbn Jntn n > O. Then, since FA -AF, qn)n=l

orthonormal basis of im I-I_, AI’qbn -,nI’qbn. Putting

] span (tn l"bn), n > 1,
V, / ker A, n 0,

we have

(2.2)

Lg(E) ) Vn
n--0

L2 ([0, ], L 2 (E)) ) L2([0, ], Vn
n---0

where for n > we have

D(Da, n) (f, g) H ([0, 11, C2) f(O) O, g(1) O}

and for n 0,

D,,,o Fmx
:D(Da,o) {f e HI([o, 11, kerA); f(O) e ker(ao- 1), f(1) ker(al 1)}.

LEMMA 2.2. For n > the operator Da,n is invertible and has symmetric spec-
trum. In particular, O (D, n, s) vanishes.
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Proof If Da,n(f g) 0 then f(x) 1e-znx, g(x) = c2ez"x and the boundary
conditions force c l, c2 to be O. The operator

0(0 -1)
obviously leaves the domain of D, invariant and anticommutes with Do,n, which
proves symmetry of the spectrum. V1

Now we deal with D,o and first compile some properties of the unitaries involved.

dim ker(trj 4- 1) 1/2 dim ker A, det crj (- 1)1/2 dimker A.
u tr0rl is unitary, commutes with I’, det u 1. Hence u+ := u lker(F q: i)
is a well-defined unitary.
b/* O’10"0 O’lO’0tT10"l O’lb/O’l, thus specu is invariant under complex
conjugation.

LEMMA 2.3. We have

spec Do,o U - + zrZ,
(-r,r]

eitspec(u+

where the multiplicity ofthe eigenvalue /2+ zrk isjust the multiplicity ofthe eigen-
value eia E spec(u+).

Proof Consider an eigensection D,of Lf. Then we have obviously

f (x) e-zrx fo, fo E ker(cro 1).

Decompose fo =: fo,+ f0,-, fo,+/- ker(I’q: i). Decomposing fo,+ with respectto
the spectral decomposition ofu + w. 1. o. g. wemay assume, that fo, + is an eigenvector
of u+; i.e., ufo, + lzfo, +, lz S Now one easily checks the relations

ufo ftfo,-, tro fo, +/- fo,, O’1 f0,+ --/zf0,-, crl f0,- =/2f0,+.

The boundary condition at shows that . is an eigenvalue iff

e2/ =/z.

Writing/z ei, c (-zr, zr], we obtain the assertion.

To prove the theorem we have to analyze the analytic continuation of the function

(2.3) f(a, s) "= sign(n + a)In + a[ -s, a (- 1, 1) \ {0}.
nEZ

This could be done by differentiating with respect to the parameter a 11, Sec. 1.10].
Here we give a somewhat more general result.
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LEMMA 2.4. Let S be a symmetric elliptic differential operator on the closed
manifold M. Denote by I01 > 0 the first nontrivial eigenvalue of S. Then, for
0 < lal < I,ol,

a21
0(S + a, 0) (dimker S) sign(a) + 0(S, 0) + -- Res 0(S)(21)

l=

a2/+l
-Zl + 1/" Res (S2)(l + 1/2).

/=0

Since O and are holomorphicfor Re s large, the sums are infact finite.

Proof. Since 0 < lal < I.01, for Res large we compute

0(S + a, s) (dim kerS)
sign(a) +

a xep s\lol
sign())l. + al -s

(dimkers)Sign(a) (s)( )nlal
/ sign0,)lZl_

a

spec s {o} n-------0

sign(a) (--s) 2(dimkerS)
lal +0(S,S)+l=l 21

a 0(S,s+2/)

(-s )a2l+l((s2 sW1 )+ +
l---o

2/+ 1 2

The last series gives the analytic continuation to the entire complex plane and the
assertion follows from

21 0(S,s+2/)s___o-- 21
Res 0 (S) (2/),

(--s)(2/+1 ;2s+l )1 --1
( S2 _--7---- -t-

s=o l+ 1/2
Res ( ($2)(1 + 1/2).

In (2.3) the operator is S - on S Its 0-function vanishes identically and

((S2, z)= 2- 2( (2z),
n=l

the Riemann (-function. Since is the only pole of (n and its residue is we find

(2.4) f(a, 0) --sign(a) 2a.
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With Lemmas 2.3, 2.4 we obtain

o(D,s) y sign(n)
( nZ\{0}
itspec(u +)

)S
o(-,)

iospec(# 4-)

hence

o(D, O)

and the proof of Theorem 2.1 is complete.

For the more general Atiyah-Patodi-Singer boundary conditions of D we can at
least give a vanishing criterion.

LEMMA 2.5. Let M [0, 1] x N and D be ofthe form (1.1). Moreover let P be
a generalized Atiyah-Patodi-Singer condition for D; i.e., P has the same principal
symbol as FI+ and satisfies (1.9). Put

Dp-----D

D(Oe) := If E Hi(M, E) P(fI{O} x N)= O, (I P)(fI{1} x N)= 0l.
Then the o-function ofDe vanishes.

Proof. We show that De has symmetric spectrum. Put

T: Z2([0, 1], L2(EIN)) -- L2([0, 1], L2(EIN)), (Tf)(x) := l"f(1 -x).

It is clear that T maps D(De) onto itself and anticommutes with De. [3

An Example. We discuss in some detail an example that explains Theorem 2.1
and which leads to a generator of Zrl(Ell*(D)). In the context of the beginning
of this section assume ker A -7/: {0} and choose an element q9 E kerA, I1oll
with l"q9 _1_ qg. Fix a symmetric boundary condition on the complement of W :=
C([0, 1] x N) (R) span(qg, I’o) as in the preceding Lemma. To define self-adjoint
boundary conditions we therefore have to fix Lagrangian subspaces in span(o,
For convenience we work in the base

e := -S=(o- il"q)),
/

f "= ---_(o + r0)
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of span(tp, Fqg) consisting of +i-eigensections of F. For simplicity, let

/o := span(e + f),

and for 0 < a < 2zr,

0 -1 )tT -1 0

/l,a "-- span(e + ei(r-a) f),

0
O’l,a _ei(rr_a)

--e

Let Da be the operator with symmetric boundary condition on the complement of

Wo and boundary reflection a0, O’l,a on Wo. We have

e (:r-a)
/,/a :’-" o’O0"l,a 0

thus ei(r-a) is the only eigenvalue of Ua, + and we obtain from Lemma 2.3 that the
spectrum of Da restricted to Wo is

Hence we have proved:

PROPOSITION 2.6.

a

r/(Da, 0) 0,
a

2,

0<a < zr,

a=Tr,

zr < a < 2zr,

a
(D, O) modZ.

The reason for the discontinuity of rl(Da, 0) is that an eigenvalue crosses the
origin as a crosses zr. Since exactly one eigenvalue crosses the origin from + to
we obtain that the spectral flow of the family {Da }0<_a_<2r is -1. This makes sense
because Do D2 and hence we have a family of self-adjoint Fredholm operators
over the circle. We state these observations:
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COROLLARY 2.7.
Zrl (Ell* (D)).

sf{Da and as a result Da represents a generator of

Remark. The spectral flow of the families of boundary value problems over S
was also studied by Furutani and Otsuki 10].

More generally, let y: [0, -, (ker(l-’ i) f) ker A), , (0) ?,(1) I be
a closed path of unitaries. Extend y to kerA by I on Mr(l" + i) q kerA and let
at := Vt*tr0Yt. This defines a family {Dt}o<t<l ofoperators withboundary reflections
%, at. Since (yI ker(l" + i)) I we have

u+,t (rortl ker(r i)) y(t).

Thus by Theorem 2.1,

d 1
(2.5) td’?l(Dt’ 0) tr(?, (t)*# (t)).

This gives

(2.6) sf{Dt fo d 1 fl-l(Dt, O)dt i tr(y(t)*f/(t))dt,

i.e., the winding number of the path ,, which just gives the isomorphism

arl(H(ker(l" i) N kerA)) Z.

3. The general case

The aim of this section is to generalize Theorem 2.1 as follows.

THEOREM 3.1. Let D be a Dirac operator on an odd-dimensional compact Rie-
mannian manifold with boundary as described in Section 1. Let cro, trl be reflections
ofker A satisfying (1.6). Then we have

O(D,, O) (D,,o, O)
1

2zri
logdet(%trll ker(I" i)) modZ.

Proof. We choose a self-adjoint endomorphism T ofker(l" -i) NkerA such that

e2riT r0trll ker(F i) and 1/2 < T < 1/2,

T log(cr0crl ker(I" i)).
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We extend T to L2 (SI N) by 0 on the orthogonal complement of ker A A ker(l-’ i).
Then we find that

(3.1) V e2zr ir T

is a one-parameter family of unitaries commuting with 1" and A and

3.e r := Vr*0 Vr

is a one-parameter family of reflections anticommuting with I" that joins a0 and a.
Moreover this gives a one-parameter family of operators Dor.

One of the main difficulties is that the boundary condition varies with r. Now we
introduce a transformation to a family which is constant near the boundary. Choose

f C () with

1, 0<x<e
0<e <-.(3.3) f(x)= 0, x>2e 3

Then f extends in an obvious way to a C-function on M. Now define a gauge
transformation

(3.4)
Ur :-- L2([0, 1], L2(SIN)) -- L2([0, 1],L2(SIN))

(Urgo)(x) := eirf(x)r go(x).

Since (Urgo)(x) go(x) for x > 2e it extends to a unitary one-parameter group on
L2(M, S). Moreover Ur maps 79(Dot onto 79(D0) such that

(3.5) D’ := Ur OarU;O’r

has fixed domain 79(Do0). On the collar [0, 1) x N we have

(3.6) D’r D- 2zri r ft F T, 79( Otar --79(Do

hence

(3.7) D’ Do- 2zrirf’I"TO’r

If this were a differential operator, we could apply [9, Prop. 4.4] (see also [9,
Appendix]) and would get

d d
(3.8) d-- (Dr’ O) -- (D’ar 1,3 (-- Dao), 0),

where D’ U (-Do) is a Dirac operator on the double /f/of M By [1 Lemmar
1.10.3] this would be

(3.9) 7r -1/2 am p, -r gr j Do Dar IO (-Oa0))2
dp
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where am is a local invariant in thejets of the symbol ofthe operators involved. Since
am is local in the jets ofthe symbols, it is supported on suppf’ C [e, 2el x N, hence

(3.10)
d d~
-r D* O) -.r rl Dtar O)

27rirrr-1/2 f[e,2elv am(p, f’ r’T, (Dtrr)2)dp.

Now T is not a differential operator and thus we cannot argue in this way. But of
course it gives us an idea what to do. In the next section we will prove:

MAIN LEMMA 3.2.
operator

LetDr: C(S N, SIN) C(S N, SIN) denote the

Dr := D 2zr r f’ 1-’ T,

D I" +A

where S is /Z here. Then we have

d
D’ 0)=

d
r -r D 0).

This formula shows that thevariation of r/is independent ofthe rest ofthemanifold.
We can argue now in twoways. We could computer(Dr’ 0) explicitly as in Section
2 or we can point out, that we can make the same considerations as above for the
operator on the cylinder. Consider the operator D on the cylinder [0, N. Let DCrYl
be the operator D with boundary condition as in (2.1) where the boundary reflection
on {0} N is o" and the boundary reflection on 1} N is %. Then the above
consideration yields

(3.11)
d d
(D,, O) rr(Drcyl’ 0).d--

By Theorem 2.1 we have

(r)cyl O)
2zri

tr log(-trr%l Mr(l" i)) modZ.

An easy calculation shows

O’rCr0l ker(l-’ i) e-DirT

thus

1
(Drcyl, 0) r tr T dim(ker(1-’ i) Nker A) mod Z
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and

(3.12)

Together with (3.11) we obtain

d (DrCyl, 0) tr T.
dr

ld-
O(D,, O) O(Do,O) -’rO(D,r, O)drmodZ

1
tr T /log det(aoa ker(F i)) mod Z

and Theorem 3.1 is proved. We note an immediate corollary which is the generalisa-
tion of (2.6) to arbitrary manifolds with boundary.

THEOREM 3.3. Under the assumptions ofTheorem 3.1 let ao be a reflection and

,: [0, -- b/(ker(l" i) N ker A), ?, (0) t’(1) I

be a closedpath ofunitaries. Put ar := ?’ (r)*ao, (r). Then the spectralflow of Dr)
is the negative of the homotopy class of the path which is given by the winding
number; i.e.,

sf(Dr) tr(I,(r)*) (r)) dr.
2ri

In particular, ifkerA -- {0} there exists afamily D) ofspectralflow 1, i.e., such
afamily represents a generator ofthe fundamental group ofthe space of generalized
self-adjoint boundary conditions ofAtiyah-Patodi-Singer type introduced in [21.

Proof. The proof is immediate from Theorem 3.1 analogously to the computa-
tions after Corollary 2.7.

Remarks. 1. The formula for r/(D, 0) in Theorem 2.1 is somehow related to the
Maslov index; cf. [5].

2. In his recent work, L. Nicolaescu deals with the generalizations of the Maslov
index to the infinite dimensional context. Let us observe that in this case still the
spectral flow is equal to the Maslov index as it was described earlier in the work of
Furutani and Otsuki 10]. We refer to the forthcoming paper of Nicolaescu 19] for
details.

4. Proof of the Main Lemma

For the proof of the Main Lemma we proceed along the lines of [9] with suitable
modifications due to the fact that T is not a differential operator.



THE r/-INVARIANT 43

PROPOSITION 4.1. There exist positive constants c l, c2, c3 and a natural number
1, such thatfor any (u, x), (v, y) S x N,

(4.1) IlDre -t Or((u, X), (V, y)) Cl t-le-c2te-c3(u-v)2/t.

Proof. We decompose Dr as in (2.2) into

Dr= (Dr,n,

n-----O

where for n > the operator Dr, n is as in (2.2) and

0
2zrirf’FT.Dr,0 F

0 u

By the Sobolev embedding theorem and Grding’s inequality we have an estimate

(4.2) 2k114, (y)ll < c(1 + ,k
n

with c independent of n and y and where 2k dim N.
Now we find for n > 1

IlDr,ne-tO2r’((U,X), (V, Y))II

IIr’(au + A)e-t"(u, v)e-tX2"[CPn(X) (R)CPn(y) + 1-’tPn(X) (R) r’4, (y)}ll
e_tZ2<_ IlOue- o (u, v) {rn(X (R) CPn(y) qbn(X (R) I’qbn (y) ]11

+lle-tY(u, V)Xne-tX2"[ FCPn(X) (R) n(Y) at- n(x) (R) I’qbn (Y) ]11
< C]Oue-t(u, v)](1 + )n)e-tX2"(1 + Xn2k)2
1 (u-v) -2k,2 -t)n<_ me-C2 /t(1 + .n)(1 d- An e

Summing from to cx standard estimates of the heat kernel of A2 at 0 and oe yield

Dr,n e-tD2r ((u, x), (v, y))ll <_ c t-le-c2te -c3(u-v)2/t
n=l

and it remains to investigate the operator Dr, o. But Dr,O is just an elliptic operator on
C(Sl, ker A). Since kerA is finite-dimensional, standard elliptic theory gives us
the estimate (4.1) (cf. [9, Section ]).

Now we use Duhamel’s principle to investigate the heat kernel D1rre-t(D’r )z. Let

E (t; z, w) denote the kernel ofthe operator e -t D2, where/ "= D0 (J (-D0) is the
double of the operator D0 (cf. (3.8)). E (t; z, w) denotes the kernel of the operator
e-tD on S x N and E3(t; z, w) is the kernel of the operator e-tD]o on the infinite
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cylinder [0, cx) x N. Finally let r(t; z, w) be the kernel of the operator e-t(D’r )2

which we are really interested in. First of all, by (3.6), each gr(t; z, w) is unitarily
-t Dequivalent to the kernel of the operator Dore r. Hence we have from [9, Theorem

4.1]

(4.3) [[Drr(t; Z, w)ll _< clt -k+l e-C2te-c3d(z’w)2/t.

Now we describe theparametrix Qr forr. Analogous to [9, Section 2] we consider
partitions of unity {Pl, tP2, P3}, {l, 2, 3} on M as follows:

supp(l) C M \ [0, 1 e/2] x N,
supp() C [e/4, e/4] x N,
supp() C [0, e/2] x N,
On the cylinder all functions depend on the normal variable only.

The pj have the same properties as the pj and

j _-- in a neighborhood of supp(qj), i.e.,

dist supp(pj), supp upj > > 0.

Now we define

(4.4) Qr(t; z, w)’-- j(z) Ej (t; z, w)qbj(w)
j=l

and as in [9, Section 4] we have

r(t; Z, W) Qr(t; z, w) d- (r#C)(t; Z, W),

Drr(t; Z, w) Dr Qr(t; Z, w) h- (r#DC)(t; Z, w),

where C is the "error-term"

3

[c(t; z, w) j.= ---u (z)--u ,t; z, w)qbj(w) d- O2rJou (Z) Ej(t; Z, w) (113)}.
Now the choice of the pj, Pd and the estimates we have proved give:

PROPOSITION 4.2. There existpositive constants c4, c5, c6 such that

II(r#DC)(t; Z, w)ll _< c4e-CSte -c68/t



THE r/-INVARIANT 45

Now we can prove the Main Lemma assuming that Bar is invertible, namely

d fo
x

D’ )2 )2e_t(Dr)2d--o(Dar, O) -1/2 Tr()ar e-t( or 2t)r (Dar )dt

Vt2
1/2 Tr( b’re-t(Dr)2)10

2
lim Tr(r e-()
o

2-olimTr{barQr(e)+
2

lim Tr(b’ Q (e))
4 ,o r

2
lim 2i Tr(f’FT2E2(t’..))
e0

d
O(Dr, O)

as asseaed. If Dr is not inveaible we choose Z > 0 which is not in the spectrum of
D’ for r in a small inteal. Letar

be the spectral projection of D’ onto the eigenspaces to eigenvalues ofmodulus > X.
fir

Then

1/ xD e-t() dt

ders from (D, 0) by an integer. A simple computation with the resolvent (cf.
11, Sec. 1.10]) shows

d
Tr( x -t( =Tr(E ’ e-t(- 2t"E;De ) ) ))

dr

hence as before

d d
a--;n(D, 0) X(D,, 01

since I Erx is of finite rank and hence

2
limTr( x’, -<o,)2
e-O

E; Dare
2 D’ )2lim/Tr(are-(r-O )

Tr((l x_E )Dar e-e(Dr)

is bounded as e --> 0. Now we can proceed as before and the Main Lemma is proved.
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