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HARMONIC ENDOMORPHISM FIELDS

EDUARDO GARCA-Ro LIEVEN VANHECKE AND M. ELENA V,,ZQUEZ-ABAL

1. Introduction

A 1, )-tensor field p on a pseudo-Riemannian manifold (M, g) determines a map
tp: TM TM, where TM denotes the tangent bundle of M. The main purpose of
this paper is to determine a necessary and sufficient condition for tp: (TM, gC) ___>

(TM, gC) to be harmonic, where gC is the (pseudo-Riemannian) complete lift metric
as introduced by Yano and Ishihara in 18]. Our main result is that the harmonicity
condition is equivalent to V*tp 0, where V* is the formal adjoint of the Levi Civita
connection V of (M, g).

In the remaining part we illustrate this result by means of several natural examples
of endomorphism fields. In particular we consider the Ricci operator of (M, g) and
also the shape operator of a hypersurface. The harmonicity of the corresponding map
is equivalent to the constancy of the scalar curvature or, when (M, g) is Einsteinian, to
the constancy of the mean curvature of the hypersurface. From these results we derive
characterizations ofharmonic manifolds and manifolds ofconstant sectional curvature
by using geodesic spheres or tubes about geodesics as hypersurfaces. Further we
consider the structure J on an almost Hermitian manifold (M, g, J) and we also
treat the case of almost product structures. We finish by looking at these two kind of
structures on the tangent bundle TM of (M, g). In this way we provide examples of
harmonic maps of some special pseudo-Riemannian manifolds.
We refer to 17] where the above notion of a harmonic p is used to define harmonic

foliations.

2. Harmonic endomorphism fields

Let (M, g) be a connected, smooth pseudo-Riemannian manifold, V its Levi Civita
connection and R the corresponding Riemannian curvature tensor defined by Rxy
Vx,y [Vx, Vy] for smooth vector fields X, Y on M. Let p and Q, respectively,
denote the Ricci tensor of type (0, 2) and (1, 1), respectively and let r denote the
scalar curvature.

Next, let tp: M N be a smooth map between two pseudo-Riemannian manifolds
with metric g and h, respectively and let p-l (TN) be the pull-back bundle. The Levi
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Civita connections on TM and TN induce a connection V in the bundle of one-forms
on M with values in tp-(TN). Then cto Vdtp is a symmetric bilinear form on
TM which is called the secondfundamentalform of o. The trace of ot with respect
to g is called the tension field of o, and denoted by r(0). The map is said to be
haonic if r() 0. (See [7], [8], [9] for more details and references.) Now, let
U C M be a domain with coordinates (x ,..., xm), m dim M and V C N be a
domain with coordinates (z zn), n dim N, such that (U) C V and suppose
that is locally represented by z (x xm), 1,..., n. Then we have

() () o M

OX OXj

Here MFj and NFe denote the Christoffel symbols of (M, g) and (N, h), respec-
tively. So, is haonic if and only if

(2) r() gJ() 0

fory n.
Now, let TM denote the tangent bundle of M. This 2m-dimensional manifold

may be equipped with the pseudo-Riemannian complete lift metric gC, of signature
(m, m), defined by

gC(XH,Yn)=gc(Xv,Yv)=O,
(3)

gC(xH yV) gC(XV yn) g(X, y)V.

Here, the horizontal and veical lifts of tangent vector fields X, Y on M refer to
the decomposition of the tangent space of TM at eve point in horizontal vectors
with respect to V and canonical veical vectors. For vector fields X, Y on M the
function g(X, Y) v on TM is the pull-back ofg(X, Y) under the projection TM M.
For local coordinates (x ,..., x2m) (x ,..., xm’, x i,..., x), where + m,

m, we have the local expression

j m with respect to 0,,, 0r ). We refer to 18] for
more details.

Finally, let be a tensor field of type (1, 1) on M. Then determines a map
: TM TM.

DEFINITION. (i) The endomorphism field tp (or (1, 1)-tensor field o) on (M, g)
is said to be harmonic if the map o: (TM, gC)

_
(TM, gC) is a harmonic

map.
(ii) The (0, 2)-tensor field on (M, g) determined by O(X, Y) g(tpX, Y) for

all tangent vectors X, Y on (M, g) is called harmonic if t# is harmonic on
(M,g).
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Following [2, p. 34], we denote by V* the formal adjoint of the Levi Civita con-
nection V on (M, g). Then with respect to local coordinates we have

(5) (7"p)k

Now we are ready to state and prove the

MAIN THEOREM. The endomorphism field p on (M, g) is harmonic ifand only
if V*o =0.

Proof. In local coordinates, (x, y) (x
TM is given by

(x, y) (x xm (x)x (x)x)
Moreover, at (x, y) the Christoffel symbols rFv of the Levi Civita connection Vc

of gc, where a, fl, y 2m, are given by

0 0 F 0

for i, j, k 1,..., m [18]. So from (1), (2), (3), (4) for the second fundamental
fo V(d) and the tension field r() we have

V(d)#(x, y) oXaOX (x) rMF(x, y)(x)

r()v(x, y) (gC)a(x, y)V(d).(x, y),

where at (x, y), ins of the Christoffel symbols of

V(d) 0,

V(d) o,

V(d)] O,

OXiOX Fj OXa OX’ a + + Fa + Faj

V(d)f; O.
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Hence, by means of (5),

15()k O, 75()[c 2gij (Viq3) -2(V*tp)k.

This yields the required result.

Remark. It follows from the main result and [2, pp. 34-35] that when * is skew-
symmetric or symmetric, respectively, then tp (or ) is harmonic if and only if is
coclosed (i.e., 3. 0) or has vanishing divergence, respectively.

3. Examples and applications

In what follows we shall give several examples and applications of the notion and
result considered in Section 2. In this way we provide examples of harmonic maps
of some special pseudo-Riemannian manifolds.
We start by noting that in [5] the authors also considered the notion of harmonic

symmetric (0, 2)-tensors. They first considered the notion of a harmonic Riemannian
metric g’ on a Riemannian manifold (M, g) and called g’ a harmonic metric with
respect to g if idt: (M, g) -- (M, g’) is a harmonic map. The analytic expression of
this condition then led the authors to the definition of a harmonic symmetric (0, 2)-
tensor . It turns out that is harmonic in the sense of [5] if and only if

-(tr )g
2

is harmonic in the sense of Section 2. Hence, the examples given in [5] yield examples
of harmonic endomorphism fields.

Before getting more results, we consider the Ricci tensor p on a Riemannian
(M, g) and note that

(div p)(X) -(VeiP)(ei, X) --Vx’g
i=1

where (el em) is an arbitrary orthonormal basis of TpM at each p 6 M. So, we
get at once.

PROPOSITION 3.1. The Ricci endomorphism field on a Riemannian manifold is
harmonic ifand only ifthe scalar curvature is constant. Moreover, the Einstein tensor
G p- 1/2 rg is always harmonic.

Note that p is always harmonic in the sense of [5]. Our notion of harmonicity for
p is thus more restrictive.

Using this result we may give another characterization of harmonic manifolds
(M, g) with dim M > 2. Indeed, in [6] it is proved that a Riemannian (M g),
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m > 2, is a harmonic manifold if and only if every sufficiently small geodesic sphere
has constant scalar curvature, i.e., the scalar curvature only depends on the radius of
the sphere. Hence we have:

PROPOSITION 3.2. Let (Mm g), m > 3, be a Riemannian manifold. Then (M, g)
is a harmonic space if and only if the Ricci endomorphism field of any sufficiently
small geodesic sphere is harmonic.

Instead of geodesic spheres one may also consider tubes of sufficiently small radius
about geodesics. Then, in 10], an (M, g) is said to be scalar curvature harmonic
with respect to geodesics , if the scalar curvature for all small tubes about all ?, only
depends on the radius. It is proved in [10] that such an (M, g) is a real space form.
So, we obtain:

PROPOSITION 3.3. A Riemannian manifold (Mm g), m > 3, is a real spaceform
ifand only if the Ricci endomorphismfield ofevery small tube about all geodesics is
harmonic.

The result in Proposition 3.2 implies that all small geodesic spheres in harmonic
spaces provide examples ofharmonic maps by means ofthe Ricci tensor oftype (1, 1).
We refer to for the known examples of harmonic spaces. In what follows we will
show that the same holds when we consider the shape operator of these geodesic
spheres.

To prove this we turn to submanifold theory. Let M be an oriented hypersurface
in a Riemannian (M, g). Let denote a unit normal vector field on M and let S be
the shape operator of M defined by Vx -SX for X tangent to M. S is related
to the second fundamental form a by g(SX, Y) g(a(X, Y), ). Then the Codazzi
equation reads

(6) (Rxr Z)-L (Vra)(X, Z) (Vxa)(Y, Z)

for X, Y, Z tangent to M. (See [4] for more details.) The mean curvature h is given
by h tr S. So, from (6) we have:

LEMMA 3.1. LetM beanorientedhypersurface in (M, g) withunitnormalvector
field . Then we have

p(X, ) (div a)(X) + Xh

for any X tangent to M.

Using this lemma we immediately have:

PROPOSITION 3.4. An oriented hypersurface M in an Einstein manifold (M, g)
has constant mean curvature ifand only if the shape operator is harmonic.
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Since harmonic spaces, which are Einstein spaces, may be defined as (M, g) all
of whose sufficiently small geodesic spheres have constant mean curvature (see, for
example, [6]), we have:

PROPOSITION 3.5. An Einstein manifold (M, g) is a harmonic space ifand only
if the shape operator ofeach sufficiently small geodesic sphere is harmonic.

Using the notion of harmonicity with respect to geodesics as developed in 12] by
means of the mean curvature of tubes about geodesics, we have in a similar way as
for Proposition 3.3:

PROPOSITION 3.6. An Einstein manifold (M, g) is a real spaceform ifand only
if the shape operator ofevery small tube about all geodesics is harmonic.

Remark. A (0, 2)-tensor field is a Killing tensor field if and only if for all X
we have (Vx)(X, X) 0. It follows that a symmetric Killing tensor field of type
(0, 2) is harmonic if and only if it has constant trace.

Since a manifold (M, g) whose Ricci tensor p is a Killing tensor has automatically
constant scalar curvature, we get that such p is harmonic. It follows from the general
theory that any Riemannian space with volume-preserving geodesic symmetries (up
to sign), i.e., D’Atri spaces, has a harmonic Ricci tensor. The same result holds for
the C-spaces, i.e., spaces such that the Jacobi operator field has constant eigenvalues
along geodesics. For both cases we refer to [1 for more information and examples.

Now, we proceed the construction of examples by considering manifolds (M, g)
which are equipped with an additional structure given by an endomorphism field.
We start by looking at an almost Hermitian manifold (M, g, J) and denote by g2 its
Kihler form defined by (X, Y) g(X, JY) for all tangent X, Y. Then we have

m m

(’2)(X) -(Vei’2)(ei, X) g(X, (VeiJ)ei).
i=l i=l

Since an almost Hermitian manifold is said to be semi-Klerian if f2 is coclosed (see
for example [11 ]) we easily obtain:

PROPOSITION 3.7. Let (M, g, J) be an almost Hermitian manifold. Then J is
harmonic ifand only if (M, g, J) is semi-Kiihlerian.

Next, let P be an almost product metric structure on a Riemannian manifold
(M, g), i.e., P is a (1, 1)-tensor field such that p2 id. and g(PX, PY) g(X, Y)
for all tangent X, Y (see for example [19]). Then the (0, 2)-tensor tp defined by
o(X, Y) g(X, P Y) determines a pseudo-Riemannian metric on (M, g). Note that
conversely, any pseudo-Riemannian metric on (M, g) gives rise to an almost product
metric structure. Here we have:
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PROPOSITION 3.8. The pseudo-Riemannian metric tensor o on an almostproduct
metric manifold (M, g, P) is harmonic ifand only if P is harmonic.

Note that the eigenspaces of P determine two complementary and orthogonal
distributions D, D’ on M. When these distributions are integrable and determine
foliations 79, 79’ with minimal leaves, then P is certainly harmonic since V*P
-2(cry cry,), where av and cv, are the mean curvature vectors of the leaves of D
and 79’, respectively [16]. We refer to [3] for examples of such manifolds,

We finish this short list of examples by considering the tangent bundle TM of
a Riemannian manifold (M, g). As is well known, TM may be equipped with a
Riemannian metric gS, called the Sasaki metric, which is defined by

gS(xH yH) gS(XV yV) g(X, y)V, gS(Xt-t yV) 0

for X, Y tangent to M [14], [15]. Moreover, the endomorphism field J on TM
defined by

jXv =-Xtt, jXH XV

determines an almost Hermitian structure on TM and the endomorphism field P
determined by

pXv XH, pXn Xv

defines an almost product metric structure on TM. It follows that also Q PJ
-JP is an almost product metric structure.
A rather straightforward computation, which we omit here, using the expressions

for the Riemannian connections of (TM, gS) and (TM, gC) (see [13], [18]) then
yields the following result:

PROPOSITION 3.9. Let (M, g) be a Riemannian manifold.

(i) The endomorphismfields J and Q are harmonic on (TM, gS) and the endo-
morphismfield P is harmonic on (TM, gS) ifand only if(M, g) is Ricci-flat.

(ii) The endomorphismfield Q is harmonic on (TM, gC) and the endomorphism
fields J and P are harmonic on (TM, gC) ifand only if (M, g) is Ricci-flat.
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