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MODULES THAT ARE FINITE BIRATIONAL ALGEBRAS

DAVID EISENBUD AND BERND ULRICH

Let A be a commutative ring and let B be a faithful A-module with a distinguished
element e € B. It would be nice to understand in terms of the theory of A-modules
whether B supports the structure of an A-algebra with identity element e. In general
there is of course nothing unique about such an algebra structure. But there is at most
one such structure if B is a finite birational A-module in the sense that there is an
element d € A, which is a nonzerodivisor on B, such that dB C Ae C B. In this
case, indeed, the algebra structure of B is determined by the fact that it is a subalgebra
of B[d™']1= A[ld™].

A number of authors (Catanese [1984], Mond and Pellikaan [1987], de Jong and
van Straten [1990], Kleiman and Ulrich [1995]) have given interesting applications of
criteria that, under quite special hypotheses, test whether B is an A-algebra in terms
of conditions on annihilators of elments of B, or even in terms of a presentation matrix
of B as an A-module. It is the purpose of this note to re-examine and generalize these
criteria. (For a thorough survey of the history and relations of the criteria, see the
introduction to Kleiman and Ulrich [1995].)

Assuming that A is Noetherian, for us the interesting case, the finite birational
hypothesis implies that B is a finitely generated A-module (it is contained in d~' Ae).
If B is an A-algebra, then our hypothesis implies that End4(B) = Endg(B) = B, so
there is an obvious criterion: B is an A-algebra iff every A-module homomorphism
Ae — B extends to an A-module homomorphism B — B. Equivalently, B is
an A-algebra iff the map B — Exti‘ (B/Ae, B), induced by the exact sequence
0 - Ae > B — B/Ae — 0is zero.

We shall write —* for Hom4 (—, A). Itis easy to see that if B is an A-algebra, then
B** is too. In fact, it is not hard to see that B** is an A-algebra iff the composite map
B — Extl(B/Ae, B) — Ext,(B/Ae, B**) is zero. Our first result is that there is a
simple alternative criterion in terms of annihilators for determining when this occurs:

THEOREM 1. Let A be a Noetherian ring, and let B be a birational A-module as
above. The following conditions are equivalent:

(a) B** is an A-algebra with identity element e € B C B**.
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MODULES THAT ARE FINITE BIRATIONAL ALGEBRAS 11
(b) For every b € B whose annihilator in A is 0,
ann(B/Ab) C ann(B/Ae).

(c) For some elements b; € B that generate B as an A-module, and such that
ann(b;) = 0, we have

ann(B/Ab;) C ann(B/Ae).

Example 1. Letkbeafieldandlet A = k[t3, 1, °] C k[t]. Set B = A+ At, the
vector space span of 1, ¢,¢3,¢%,¢°, .... The A-module B is a finite birational module
in the sense above (with e = 1). B is obviously not a ring, but it is not hard to see
that B* = (3, t*, 1*) A and thus B** = k[t], which is a ring. Interpreting Theorem
1 in this case, we might for example take b = ¢, and we compute ann(B/At) =
(t*, >, 1% A C ann(B/Ae), in accordance with condition (b).

What makes Theorem 1 interesting is that condition (c) can easily be deduced from
frequently occuring conditions on the minors of a presentation matrix for B. If M
is any matrix and k is a non-negative integer, we write I (M) for the ideal generated
by the k x k minors of M. In applications, A itself is a factor ring of some larger
“ambient” ring R (perhaps a regular ring or a polynomial ring), and we get a stronger
result by taking the presentation matrix over R.

THEOREM 2. Let R be a Noetherian ring, let A be a homomorphic image of R,
and let B be a finite birational A-module with distinguished element e € B. Suppose
that M : R®* — R' is a presentation matrix for B as an R-module whose first row
corresponds to the element ¢ € B. Let M| be the submatrix of M consisting of all
the rows except the first, and let I be the ideal I,_;(M,). Writing B** for the double
dual of B as an A-module, we have:

(a) If B** is an A-algebra with identity element e then the radical of I contains
I, t—1 (M )

(b) If I contains I,_(M), and either
(bl) I is a radical ideal; or
(b2) I has grade > s —t +2in R,

then B** is an A-algebra with identity element e.

Remarks. Here the grade of a proper ideal I is defined to be the length of a
maximal regular sequence contained in I, or, in another terminology, the depth of 1
on R. Since B/Ae is a torsion A-module, we must have s > ¢ — 1. The grade required
in (b2) is the maximum possible for B # Ae. If (b) is satisfied and s > ¢ then, by
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Buchsbaum-Eisenbud [1977], I is the annihilator of B/Ae, while if s = ¢ — 1 then
we shall see that B = Ae. Similarly, if the grade of J := (M) iss — ¢t + 1 and
s >t + 1 then J is the annihilator of A; thatis, A = R/J.

The proofs show that if A is a graded ring, and B is a graded A-module, then B**
is a graded algebra whenever Theorem 1 or 2 shows that B** is an algebra.

Example 1, continued. With notation as in Example 1, let R = k[x, y, z], and
regard A as ahomomorphic image of R by the map sending x > 3,y > t4, z > 13,
The module B, as an R-module, has two generators 1, —¢ and presentation matrix

y z x%.
xy z)°
The ideal I defined in Theorem 2 is (x, y, z), which satisfies both conditions (b1) and

(b2).

We now turn to the proofs. If M is an A-module we write anns (M) or simply
ann(M) for the annihilator {a € A | aM = 0} of M in A.

For Theorem 1 we shall use some general remarks (which work in the non-
Noetherian case too): For any subsets M, N of an A-algebra C we set

(M:c N)={xeC|xNC M),
and we set
M '={xeC|xMC Al C C}.

If B is a subring of C, and M a subgroup, then (M :¢ B) is naturally a B-module.
If B is a subring of C, then B~! is a B-module, and thus BB~! ¢ B~!. The
converse fails, as in the example following Theorem 1, but we have:

PROPOSITION 3. Let C be an A-algebra. If B C C is an A-module containing 1,
then (B~")~! is a subring of C iff

BB~ ' c B~!.

Proof. Note that
BB~ c B H7H(BH™H™
If (B~")~!is aring, then (B~1)~")~!is a (B~1)~!-module, so
BB~ c((B™H™H' =B"
as required.
Conversely, suppose BB~ € B~!'. Since 1 € B we have BB~! = B! so

(B~H~! = (BB~')~!. Ontheotherhand, (BB~!)~! = (B~! :¢ B~') tautologically.
In particular (B~!)~! is a subring. O
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In the main case of interest, where C is the total quotient ring of A, Proposition 3
may be interpreted as a statement about duals as follows:

If A is a subring of C and M and N are A-submodules of C then there is a natural
map

(M :¢c N) - Homy (N, M), x = {¢dy :n+ xn}.

If C is a ring of quotients of A and N contains an element a that is invertible in C,
then this map is an isomorphism with inverse ¢ — ¢(a)/a.
It follows that for any A-submodule B of the total quotient ring K of A that contains
a nonzerodivisor of K we have (A :x B) = Hom,4(B, A) =: B*, the A-dual of B.
If B is finitely generated as an A-module, then B! contains a nonzerodivisor (for

example the product of the denominators of a finite set of elements that generate B)
and thus (B~")~! = B**.

PROPOSITION 4.  Suppose that A is a Noetherian ring, that K is a ring of quotients
of A, and that M is an A-submodule of K. If M contains a nonzerodivisor of K, then
M is generated by nonzerodivisors of K .

Proof. Without loss of generality we may suppose that A € K and M is finitely
generated. Thus dM C A for some nonzerodivisor d of A, and we may suppose
that M is an ideal of A. Let I be the ideal generated by all the nonzerodivisors
of A that are contained in M. If Py,..., P, are the associated primes of A, then
M C 1UP,...U P,. Since by hypothesis M is not contained in any P;, the Prime
Avoidance Lemma yields M € I, whence M =1. 0O

Example 2. If A contains an infinite field then one can replace K by any Noethe-
rian A-algebra in Proposition 4, but in general this is not possible, as shown by the
example

A:=Z/2CZ/2xZ/2=:B,

where B is not generated by nonzerodivisors.

Proof of Theorem 1. Let K be the total quotient ring of A, obtained by inverting
all elements that are nonzerodivisors on A. We may regard B as embedded in K, and
make the identifications B* = B~! and B** = (B~!)~!. If b is any nonzerodivisor
of K, then b is invertible in K, and we see directly from the definition that (Ab :x
B) =bB7.

Suppose that B** is a subring of K. It follows by Proposition 3 that BB~! C B~!.
Thus if b € B is invertible in K, then (Ab :x B) = bB~! € B~!. Thus condition
(b) is satisfied.

Condition (b) implies condition (c) by Proposition 4.

Now suppose that condition (c) is satisfied. For each b; we have immediately
b;B~! = b;(A :x B) C (Ab; :x B). On the other hand (Ab; :x B) C (Ab; ik
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Ab;) = A since b; has no annihilator in A. Thus (Ab; :x B) = AN (Ab; :x B) =
ann(B/Ab;) so condition (c) implies b; B~! € B~!. Since the b; generate B we have
BB~! € B~!. Thus BB~! € B!, and B** is a ring by Proposition 3. O

In the proof of Theorem 2 we will extend R by adjoining a new indeterminate x.
Recall that if R is a local ring with maximal ideal m, then R(x) denotes the local ring
R[x1nrix), which is a localization of the polynomial ring R[x].

LEMMA 5. Let (R, m) be a Noetherian local ring, let I := (fi,..., f,) S R be
an ideal, and let gy, . .., g, be any elements of R. If x is a new indeterminate, then
the ideal J := (g1 + xf1, ..., g + xf») € R(x) satisfies grade(J) > grade([/).

Proof. It suffices to show that if all the f; and g; are contained in m and the f;
form a regular sequence in R, then the g; 4+ xf; form a regular sequence in R(x). Set
y = x~L. Since x is a unit of R(x), it suffices to see that the elements &; := yg; + f;
form a regular sequence. But R(x) = R(y) is a localization of the polynomial ring
R[y]l,in which y, hy, ..., h, obviously form a regular sequence. Thus they also form
aregular sequence on the localization R[y](m,y), where we may permute them without
destroying this property. It follows that A, ..., h, form a regular sequence in the
further localization R(y). O

Proof of Theorem 2. The matrix M, is a presentation matrix for the module
B/Ae. Thus I is the Oth Fitting ideal of B/ Ae, and as I;,_; (M) is the first Fitting ideal
of B, all the conditions of the theorem are independent of the chosen presentation M.

As before, let K be the total quotient ring of quotients of A. We may regard B as
a submodule of K. It follows from Proposition 4 above that we can suppose that the
generators of B corresponding to the given free generators of R’ are nonzerodivisors
inK.

To prove part (a), suppose that B** is an A-algebra. Let b; be the nonzerodivisor
in B that is the image of the ith basis element of R’, and let M; be the submatrix of
M consisting of all rows of M except the ith. By Theorem 1 and Fitting’s Lemma,

I,_1(M;) € ann(B/Ab;) € ann(B/Ae) € Rad(I).

As this is true for every i, condition (a) follows.

Now suppose that I contains I,_;(M) and one of the hypotheses (b1) or (b2) is
satisfied. We will show that ann(B/Ab;) C ann(B/Ae); by Theorem 1 this suffices.
First, if I is a radical ideal then I is equal to the annihilator of B/Ae by Fitting’s
Lemma. Since [ is the radical of I,_; (M), another application of Fitting’s Lemma
shows that I contains the annihilator of each B/Ab;.

Now suppose (b2) is satisfied. The case s = ¢ — 1 is trivial: Here the row of signed
minors of M, divided by the determinant of M, induces a map B — A that splits
the inclusion A — Ae. Thus A is a summand of B, and since B is birational to A,
we have Ae = B = B**.
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Finally, suppose s > ¢. Theorem 1 shows that we may assume R to be local and
that we may then replace R by R(x) for a new variable x. Modify the first row of M
by adding x times the sum of the other rows. Now by Lemma 5, each of the matrices
M; obtained by omitting one row from M satisfies grade(l,—;(M;)) = s —t + 2.
The main theorem of Buchsbaum-Eisenbud [1977] shows that the ideal I,_{(M;) is
the annihilator of B/Ab; for each i. Since these ideals are all contained in I by
hypothesis, we are done. [
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