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HARMONIC ENDOMORPHISM FIELDS

EDUARDO GARCIA-RI0!, LIEVEN VANHECKE AND M. ELENA VAZQUEZ-ABAL!

1. Introduction

A (1, 1)—tensor field ¢ on a pseudo-Riemannian manifold (M, g) determines a map
¢: TM — TM, where T M denotes the tangent bundle of M. The main purpose of
this paper is to determine a necessary and sufficient condition for ¢: (TM, g€) —
(T M, g©) to be harmonic, where g€ is the (pseudo-Riemannian) complete lift metric
as introduced by Yano and Ishihara in [18]. Our main result is that the harmonicity
condition is equivalent to V*¢ = 0, where V* is the formal adjoint of the Levi Civita
connection V of (M, g).

In the remaining part we illustrate this result by means of several natural examples
of endomorphism fields. In particular we consider the Ricci operator of (M, g) and
also the shape operator of a hypersurface. The harmonicity of the corresponding map
is equivalent to the constancy of the scalar curvature or, when (M, g) is Einsteinian, to
the constancy of the mean curvature of the hypersurface. From these results we derive
characterizations of harmonic manifolds and manifolds of constant sectional curvature
by using geodesic spheres or tubes about geodesics as hypersurfaces. Further we
consider the structure J on an almost Hermitian manifold (M, g, J) and we also
treat the case of almost product structures. We finish by looking at these two kind of
structures on the tangent bundle T M of (M, g). In this way we provide examples of
harmonic maps of some special pseudo-Riemannian manifolds.

We refer to [ 17] where the above notion of a harmonic ¢ is used to define harmonic
foliations.

2. Harmonic endomorphism fields

Let (M, g) be a connected, smooth pseudo-Riemannian manifold, V its Levi Civita
connection and R the corresponding Riemannian curvature tensor defined by Ryxy =
Vix,y1 — [Vx, Vy] for smooth vector fields X, Y on M. Let p and Q, respectively,
denote the Ricci tensor of type (0,2) and (1, 1), respectively and let T denote the
scalar curvature.

Next, letp: M — N be asmooth map between two pseudo-Riemannian manifolds
with metric g and h, respectively and let ¢ ~! (T N)) be the pull-back bundle. The Levi
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Civita connections on M and T N induce a connection V in the bundle of one-forms
on M with values in ¢~!(TN). Then o, = Vdg is a symmetric bilinear form on
T M which is called the second fundamental form of ¢. The trace of «, with respect
to g is called the tension field of ¢, and denoted by t(¢). The map ¢ is said to be
harmonic if 7(¢) = 0. (See [7], [8], [9] for more details and references.) Now, let

U C M be a domain with coordinates (x!,...,x™),m = dimM and V C N be a
domain with coordinates (z!, ..., z"), n = dim N, such that ¢(U) C V and suppose
that ¢ is locally represented by z* = ¢“ &l ..., x™),a=1,...,n. Then we have
8%g” dp? dp* 9¢”
v _ _Mpk 09 bl ol
M (@) = Axidxs iy ax" ( )Bx’ axi’

Here M Ff‘i and ¥ Fzﬂ denote the Christoffel symbols of (M, g) and (N, k), respec-
tively. So, ¢ is harmonic if and only if

@ T(9) = g7 (@)}, =0

fory =1,...,n
Now, let TM denote the tangent bundle of M. This 2m—dimensional manifold

may be equipped with the pseudo-Riemannian complete lift metric g©, of signature
(m, m), defined by

CXH,YH)= C(XV,YV =0
3 {g ( g )

gEXH, YY) =g XV, YH) = g(X,Y)V.
Here, the horizontal and vertical lifts of tangent vector fields X, ¥ on M refer to
the decomposition of the tangent space of T M at every point in horizontal vectors

with respect to V and canonical vertical vectors. For vector fields X, Y on M the
function g(X, Y)Y on T M is the pull-back of g(X, Y) under the projectionTM — M.

For local coordinates (x!, ..., x*") = (x!,...,x™; x!,...,x™), where i = i +m,
i=1,...,m, wehave the local expression
k 98ij »
) e
8ij 0
i, j = 1,..., m with respect to (5%,..., %, %,—,..., axm) We refer to [18] for

more details.

Finally, let ¢ be a tensor field of type (1, 1) on M. Then ¢ determines a map
¢o: TM - TM.

DEFINITION. (i) The endomorphism field ¢ (or (1, 1)-tensor field p)on (M, g)
is said to be harmonic if the map ¢: (TM, g€) — (T M, g€) is a harmonic
map.

(i) The (0, 2)-tensor field ® on (M, g) determined by ® (X, Y) = g(¢X, Y) for
all tangent vectors X, Y on (M, g) is called harmonic if ¢ is harmonic on
M, g).
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Following [2, p. 34], we denote by V* the formal adjoint of the Levi Civita con-
nection V on (M, g). Then with respect to local coordinates we have

) (Vo) = —g" (Vig)}.

Now we are ready to state and prove the

MAIN THEOREM. The endomorphism field ¢ on (M, g) is harmonic if and only
if V*¢ = 0.

Proof. Inlocal coordinates, (x, y) = (x!,...,x™,x!,..., x™), themapgp: TM —
T M is given by
o, y) =", ..., x™, q),:(x)x’;, ey (p,i"(x)x'z).

Moreover, at (x, y) the Christoffel symbols 7™ I's, of the Levi Civita connection V¢
of g, where a, B, ¥ = 1, ..., 2m, are given by

rk o ] P
TMFk = ij , TMFk — Ix ij
0 0 ry, o0

fori, j,k =1,...,m [18]. So from (1), (2), (3), (4) for the second fundamental
form V(dy) and the tension field 7 (¢) we have

%p? dp?
VAe)p.y) = s (0) =TTl (0, 1) 255 ()

dp* dpH
TM Y
H @0 ) 2 (1) 5 (1),

(@) (x, ) = (€ (x, )V(de)y(x, ),

where at (x, y), in terms of the Christoffel symbols of V

V(dy)j; = 0,
V(dg)t, = 0,
V(dg); = 0,

) {920k gk are ark dg” dgyf
Vo), =« (-—"” el T gk D Ugay pk S pk T

Vde), = (Vo)

P
V(dp); = 0.
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Hence, by means of (5),

@) =0, (@) =287 (Vip)t = —2(V*p).

This yields the required result. O

Remark. It follows from the main result and [2, pp. 34-35] that when ® is skew-
symmetric or symmetric, respectively, then ¢ (or ®) is harmonic if and only if & is
coclosed (i.e., & = 0) or has vanishing divergence, respectively.

3. Examples and applications

In what follows we shall give several examples and applications of the notion and
result considered in Section 2. In this way we provide examples of harmonic maps
of some special pseudo-Riemannian manifolds.

We start by noting that in [5] the authors also considered the notion of harmonic
symmetric (0, 2)-tensors. They first considered the notion of a harmonic Riemannian
metric g’ on a Riemannian manifold (M, g) and called g’ a harmonic metric with
respectto g if idy: (M, g) — (M, g’) is aharmonic map. The analytic expression of
this condition then led the authors to the definition of a harmonic symmetric (0, 2)-
tensor @. It turns out that ® is harmonic in the sense of [5] if and only if

1
¢ =0 S(rd)g

is harmonic in the sense of Section 2. Hence, the examples given in [5] yield examples
of harmonic endomorphism fields.

Before getting more results, we consider the Ricci tensor p on a Riemannian
(M, g) and note that

(div p)(X) = — ;We,,p)(ei, X) = “%VXT,

where (ey, ..., e,) is an arbitrary orthonormal basis of T, M at each p € M. So, we
get at once.

PROPOSITION 3.1.  The Ricci endomorphism field on a Riemannian manifold is
harmonic if and only if the scalar curvature is constant. Moreover, the Einstein tensor
G=p-— %tg is always harmonic.

Note that p is always harmonic in the sense of [5]. Our notion of harmonicity for
p is thus more restrictive.

Using this result we may give another characterization of harmonic manifolds
(M, g) with dimM > 2. Indeed, in [6] it is proved that a Riemannian (M", g),
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m > 2, is a harmonic manifold if and only if every sufficiently small geodesic sphere
has constant scalar curvature, i.e., the scalar curvature only depends on the radius of
the sphere. Hence we have:

PROPOSITION 3.2. Let (M™, g), m > 3, be a Riemannian manifold. Then (M, g)
is a harmonic space if and only if the Ricci endomorphism field of any sufficiently
small geodesic sphere is harmonic.

Instead of geodesic spheres one may also consider tubes of sufficiently small radius
about geodesics. Then, in [10], an (M, g) is said to be scalar curvature harmonic
with respect to geodesics y if the scalar curvature for all small tubes about all y only
depends on the radius. It is proved in [10] that such an (M, g) is a real space form.
So, we obtain:

PROPOSITION 3.3. A Riemannian manifold (M™, g), m > 3, is a real space form

if and only if the Ricci endomorphism field of every small tube about all geodesics is
harmonic.

The result in Proposition 3.2 implies that all small geodesic spheres in harmonic
spaces provide examples of harmonic maps by means of the Ricci tensor of type (1, 1).
We refer to [1] for the known examples of harmonic spaces. In what follows we will
show that the same holds when we consider the shape operator of these geodesic
spheres.

To prove this we turn to submanifold theory. Let M be an oriented hypersurface
in a Riemannian (M, g). Let £ denote a unit normal vector field on M and let S be
the shape operator of M defined by Vx& = —SX for X tangent to M. § is related
to the second fundamental form o by g(SX, Y) = g(c(X, Y), ). Then the Codazzi
equation reads

(6) (RxyZ)* = (Vyo)(X, Z) — (Vxo)(¥, Z)

for X, Y, Z tangent to M. (See [4] for more details.) The mean curvature A is given
by h = tr S. So, from (6) we have:

LEMMA 3.1.  Let M be an oriented hypersurface in (M, g) with unit normal vector
field &. Then we have

p(X,§) = (divo)(X) + Xh
for any X tangent to M.

Using this lemma we immediately have:

PROPOSITION 3.4.  An oriented hypersurface M in an Einstein manifold (M, g)
has constant mean curvature if and only if the shape operator is harmonic.
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Since harmonic spaces, which are Einstein spaces, may be defined as (M, g) all
of whose sufficiently small geodesic spheres have constant mean curvature (see, for
example, [6]), we have:

PROPOSITION 3.5. An Einstein manifold (M, g) is a harmonic space if and only
if the shape operator of each sufficiently small geodesic sphere is harmonic.

Using the notion of harmonicity with respect to geodesics as developed in [12] by
means of the mean curvature of tubes about geodesics, we have in a similar way as
for Proposition 3.3:

PROPOSITION 3.6. An Einstein manifold (M, g) is a real space form if and only
if the shape operator of every small tube about all geodesics is harmonic.

Remark. A (0, 2)-tensor field @ is a Killing tensor field if and only if for all X
we have (Vx®)(X, X) = 0. It follows that a symmetric Killing tensor field of type
(0, 2) is harmonic if and only if it has constant trace.

Since a manifold (M, g) whose Ricci tensor p is a Killing tensor has automatically
constant scalar curvature, we get that such p is harmonic. It follows from the general
theory that any Riemannian space with volume—preserving geodesic symmetries (up
to sign), i.e., D’ Atri spaces, has a harmonic Ricci tensor. The same result holds for
the C-spaces, i.e., spaces such that the Jacobi operator field has constant eigenvalues
along geodesics. For both cases we refer to [1] for more information and examples.

Now, we proceed the construction of examples by considering manifolds (M, g)
which are equipped with an additional structure given by an endomorphism field.
We start by looking at an almost Hermitian manifold (M, g, J) and denote by Q its
Kihler form defined by Q (X, Y) = g(X, JY) for all tangent X, Y. Then we have

GDX) ==Y (VeD(ei, X) ==Y g(X, (Ve Der).
i=1 i=1

Since an almost Hermitian manifold is said to be semi-Kéhlerian if 2 is coclosed (see
for example [11]) we easily obtain:

PROPOSITION 3.7. Let (M, g, J) be an almost Hermitian manifold. Then J is
harmonic if and only if (M, g, J) is semi—Kdhlerian.

Next, let P be an almost product metric structure on a Riemannian manifold
(M, g),i.e., Pisa(l,1)-tensor field such that P? = id. and g(PX, PY) = g(X,Y)
for all tangent X, Y (see for example [19]). Then the (0, 2)-tensor ¢ defined by
¢(X,Y) = g(X, PY) determines a pseudo-Riemannian metric on (M, g). Note that
conversely, any pseudo-Riemannian metric on (M, g) gives rise to an almost product
metric structure. Here we have:
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PROPOSITION 3.8.  The pseudo-Riemannian metric tensor ¢ on an almost product
metric manifold (M, g, P) is harmonic if and only if P is harmonic.

Note that the eigenspaces of P determine two complementary and orthogonal
distributions D, D’ on M. When these distributions are integrable and determine
foliations D, D’ with minimal leaves, then P is certainly harmonic since V*P =
—2(ap — ap), where ap and ap are the mean curvature vectors of the leaves of D
and D', respectively [16]. We refer to [3] for examples of such manifolds.

We finish this short list of examples by considering the tangent bundle TM of
a Riemannian manifold (M, g). As is well known, T M may be equipped with a
Riemannian metric g5, called the Sasaki metric, which is defined by

Sy =g5X",Y")=gX, V)", X", ¥")=0

for X, Y tangent to M [14], [15]. Moreover, the endomorphism field J on TM
defined by

IxV =-x"  Jx"=x"

determines an almost Hermitian structure on TM and the endomorphism field P
determined by

Px¥V =xH pxH=x"

defines an almost product metric structure on 7M. It follows that also Q@ = PJ =
—J P is an almost product metric structure.

A rather straightforward computation, which we omit here, using the expressions
for the Riemannian connections of (T M, g%) and (T M, g€) (see [13], [18]) then
yields the following result:

PROPOSITION 3.9. Let (M, g) be a Riemannian manifold.

(i) The endomorphism fields J and Q are harmonic on (T M, g°) and the endo-
morphism field P is harmonic on (T M, g5) if and only if (M, g) is Ricci-flat.
(ii) The endomorphism field Q is harmonic on (T M, g€) and the endomorphism
fields J and P are harmonic on (T M, g€) if and only if (M, g) is Ricci-flat.

REFERENCES

[1]1 J. BERNDT, F. TRICERRI AND L. VANHECKE, Generalized Heisenberg groups and Damek-Ricci
harmonic spaces, Lecture Notes in Math., no. 1598, Springer-Verlag, New York, 1995.

[2] A.L. BESSE, Einstein manifolds, Ergeb. Math. Grenzgeb. (3), Folge 10, Springer-Verlag, New York,
1982.

[3] A. BONOME, R. CASTRO, E. GARCIA-RiO, L. HERVELLA AND Y. MATSUSHITA, Almost complex
manifolds with holomorphic distributions, Rend. Mat. 14 (1994), 567-589.

[4] B.Y. CHEN, Geometry of submanifolds, Pure Appl. Math., no. 22, Marcel Dekker, New York, 1973.



30 E. GARCIA-RIO, L. VANHECKE AND M. E. VAZQUEZ-ABAL

[S1 B. Y. CHEN AND T. NAGANO, Harmonic metrics, harmonic tensors, and Gauss maps, J. Math. Soc.
Japan 36 (1984), 295-313.

[6] B.Y. CHEN AND L. VANHECKE, Differential geometry of geodesic spheres, J. Reine Angew. Math.
325 (1981), 28-67.

[7] J. EELLS AND L. LEMAIRE, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68.

[8] J. EELLS AND L. LEMAIRE, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988),
385-524.

[9] J. EELLS AND J. H. SAMPSON, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86
(1964), 109-160.

[10] L. GHEYSENS AND L. VANHECKE, Total scalar curvature of tubes about curves, Math. Nachr. 103
(1981), 177-197.

[11] A. GRAY AND L. HERVELLA, The sixteen classes of almost Hermitian manifolds and their linear
invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58.

[12] A. GRAY AND L. VANHECKE, The volumes of tubes about curves in a Riemannian manifold, Proc.
London Math. Soc. 44 (1982), 215-243.

[13] O. KOWALSKI, Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian
manifold, J. Reine Angew. Math. 250 (1971), 124-129.

[14] S. SASAKI, On the differential geometry of tangent bundles of Ri ian manifolds, Tohoku Math.
J. 10 (1958), 338-354.
[15] —, Onthedifferential geometry of tangent bundles of Riemannian manifolds, Part I1, T6hoku

Math. J. 14 (1962), 146-155.
[16] PH. TONDEUR, Foliations on Riemannian manifolds, Universitext, Springer-Verlag, New York, 1988.

[17] PH. TONDEUR AND L. VANHECKE, Harmonicity of a foliation and of an associated map, Bull. Austral.
Math. Soc. 54 (1996), 241-246.

[18] K. YANO AND S. ISHIHARA, Tangent and cotangent bundles, Pure Appl. Math., no. 16, Marcel Dekker,
New York, 1973.

[19] K. YANO AND M. KON, Structures on manifolds, Series in Pure Math., no. 3, World Scientific Publ.
Co., Singapore, 1984.

E. Garcia-Rio, Departamento de Anélise Matematica, Facultade de Matematicas,
Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
eduardo@zmat.usc.edu

M. E. Védzquez-Abal, Departamento de Xeometria e Topoloxia, Facultade de Mate-
maéticas, Universidade de Santiago de Compostela, Santiago de Compostela,
15706 Spain

meva@ zmat.usc.es

L. Vanhecke, Department of Mathematics, Katholieke Universiteit Leuven, Celesti-
jnelaan 200 B, 3001 Leuven, Belgium
fgaga@ccl.kleuven.ac.be



