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SQUARES OF CHARACTERS THAT ARE THE SUM OF ALL
IRREDUCIBLE CHARACTERS

S. M. GAGOLA, JR. AND M. L. LEWIS

1. Introduction

We study here the structure of groups G which possess an irreducible character ;(

with the property that ;(2 is the sum of all the irreducible characters of G. (All groups
considered here are finite, and by character we mean complex character, that is, the
character afforded by a representation over the field of complex numbers.)

Previous to our present work, E. Abboud in showed that G is a split extension of
an elementary abelian 2-group by an elementary abelian 3-group when G’ is assumed
abelian. We are able to prove here"

(1.1) THEOREM. If G is a finite solvable group for which there exists an irre-
ducible character ;( such that ;(2 YIrrG) P, then G is an internal directproduct
ofcopies of the symmetric group $3.

Certainly, Theorem (1.1) suggests that the hypotheses are fairly restrictive, at
least for solvable groups. Other examples of this situation (already noted in [1])
are the groups G SL2(2n) for all n > where ;( is the Steinberg character
of degree 2n. Notice that the symmetric group $3 occurs as the first term of this
family, but the remaining members are all simple groups. It is easy to check that
direct products of examples produce further examples. (Conversely, direct factors
of examples also serve as examples.) In view of these examples, it seems natural to
generalize Theorem (1.1) to S-groups: groups all of whose nonsolvable composition
factors are isomorphic to members of the collection S {SL2(2n) n > 2}. We
obtain"

(1.2) THEOREM. Let G be a finite group for which there exists an irreducible
character ;( such that ;(2 ’lrr(G) 1/f. If G is an S-group, then G is an internal

direct product G X < x Xk ofgroups Xi that are isomorphic to groups in
thefamily S3 [,.J -.

Notice that Theorem 1.1 is an immediate corollary of Theorem (1.2), as $3 is the
only solvable member of the family {$3} t_J S.
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Theorem (1.2) has been conjectured (in [1 ]) to hold for all groups.
In all known examples, the character X is uniquely determined by its degree (which

happens to be the largest power of 2 occurring as a character degree; it need not be
the largest character degree). Is X always unique? Is its degree always a power of
2? By an elementary argument counting involutions (not given here) it is possible to
prove that the character necessarily has even degree.

There is a curious algebraic characterization of the situation considered in this
paper. If W is any C[G]-module and EndcLI(W) is its endomorphism ring of
C[G]-homomorphisms, then is commutative if and only if the character afforded
by W is multiplicity free, and the natural homomorphism C[G] Ende(W) is an
isomorphism if and only if every irreducible character of G appears as a constituent
of the character afforded by W. In particular, if X is an irreducible character afforded
by the module V, then )2 is the sum of all the irreducible characters of G if and
only if ,5" Endc[](V (R) V) is commutative, and C[G] End(V (R) V) is an
isomorphism. We do not, however, make use of this characterization here.

2. Preliminaries

When E. Abboud [1 first considers the situation of a group G which has an
irreducible character ) whose square is the sum of all the irreducible characters of G,
he starts his analysis more generally by assuming that some potentially higher power
j(q (where q is a prime) is the sum of all the irreducible characters of G. Under the
additional hypothesis that the commutator subgroup G’ of G is proper, he then proves
that the exponent q is 2 and that the factor group G/G’ is an elementary abelian
2-group. Our first result shows that only the square of an irreducible character can
be the sum of all the characters, without any additional hypothesis on G’. In fact, we
prove more: only the second power of an irreducible character can be multiplicity
free. Recall that a character 7z of a group G is multiplicity free if the inner product
(Tz, 0) is either 0 or for all irreducible characters 0 of G.

(2.1) LEMMA. Let )f be a character of degree at least 2 of a group G, and let
rn > 3 be an integer Then )(.m is not multiplicityfree.

Proof. Since 3 is a direct factor of ,)(m, it suffices to prove only that X is
not multiplicity free. Let V be a module affording ) so that the tensor product
V3 V (R) V (R) V affords )3. Now the symmetric group $3 acts on V by "permuting
the factors", and since we are assuming dim V )(1) >_ 2, this action by $3
is faithful. Moreover, the action of $3 commutes with the diagonal action by G,
so that $3 embeds in the group of units of the ring End(V3), which is therefore
not a commutative ring. Since a multiplicity free C[G]-module has a commutative
endomorphism ring, it follows that V3 (and hence 3) cannot be multiplicity free, as
desired. I--I
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(2.2) COROLLARY. If ,y is a character of G, a nontrivial group, and if some power
rn >_ 2 of X is the sum of all the irreducible characters of G, then rn 2 and X is
irreducible.

Proof. Since G is nontrivial, X cannot be linear and rn 2 follows from the
previous lemma. Clearly if X reduces, say X ot //3, then X 2 ot2 + 2ot/ +/32 is
not multiplicity free. Hence ) must be irreducible.

It is convenient now to codify the main situation of this paper:

HYPOTHESIS (*).
,.( P.

G is a finite group, X is an irreducible character of G and

An immediate consequence of Hypothesis (.) is that X is faithful, and it is easy
to see that X is real-valued (Theorem (2.4) below). Another consequence of this
hypothesis is that the center of the group must be trivial. Lying slightly deeper is the
fact that X is afforded by a real representation.

Recall that the Frobenius-Schur indicator of an irreducible character X of a group
G, denoted by v2 (X), is defined by the formula

P2(X)
IGI
y x(g2)
gEG

and satisfies P2(X) E {--1,0, 1}. Moreover, the specific values taken on by P2(X)
indicate whether X is real-valued and afforded by a real representation (v2 (X) 1),
is real-valued but not afforded by a real representation (vz(X) -1), or is not
real-valued (vz(X) 0).

(2.3) LEMMA. Let G be a group and X an irreducible character of G. Then
is afforded by a real representation.

Proof Let V be a C[G]-module affording X and set W Homc(V, V). Then G
acts on W by conjugation (that is, (fg)(V) f(vg-)g for f E Homc(V, V), g 6 G
and v 6 V) and W affords X. It remains to find an -subspace U of dimension

X (1)2 that spans W over C and which is invariant under conjugation by G.
By choosing a basis for V over C, we have Homc (V, V) Cnn (space ofcomplex

n x n matrices where n X (1)), and a basis can be found for which all matrices
representing group elements are unitary (Theorem 4.17 of [7]). The -subspace of
n x n Hermitian matrices is invariant under conjugation by unitary matrices, has
dimension n2, and spans Cn" over C. The corresponding -subspace U _< W now
satisfies the properties we want.
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(2.4) THEOREM. Assume (G, )) satisfies Hypothesis (,). Then X is real-valued
andevery real-valued irreducible characterofG has Frobenius-Schur indicator equal
to +1.

Proof By assumption, X 2 6Irr(G) " In particular, (X 2, 16) (X, -),
so X is real-valued. Moreover, Lemma (2.3) guarantees that X X2 is afforded by
a real representation. If is any real-valued character then the Schur index of over
/ divides (X 2, ) (Corollary 10.2 (c) of [7]). Since this inner product equals by
Hypothesis (.), is afforded by a real representation, and v20P) follows, ffl

For convenience, define s(G) to be the sum of the degrees of all the irreducible
characters ofG (counting multiplicity). Thus, s(G) -xrr() X (1). The following
result is well known.

(2.5) PROPOSITION. Let G be a group with exactly involutions. Then every
irreducible character ofG is real-valued with Frobenius-Schur indicator equal to +
ifand only ifs(G) + 1.

Proof By the standard Frobenius-Schur involution counting formula (Corol-
lary 4.6 of [7]), + -xIrr(G) v2(X)X(1). Since v2(X) < holds for all X,
the sum on the right is bounded above by the sum of all the irreducible character
degrees, which is s(G), and this bound is achieved if and only if v2(X) + for all
X Irr(G).

The last proposition, which allows for a computation of s(G) by counting involu-
tions, will not actually be needed until the final section. We use it there to observe
that no sporadic simple group occurs as a homomorphic image of a group satisfying
Hypothesis (,).

3. Main results

If X 6 Char(G) and 0 6 Irr(N) where N <1 G, then "the projection of X onto
Char(G 0)" is the sum Yrr(610)(X,/3)/3. When 0 is invariant, this projection
operator commutes with induction in the sense that if N _< H _< G and is a
character of H, then Po (P) Po() where Po denotes the projection operator
(defined on characters of H and G).

If , 6 Irr(N) where N <1 G, define s(G ?’) as follows:

s(GIy)--
pIrr(Tl’)

where T Z(,). This is a refinement of the character degree sum s(G) in the
sense that s(G) s(G ) where 11 denotes the principal character of the identity



WHEN X 2 IS THE SUM OF ALL THE CHARACTERS 659

subgroup. Notice that s(G ?’) s(T F), and if ?, extends to an irreducible
character of T then s(T ?’) s(T IN) is the sum of the character degrees of
TIN (counting multiplicities). This last fact follows easily from Gallagher’s result
[4] that says multiplication by an extension of ?, to T is a bijection Irr(T IN)
Irr(T ?’). This also is Corollary (6.17) of [7]. Whether or not y extends to T, we
have IT’NI -’0irr(Tiy)(l/t(l)/(l))2 > ZpIrr(Tl/)(l)/y(l) s(T ’). In
particular, if s (T F) IT N then each p Irr(T ?’) is an extension of ?’, and
TIN is necessarily abelian.

Our first result of this section, and its immediate corollaries, establish that some
rather tight arithmetic restrictions must hold in every homomorphic image of a group
satisfying Hypothesis (.).

(3.1) PROPOSITION. Assume (G, X) satisfies Hypothesis (.) and let N G. Write

X IN e(O + + Or) where the 0 are the distinct irreducible Clifford conjugates
ofO Ol. Let T ZG(O) (so that IG TI) and let q/ e Irr(T) be the Clifford-
correspondent of X. Set A {or Irr(T/N) (app, c) - 0}, and a ZotA Ol.

Then a(l) e2 and r Y4rr(6/N) " In particular, s(G/N) e2t.

Proof By definition of p, IN e0 and p6 X. As already noted, X is
real-valued, so X2IN (-X)IN e2 Yi Oi+ e2 Yig:j Oil, and from this it follows
that (X2[N, N) e2t. By assumption, X 2 is the sum of all the irreducible characters
of G, so projection onto Char(G[l N) sends X 2 to -rr(a/N) fl" It is now clear that
the degree of Yrr(6/N)/3 is given by s(G/N) e2t.

Since is the Clifford-correspondent of X over 0, it follows that 7z is the Clifford-

correspondentof X over HenceG X and aPIN e0, so that X 2 (-X)

X (X IT). Now is the unique constituent of X IT that lies over 0, and hence

X IT may be written as p + where " is a (possibly reducible) character of T, and
(IN e(02 +... + Ot). We now have X 2 (X IT) (p +) ()G +
(’(). Clearly, ((P’()IN, IN) (]U, PlN) 0, SO no irreducible constituent
of the character ( belongs to Irr(T 1U). By commutativity of projection with
induction, no irreducible constituent of () belongs to Irr(G 1N). Moreover,
projection onto Char(T IN) sends p to r -ota (![t![t’ Ol)Ol, while projection
onto Char(G N) sends X 2 to trr(/N)" By commutativity of operators again,
we have ra )--tIrr(6/N)/3, and r(l) e2 by comparing degrees.

It remains to prove r a. The assertion that r a is equivalent to saying that
r is multiplicity free. But this is the case as r induces to a multiplicity free character
of G. I--I

(3.2) COROLLARY. Assume (G, X) satisfies Hypothesis (,), and let N be any
normal subgroup of G. Then s(G/N) divides GIN 12. In particular, every prime
divisor ofs (G/N) is also a divisor of lG/N[.
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Proof. With the same notation as in Proposition (3.1), s(G/N) e2t where
[G T[ and e divides IT N[. Hence et divides [G/N I, and so s (G/N) certainly

divides IG/NI2. [3

(3.3) COROLLARY. Assume (G, X) satisfies Hypothesis (.), and keep the same
notation as in Proposition (3.1). If?, Irr(N) then eZls(G ?,). Moreover, if?, is an
irreducible constituent ofOiOj for some j then 2e2 < s(G ?,) and 2;6(F) > N.

Proof Since (G, X) satisfies Hypothesis (.), s(G ?’) ((Y2)IN, 9/) Now
(xZ)IN e2 -i 02 + 2e2 i<j OiOj so that ((xZ)IN, ?’) is divisible by e2, and is

at least as large as 2e2 when (OiOj, ?’) 0 for some - j. When this holds,
12(?’)" NI >_ s(G ?,) >_ 2e2 > 1. I--I

(3.4) COROLLARY. Assume (G, X) satisfies Hypothesis (,), and that e has the
same meaning as in Proposition (3.1). Then e implies that Z6(?’) > N for all

?’ 6 Irr(N).

Proof By the previous corollary, 12-(’)" NI >_ s(G ’) >_ e2 > for all
?, 6 Irr(N). I-!

We now use Proposition (3.1) and its corollaries to recover and extend what is
known about G’ and G" as determined in [1 ]. Recall that the vanishing offsubgroup
V(X) of a character , (as defined on page 200 of [7]) is the (normal) subgroup
generated by all group elements g satisfying , (g) :/: 0.

(3.5) THEOREM. Assume (G, X) satisfies Hypothesis (,). Then X is inducedfrom
the commutator subgroup G’. The commutatorfactor group G/ G’ is an elementary
abelian 2-group and G’/G" is an elementary abelian 3-group. Furthermore, every
irreducible character of G’ extends to an irreducible character of its inertia group
(and so, in particular, invariant characters of G’ extend to G). Finally, if G" G’
then G maps homomorphically onto $3.

Proof Since X 2 Zotlrr(G) or, it follows (as observed in ]) that ,kX 2 X 2 for
all characters Z of degree 1. Hence V(X) V(X 2)

_
ker(Z) for all . 6 Irr(G/G’),

which implies that V(() c_ f’]z ker(L) G’. Let N G’ in the situation of
Proposition (3.1). With the notation of that proposition, e2t s(G/G’) [G G’I,
and this implies that e2 [T’G’[. However, [T’G’[-- Y[3elrr(TlO)([3(l)/O(l))2 >_
(p(1)/0(1))2 e2. This implies that Irr(T 0) contains only , and hence Irr(G 0)
contains only ,, by Clifford’s Theorem. Corollary (3.3) now implies that s (G 0) e
is divisible by e2. Thus e 1, T G’ and 0, so that , 06 is induced from
G’. This proves the first assertion of the theorem.
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If an odd prime p divides IG G’], then let K be a normal subgroup of G having
index p. Since X is induced from G’, it is induced from K. Write XIK qgl +...+%,
where the i are the distinct Clifford conjugates of ) K. Let 9/be any irreducible
constituent of tplo2. By Corollary (3.3) (with N K and the tpi replacing the Oi),
F is necessarily invariant, so s(G F) P. Since p is odd, G/K acts without
fixed points on the collection of doubletons {oi, qgj }. In particular, the G!K.orbit
of {tp, tp2} has size p, so p s(G ?’) (X21N, ?’) > 2(Yi<j ittgj, ’) 2p, a
contradiction. This proves that G! G’ must be a 2-group.

If GIG’ is not elementary abelian, then choose L <! G so that G/L is cyclic of
order four. As in the last paragraph, must be induced from L and so X [L has 4
Clifford conjugates. Write , IL ’l + ’2 + if3 + fin, where notation is chosen so that
the ’i are cyclically permuted in order by a generator of G/L, say gL. Choose an
irreducible constituent, say y, of ’ ’2. By Corollary (3.3) (with the ’i replacing the
Oi), Z6(?,) > L so that g2 6 Z6(?,). Hence , is an irreducible constituent of ’3’4 as
well. Now ?’ extends to Za(?,) (as Z6(y’)/L is cyclic), so IZ6(?’) NI s(G ?’)
(X2IN, F) > 2(’ ’2, ’) + 2(’3’4, Y) >_ 4. Therefore Z(,) G and ?, is invariant.
But this implies that ?, is a constituent of ii-t-I for 1,2, 3, 4 and recomputing
the inner product yields s(G ?’) > 8, a contradiction. Hence GIG’ must be an
elementary abelian 2-group.
We next prove extendibility of irreducible characters of G’ to their inertia groups.

Let ?’ be any irreducible character of G’, and let 0, 02 0t denote the distinct
Clifford conjugates of , 1,. From the first paragraph, 0 ), Z(0) G’ (so that

IG/G’I) and GIG’ acts regularly on {0, 02 Or}. Since is a constituent
of ,2 I’, must appear either as a constituent of 0t2 for some l, or as a constituent
of OlOm for some :/: m. In the first case, as Z(?,)/G’ acts semi-regularly on the
Oi, there are 12-6(?’) G’I subscripts for which the corresponding 0t2 contain ?, as
a constituent, and so s(GlF) (,21,, ?,) > (_,iOi2, ) >_ 12-() G’I. This
forces the equality s(G y) 12-(?’) G’I, and from the discussion following the
definition of s(G ?’), ?’ extends to the inertia group 2-6 ().
Now suppose ?, is a constituent of OiOm for some :/: m. Let H be the set-wise

stabilizer of {0t, Om} in G and notice that IH G’I 2 as GIG’ is an elementary
abelian 2-group that is regular on the Oi. Furthermore, ?, appears as a constituent of
(OlOm)g for all g 6 H2"6(?,). Hence, s(G I?’) (X216’, ?’) > 2(_,i<jOiOj, ) >-
2IHZ-(y’) HI 21Z(?’) 2(,) t HI. Now 2-(,) t H can only be G’ or H,
and the first possibility is impossible as s(G ) cannot exceed 12(?’) G’I. Thus
H c_ Z-c(?’) and s(G ?’) must equal 12-(?’) G’I. As in the last paragraph, this
forces the extendibility of y to 2-6 (?,).

At this point, all irreducible characters of G’ extend to their inertia groups, and in
particular invariant characters extend to G.

Suppose 2 divides the index IG’ G"I. Then M <1 G can be chosen with M < G’
and IG’ MI 2. If 1, /z Irr(G’/M), then/z is necessarily invariant in G,
and hence is extendible to G by the previous paragraph. As/z is linear, any extension
must lie over 16,, and this contradicts/x - 16,. Hence, G’/G" has odd order.
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View G/G’ as a group of operators for the abelian group G’/G", and let C :/:
be an indecomposable G/G’-summand of G’/G". Every element x of GIG’ either
inverts or centralizes (as C-(x) > [, x] by Fitting’s Lemma, and the
two factors are G/G’-invariant since (x) __< GIG’). Hence, every subgroup of C
is invariant under GIG’ proving that C must be cyclic. Write G’/G" C x D
for G/G’-invariant D < G’/G". Of course C C/G" and D DIG" for
corresponding subgroups C and D of G’ containing G" (and normal in G). The
centralizer C6(G’/D) C6(C) must be proper in G as C is contained in G’. As
already noted, the action by each x in G/G’ on C is either trivial or inversion, so
IG C(C)I 2. As a result, G maps homomorphically onto the dihedral group
D2m of order 2m where m IcI is odd. The group D2m has two linear characters and

m-t. irreducible characters of degree 2, so that s(D2m) q- + 2 m + 1.
By Corollary (3,2), s(D2m) must be a divisor of [D2ml2 4m2, and this implies that
m 3 and G maps onto D6 $3.

By the last paragraph, every nontrivial indecomposable summand of G’/G" is
cyclic of order 3 (so that G’/G" is an elementary abelian 3-group), and G maps onto
$3 when G" -7/: G’. Theorem (3.5) is now completely proved. U!

One of the conclusions of Theorem (3.5) is that irreducible characters of G’ extend
to their inertia groups. It is convenient at this point to extend this property of G’ to
all the subgroups of G containing G’.

(3.6) LEMMA. Let N be a normal subgroup of the group G and assume GIN
is abelian. If every irreducible character of N extends to a character of its inertia
group, then the same is true for every irreducible character ofevery subgroup of G
containing N.

Proof. Let M be a subgroup of G containing N, fix F 6 Irr(M), and note that
the hypotheses imply that M is normal in G. Choose/3, an irreducible constituent
of )/IN, and let T Za(F) and U Zr(). Now T permutes the irreducible
constituents of ?’IN and M < T is a transitive subgroup so T MU. By Clifford’s
Theorem, let 0 6 Irr(U f3 M) be the Clifford correspondent of ?’ over/. Choose also

" 6 Irr(U o). Since/ extends to its inertia group,/ certainly extends to a character
of U. Moreover, as U/N is abelian, each element of Irr(U I/) is an extension of/.
In particular ’[v =/3 and so ’[vnt 0.
Now -r [t (’lvnt)t 0

t ?’, so ?’ extends to -r Irr(T), as desired.

Notice that Theorem (3.5) produced (when G" -7/: G’) a homomorphic image which
also satisfies Hypothesis (,). The next result establishes that Hypothesis (,) holds
for the normal subgroup as well, not only when the factor group is $3 SL2(2), but
also when the factor group is SL2(2n). Clearly, this will be useful in any inductive
argument.
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(3.7) THEOREM. Let (G, X) satisfy Hypothesis (,), and let N be a normal sub-
group of G satisfying G/N SL2(2n) for some n >_ I. Then )f Is 2n 0 where
0 E Irr(N) and (N, 0) satisfies Hypothesis (,). Moreover, every N-conjugacy class
is invariant under G, and every irreducible character of N is invariant in G and in

fact extends to G.

Proof Write X IN e(01 q-- + Or) as in Proposition (3.1). By that result,
s(G/N) e2t. Now the complete character table of SL2(2n) is known (see, for
example, Theorem 38.2 of Dornhoff’s text [3]) and s(SL2(2n)) is easily computed to
be 22n. In particular, e and are powers of 2. Let T Z6 (0) so that [G T [.

Write 2a and notice that a _< n as is a power of 2 dividing [SL2(2n)[
(2n + 1). 2n. (2" 1). Then e2 22"t-1 22n-a. However, e must divide the index

IT N I, the 2-part of which is 2n-a, so that 22n-a e2 _< 22-2a. This leads easily
to a 0, and e 2. In particular, 0 0 is invariant in G.
We now argue that all G-invariant characters of N extend to G. This certainly

is true for n -7/: 2 as the Schur multiplier of SL2(2") is trivial. (A table of Schur
multipliers may be found in the Atlas [2].) If n 2, the multiplier has order 2, and
a "representation group" for G/N is SL2(5). The degrees of the faithful irreducible
characters of SL2(5) are 2, 2, 4 and 6 so that if y E Irr(N) is invariant but , does
not extend then s (G ,) 2 + 2 + 4 + 6 14. This contradicts Corollary (3.3) as
e2 16 does not divide 14.

At this pot we know all invariant characters of N extend to G, and in particu.lar
0 does. Let 0 be an extension of 0 to G (when n > 1, G/N is perfect and so 0 is
unique in this case). Now X Irr(G 0) so X o0 for some o Irr(G/N). Notice
that o has degree 2 so that o must be the Steinberg character of SLe(2n). Since X 2 is
multiplicity free, so is o and . (In fact, q9 Zotelrr(G/N) Ol.) Define B

_
Irr(G)

by -]eB/. As X e is multiplicity free, the characters a/ for a Irr(G/N) and
/3 B are multiplicity free, disjoint, and sum to the sum of all the characters of G.
We now argue that/3Is E Irr(N) for all/3 B, and that the restriction map

B Irr(N) is a bijection. Let , Irr(N). As ?, is a constituent of X21s, ?’
must appear as an irreducible constituent of (a/3)ls for some a Irr(G/N) and
/3 e B. But (a/3)ls c(l)/ls, so , is an irreducible constituent of/ls. This
proves B N Irr(G ?’) v for all 9/ E Irr(N).

Even though it is not yet known that cq3 Irr(G) for all ot Irr(G/N) and
/ B f3 Irr(G ,), we still have

Now IZ(y)" NI >_ s(G ,) >_ 22n SO IG" Z(,)I _< (22n- 1)/2"
2n 1/2 < 2n. However, the smallest degree of any nonprincipal character of
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SL2(2n) is 2n 1, so that any proper subgroup has index at least 2n. This forces
2 (?,) G and , is invariant. We have already shown G-invariant characters of N
extend to G, and so , extends. Hence s(G V) s(G IN) s(G/N) 22n. In
view of the displayed inequalities above, B N Irr(G ?’) {/} consists of a unique
character, and (/3IN, ’) 1, so that/ is an extension of ,. At this point, every, Irr(N) has a unique extension to G which lies in B.

If/ B, then select , Irr(N) to be an irreducible constituent of/IN, and let
/’ B be the unique extension of ?’ that lies in B. As B q Irr(G ?’)1 is known,
we conclude that/3 =/3’ so/3IN is irreducible. Hence, restriction B ---+ Irr(N) does
define a bijection.

Since every irreducible character of N is invariant in G (in fact is extendible to
G) it follows by second orthogonality applied in N that the N-conjugacy classes are
stabilized by G.

Finally, 22n02 )2IN (2’2)JN 22n Y/B(flIN) 22n Y,6lrr(N)’ SO

02 Zy6Irr(U) showing that (N, 0) satisfies Hypothesis (,). I--!

Certain composition factors (namely, those of type SL2(2n) for n > 2) of a group
satisfying Hypothesis (.) must occur as a top composition factor in order to make
good use of the last result. Our next goal is to show that these composition factors do
in fact float to the top if they are not too far down. We begin with a result that will
allow us to handle chief factors just below G’.

To state this result, we extend the definition of s(G) to allow for operator groups.
If A is a group of operators for a group G acting by automorphisms, then A certainly
permutes Irr(G). Let Irra (G) denote the set of A-fixed irreducible characters, and set
SA(G) YxEIrrA(G) )(1).

(3.8) PROPOSITION. Let X be a finite group, and suppose N G where N is
a direct product of k copies of X and GIN is an elementary abelian 2-group such
that GIN acts transitively on the given set of direct factors of N. Assume that
the kernel M of the action of G on this set of direct factors satisfies M N <
2 and that every irreducible character of N extends to its inertia group in G. If
IM NI then s(G) s(X)k + (k- 1)IXIk/z, while if IM NI 2 then
s(G) s(X) + st(X) + (2k 2)IXIk/2.

Proof. Letc 6 Irr(N). Thenot is multiplicity free, and we see that the sum of all
the irreducible characters of G is exactly Y ot as ot runs over a set of representatives
for the G-orbits on Irr(N). It follows that s(G) ot(1)lG NI/t, where the sum
runs over ot 6 Irr(N) and t is the size of the orbit ofc. Since t IG "2(c)1, where
2(c) is the inertia group of c (stabilizer of c), this yields

oEIrr(N) cIrr(N) g 6Irr(N)
stabilizing stabilized by
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Now ifg 1, theinnersumaboveiss(N) s(X)k. Ifg q M/N, then g
has k/2 orbits of size two on the k direct factors, since G/M permutes the direct
factors regularly. From each orbit choose one direct factor and let Nl be the product
of these k/2 direct factors. Then N2 N is the product of the remaining factors,

N N, and N N N2 N x N2. The irreducible characters of N stabilized
by g have the form # x /zg for/x 6 Irr(N), and the corresponding inside sum is

Y/z6Irr(N,) /z(l)2 INI IXlk/2.
When M N, all elements of GIN are accounted for. Each of the k

nonidentity elements of GIN contributes IXI/2 to the inner sum displayed, while we
have already observed that the identity element contributes s(X)k. The first formula
for s(G) now follows.
Now assume IM NI 2. Since M <1 G and M normalizes each of the k given

direct factors, it follows (by transitivity) that each of these factors is isomorphic as
an M-group. We may regard X itself as one of these factors, and this is the sense in
which X admits an action by M (so that sM(X) is defined). The nonidentity element
of M/N clearly contributes st(N) st(X) to the inner sum displayed. We have
already seen that the 2k 2 elements of GIN not contained in M/N contribute IXI/2
to the inner sum, while, of course, the identity element contributes s(N) s(X).
The second formula for s(G) now follows. I--I

It is clear that in the situation of Proposition (3.8) further expressions for s(G)
may be derived under more general assumptions concerning the factor group M/N.
However, the case M N < 2 is all that is needed for the next result, and the main
result of the paper.

(3.9) THEOREM. Let (G, X) satisfy Hypothesis (,). If the simple group SL2(2n)
for n > 2 occurs as a homomorphic image ofthe commutator subgroup G’ ofG, then
it already occurs as a homomorphic image of G.

Proof. Assume G’ maps onto SL2(q) where q 2n and n > 2. Then a G-chief
factor G’/L exists which is isomorphic to a direct product of a certain number of
copies, say k, of SL2(q). Let K/L C6/L(G’/L) and N G’K so that K and N
are normal subgroups of G satisfying K q G’ L. By construction, N/K is a G-
chief factor isomorphic to G’/L, and G/K is isomorphic to a subgroup ofAut(N/K).
Notice that since G’ < N, the quotient GIN is an elementary abelian 2-group by an
application of Theorem (3.5).

If N G then necessarily k and the theorem follows. Then assume for the
remainder of the proof that N < G. A contradiction will be reached by showing that
s(G/K) does not divide IG/KI2, contrary to Corollary (3.2).

Proposition (3.8) will be used to compute s(G/K), so we next check that the
hypotheses of this proposition are satisfied in the group G/K (with X SL2(2n)).
Notice that Theorem (3.5) implies that every irreducible character of G’ extends to a
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character of its inertia group. Lemma (3.6) now guarantees extendibility ofirreducible
characters of N (and hence N/K) to their inertia groups.

Let S/K be one of the simple direct factors of N/K, and set ,A {g g
G }. Then Jt is the complete set of simple direct factors ofN/K. Also set M Na (S)
so that 141 k IG MI, as G transitively permutes the direct factors of N. Since
G’ < N < M we have M <! G and so M Na(Se,) for all g G. Thus, M is the
kernel of the permutation action of G on jr, and G!M permutes the set 4 regularly.
Similarly, if C S. Ca() then C is normal in G as N < C, so C Sg Ca(g)
for all g G. Thus, C acts as a group of inner automorphisms of N, and since

C-If(N) we conclude that C N and so C N. Notice that M/N M/C
is isomorphic to a subgroup of Out(S), which is cyclic of order n (represented by
"field automorphisms" of SL2(q)). But M/N is an elementary abelian 2-group so
IM/NI < 2.

At this point we know the hypotheses of Proposition (3.8) are satisfied in the group
G/K, and we consider, in turn, the two cases for the conclusion.

First, suppose that M N. Then k IG N] > 2 and by Proposition (3.8),

s(G/K) s(X)’ + (k- 1)lXIk/2 q2k + (k- 1). (q -Jr 1)k/2qk/2(q- 1)’/2.

Now Corollary (3.2) implies that this integer divides IG/K[2 k2. (q + 1)2kq2k(q
1)2k. The largest power of 2 dividing s(G/K) is qk/2, SO odd primes definitely divide
s(G/K). If p is such a prime, then p must also divide IG/K[ and so p must divide
(q2 1) (recall that k is a power of 2). Considering the form of s(G/K) displayed
above, we easily get the contradiction p q2k (recall that q 2n is a power of 2).
Now suppose IM NI 2. We need to compute st(N/K) st(X).
If g 6 M N then the action of g is a proper outer automorphism on each of the

direct factors of N N/K. Adjusting gK by an element of N, the action of
on N is induced by a field automorphism of order 2, say ct otq (ct 6 GF(q))

where qo 2n/2. Notice that for an involutory field automorphism to exist, n is
necessarily even. We need to identify the irreducible characters of SL2(q) fixed by
this automorphism.

Certainly the principal character and the Steinberg character (the unique character
of degree q) are fixed. The remaining characters have degree q 4- 1, and we need to
identify the g-fixed characters among these. If X has degree q 4-1 then the value of X at
a fixed generator of a cyclic subgroup C of order q q: has the form 4-(e + e-), where
e is a [CI-root of 1, not necessarily primitive bute 1. The assignment X {e, e-1

is a bijection from characters of degree q 4- to the resulting (ICI 1)/2 pairs of
C[-roots of 1. Moreover, if X {e, e-1 then X g - {eq, e-q so fixed characters
may be counted by counting fixed pairs of roots of 1.

First, suppose ,(1) q- (sothat ]CI q+ 1). Ifeq {e, e-1 theneq+ 1,
and so eq-l 1, since qo 4- 1 divides q 1. But lCI q/l 1 so e2 and then
e as q + is odd. This contradiction means that there are no g-fixed characters
of degree q 1.
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Finally, suppose X (1) q + so that Cl q 1. Then eq E {e, e-1 if and only
if eqo+/-l which is true if and only if e is in the subgroup of order qo + or qo in
the group of (q l)-roots of 1. This determines 2 + qo--22 qo pairs fixed under
g, and hence there are exactly qo characters of degree q + fixed under g. Adding
degrees of g-fixed characters produces st(X) +q + (qo- l)(q + 1) qo(q + 1),
and s4(N/K) qo(q + 1)k follows from this.

At this point we have determined that

s(G/K) --q2k + qo(q + 1)k + (2k- 2). (q + 1)/2q/2(q 1)k/2.

First, suppose M G. Then k and the formula for s(G/K) above reduces to

s(G/K) q2 + qo(q + 1) qo(q3o + q2o + 1).

By Corollary (3.2), this expression must divide IG/KI2 4. (q + 1)2q2(q 1)2.
Since gcd(s(G/K), (q + 1)(qo + 1)) we conclude that (qo + qo2 + 1) divides the
smaller integer (qo 1)2, clearly a contradiction.

It remains to consider N < M < G where G M k > is a power of 2. By
Corollary (3.2) again, s(G/K) must divide IG/KI2 4k2 (q + 1)2kq2k(q 1)2k.
Recall that q qo2 and k are powers of 2. Removing the factor qo from s(G/K)
(which is the full power of 2 dividing s(G/K)) yields an odd integer that is easily
seen to be congruent to 3 modulo 4. Let p be an odd prime dividing s(G/K) which
satisfies p 3 (mod 4). As gcd(s(G/K), q + 1) and p must divide IG/KI2,
we conclude p (q 1). Hence q (mod p), and since k is even and q qo2 we
also have qo (mod p). Therefore 0 _= s (G/K) q2k + qo (q + 1) + 0

+ .2k +0 +2k(modp). Nowk is apowerof2, so the congruence
2k (mod p) implies that the order of 2 in the multiplicative group of nonzero
residues modulo p is exactly 2k. In particular 2k must divide p 1, which contradicts
p _= 3 (mod 4). i-!

All the machinery is now in place for the proof of the main result of this paper
(Theorem (1.2)).

ProofofTheorem (1.2). Assume that (G, X) satisfies Hypothesis (.) where G is
an S-group.
We first argue that G maps homomorphically onto at least one group in the col-

lection {$3} U S. This is certainly the case if G" < G’ by applying Theorem (3.5).
If G" G’ then G’ maps onto some nonabelian simple group X, and by hypothesis,
X is isomorphic to a group in ,9. An application of Theorem (3.9) now yields that X
is a homomorphic image of G. In any case, there exists N G such that G!N is
isomorphic to SL2(2n) for some n > 1. If N we are finished, so assume N - 1.

By Theorem (3.7), X IN 2n 0 where 0 E Irr(N) and (N, 0) satisfies Hypoth-
esis (,). By induction, N X x x Xm where each Xi is isomorphic to a
member of {$3} U S. Theorem (3.7) also guarantees that each N-class is invariant
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under conjugation in G, so each X is in fact a normal subgroup of G. It remains
to prove that N has a normal complement. This is the case if the action of G on
each Xi is as a group of inner automorphisms, because then G Ca(N) N and
Ca(N) fq N Z(N) 1.

Since $3 is a complete group, G acts as a group of inner automorphisms on each Xi
for which Xi - $3. Moreover, if Xi S then (because Out(X/) is cyclic and GIN is
not) the natural map G Out(X/) has kernel XiCG(Xi) satisfying XiCG(Xi) >. N.
If GIN S then GIN is nonabelian simple so that G XiCG(Xi) and we are
finished. It remains to show that when GIN - $3 then IG XiCG(Xi)l cannot be 2.
If IG XifG(Xi)l 2 then there exists an element x G XiCG(Xi) which acts
on Xi as the nontrivial field automorphism of order 2. In particular, Xi is isomorphic
to SL2(2n) for some even integer n. However, the stated automorphism definitely
acts nontrivially on the conjugacy classes of Xi" if g Xi has order 2n + then gX
is not conjugate to g in Xi (compare eigenvalues). In all cases then G XifG(Xi).

As already noted, Theorem (1.1) is an immediate corollary of Theorem (1.2).

4. Some extensions

Do there exist examples of groups satisfying Hypothesis (.) which are not S-
groups? If this is the case, then Theorems (3.5), (3.7) and (3.9) imply that an example
G exists which has a nonabelian simple group different from SL2(2n) (n > 2) occur-
ring as a homomorphic image of either G or G’.

Some simple groups can be eliminated as a homomorphic image of G by applying
Theorem (2.4). For example, any simple group which has a real-valued irreducible
character with Frobenius-Schur indicator equal to is eliminated by that theorem.
A glance at the Atlas [2] shows that the McLaughlin group M"L is one example of
this.

If X is a simple group for which s(X) can readily be computed, and s(X) is divisible
by a prime not dividing the order of X, then X is eliminated as a top composition
factor by Corollary (3.2). This happens for all the remaining sporadic simple groups
with the exception of s(M23) 22. 3.5.7.23. However, the Mathieu group M23
does not have a subgroup of index 22. 3.5.7.23 or 3.5.7.23. (The order of such a
subgroup H is 11 27. 3 or 11 25 3. A Sylow l-normalizer in M23 has order 11 5
and so H would have to be a Frobenius group with Frobenius complement having
order 11, clearly a contradiction.)
A useful observation that simplifies the computation of s(X) for a (simple) group

X in which all real-valued characters have Frobenius-Schur indicator equal to + is
that

s(X)= +t + _, X(1)
X nonreal
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where is the number of involutions, and the sum extends over all irreducible charac-
ters , that are not real-valued. In the case of the sporadic simple groups, there are at
most 4 classes of involutions, and the largest number of complex conjugate pairs of
irreducible characters occurring in the sum is 22. (This occurs for the Monster group,
but typically the number of complex conjugate pairs is much smaller; the next worse
case is 9 such pairs occurring in Thompson’s group Th.)

Although not considered sporadic, the group 2F4 (2)’ is also eliminated from oc-
curring as a top composition factor of a group satisfying Hypothesis (.) because
s(2F4(2) ’) is divisible by the prime 1783 which does not divide the order of 2F4(2)’.

The discussion above shows that no sporadic simple group occurs as a homo-
morphic image of a group satisfying Hypothesis (.). To eliminate other families, it
appears useful to compute s (Xn (q)) explicitly as a function ofq where Xn (q) denotes
a simple group corresponding to a fixed Lie algebra type X of rank n, the parameter q
corresponding to the choice of finite field. In the rank one case, Xn (q) is PSL2 (q), and
the entire character table is known. (For example, Theorems 38.1 and 38.2 of [3] con-
struct character tables for PSL2 (q) for q odd and q a power of 2, respectively.) Using
the tables, it is straightforward to sum degrees to get s(PSL2(q)) q2, (q2 +q +2)/2
and q(q + 1)/2 when q is even, q _= (mod 4) and q 3 (mod 4), respectively.
This certainly suggests that s(Xn (q)) is a polynomial in q on residue classes. This
has in fact been checked by D. White using the program CHEVIE for the groups

PSL2(q), PSL3(q), SP4(2n), SP6(2n), G2(q)

and the twisted types

PSU3(q), Sz(22m+l), 3D4(q), 2G2(32m+l).

We end this paper by considering only the first family listed above, namely the
simple linear fractional groups PSL2 (q). Foreven q, the groups satisfy Hypothesis (.),
and it seems natural to decide the status ofthe remaining members ofthat family (when
q is odd). Of course, because PSL2(3) - A4 is not simple, and PSL2(5) - A5
SL2(4), we need only consider q > 5. Our final result shows that these groups do
not occur as top composition factors of groups satisfying Hypothesis (.).

(4.1) PROPOSITION. Assume (G, X) satisfies Hypothesis (,), and let q > 5 be a
power of an odd prime. Then PSL2(q) is not a homomorphic image of G.

Proof. Suppose N <1 G and G/N is isomorphic to PSL2(q). As already noted
above, s(G/N) (q2 + q + 2)/2 when q _= (mod 4) and s(G/N) q(q + 1)/2
when q =-- 3 (mod 4). The first case is easily ruled out by Corollary (3.2) as q > 5.
Then assume q _= 3 (mod 4). Using the notation of Proposition (3.1), we have
eZt q(q + 1)/2. Notice, q must be an odd power of a prime p _= 3 (mod 4), so p
must divide the square-free part of eZt. Hence p IG TI.
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Suppose q t. Then p e and the p-part of TI T/NI is the square of the
p-part of e. Let P PIN Sylp(T) so that IPI is a square. Since the Sylow
p-subgroups of GIN are elementary abelian, the same is true of T. In particular, P
is noncyclic.

If T is p-solvable, its p-length must be since P is abelian. Let < U
Op,(T) <_ U P Op,,p(T) <_ T Op,,p,p,(T) be the p-series of T. Since P is
noncyclic, U is generated by the subgroups C() for - P 1. (This generation
property of centralizers follows, for example, by an application of Theorem 5.3.16
of [5] applied to each of the Sylow subgroups of U.) But the centralizer of any
p-element in PSL2 (q) is a p-subgroup (in fact, a Sylow p-subgroup of PSL2 (q)), so
U 1. Hence P <1 T.

Select Q Sylp(G) with P _< Q so that P T fq Q. Since Q is known to be a

TI-set in (that is - Ng ] if g) we conclude _< N-() _< N().
However, I 1 divides eEt (q d- l)q/2 so (q l) divides Il, This
contradicts N()I .q, and thereby proves that is not p-solvable.2

The subgroups of PSL2 (q) were classified by Dickson, and this result can be found
in Huppert’s text [6] (see Hauptsatz II.8.27). The non p-solvable subgroups occurring
in that classification are: A5 (when p {3, 5}), PSL2(qo), and PGLE(qo), where q is
a power of qo. For the last case to occur, q must be an even power of qo, and this is
eliminated as q 3 (mod 4). If T PSL2 (qo), then the p-part of the order of T is

PI qo, which is a perfect square. Since q is a power of qo, this forces q itself to be
a perfect square, contradicting again the above congruence on q. Finally, T cannot
be A5 because the odd primes 3 and 5 divide the order of A5 only to the first power.
This contradiction proves then that q must, in fact, divide t.

At this point, we have q t, so T is a p’-subgroup of PSL(q). Since Brauer
characters of p’-groups can be lifted, T occurs as a subgroup of PSL2(C). These
subgroups have been classified by Dickson as well (see Theorem 14.23 of [7]). From
the classification of finite subgroups of PSL(C), T contains an abelian subgroup of
index 2, or else T is one of An, $4 or A5.

First, suppose T contains an abelian subgroup of index 2. Now the odd integer
divides I1 so contains an abelian subgroup of order In PSL2(q),2

the subgroup K is the centralizer of each of its nonidentity elements, so K must have
index exactly 2 in T, and TI q 1. Hence (q + 1)q/2 and e 1. Let A
and tr be as in Proposition (3.1). Clearly from the description of A we have r A.
Then necessarily cr r as tr (1) e and r is a constituent of or. Hence
(1 r) -rr/N/" However, if Irr(G/N) is any character of degree q 1,
then (u) 4-2 for any involution u of GIN (both possibilities for the sign occur if
q > 7)and ((lr) /) (lr,/lr) + /(u) {0, 2}. This contradiction means

that must in fact be one of A4, $4 or A5 Notice that q-l is a nontrivial odd divisor2

of I1, so q-l 3, 5 or 15 and this leads to q 7, 11 or 312

When q is 11 or 31 then 5 necessarily divides TI so T As. Also, a
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-l (q+l)q(q--l)20 and e2t q(q+l)2 Then solving for e2 yields e2

_
{6, 2},

and this contradiction leads to the final case q 7.
When q 7 then e2t q(q+l) 28, SO e is either or 2. If e then 282

and so I-1 IG__.JI 6, contradicting ITI {12, 24, 60}. Hence e 2, 7 and28

I1 I/ 24. Thus, X IN has the form 2(0 +... + 07). The final contradiction
will be obtained by analyzing s(G ?’) for certain ?, Irr(N).

Suppose , is an irreducible constituent of the product 002, and let H 27G (?’).
Then Corollary (3.3) implies that H N >_ s(G ’) > 2e2 8. The only
possibilities for lH/NI are 8, 12, 21, 24 and 168. The possibilities for s(G ?’) can
be worked out in each case. When ?’ extends to H we have s(G ?’) s (H ?’)
s(H/N). Except for the case IH/NI 21, the Schur multiplier of H/N has order
2, and when , fails to extend to H, s(G ?’) s(H ’) is the sum of the degrees
of the faithful irreducible characters of a representation group for H!N. (This sum
happens to coincide with s(H/N) when IH/NI 12 or 168.) The result is that
s(G ?’) is an element of {6, 4}, {6}, {9}, {10, 8} or {28} corresponding to each of
the five possibilities for IH/NI, respectively. Now, in addition to s(G ’) >_ 8,
Corollary (3.3) also requires e2 4 to divide s(G ’), and this rules out the first
three cases. Moreover, when H/NI 24, then s (G ?’) 8.

Suppose H/NI 24 so that H/N $4. There are two conjugacy classes of
subgroups ofPSL2 (7) that are isomorphic to $4. If H is conjugate to T, then the orbits
of H on {0 07 have sizes and 6. If H is not conjugate to T then the orbit sizes
are 3 and 4. In any case then, H does not stabilize {0, 02} so that ?, is a constituent
of some other product 818 Hence, 8 s(G ?’) > 2e2(ysiSj, ?’) > 8-+-8, a
contradiction.

The previous paragraph has just determined that each irreducible constituent ?, of
8182 is G-invariant. We have seen that for invariant ?,, s (G ?’) 28. However,
G acts doubly transitively on {81 87} so that ?’ is an irreducible constituent of
each 8i8j. But then 28 s(Gl?’) > 2e2(_,SiSj, ’) >_ 8. 21 168, the final
contradiction.

It is amusing to note that if T is a subgroup ofPSL2 (7) that is isomorphic to $4, then
a reducible character cr of T can be found which satisfies o"PsL27) -/elrr(PSL2(7)) "In fact, if zr r + @ is the permutation character of T - $4 corresponding to the
natural action on 4 points, then det(@) ,k is the sign character, and cr r -+- ,k. p
is the unique character of T which works.

Acknowledgement. We are grateful for the timely, detailed and perceptive review
made by the referee of this paper. He suggested proofs of Lemmas 2.1 and 2.3
more elegant than we had in the original paper. Moreover, Proposition 3.8 is both
conceptually simpler, and more general than our original approach. This lemma
to Theorem 3.9 made it possible to remove a fairly involved and somewhat messy
involution count that appeared in the original proof of that theorem, an argument
which we are happy to dispense with.
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