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AN INJECTIVITY RESULT FOR HERMITIAN FORMS
OVER LOCAL ORDERS

LAURA FAINSILBER AND JORGE MORALES

ABSTRACT. Let A be a ring endowed with an involution a . We say that two units a and b of A
fixed under the involution are congruent if there exists an element u A such that a ub. We denote
by (A) the set of congruence classes. In this paper we consider the case where A is an order with
involution in a semisimple algebra A over a local field and study the question of whether the natural map
7-((A) --, 7-((A) induced by inclusion is injective. We give sufficient conditions on the order A for this
map to be injective and give applications to hermitian forms over group rings.

Introduction and motivation

Let R be a ring endowed with an involution .-: R ---, R (that is, an anti-automorph-
ism oforder 2). For a left R-moduleM we denote by M* the dual moduleHomR(M, R)
with the left R-module structure given by (acp)(m) p(rn), for all a R,
p HomR(M, R), rn M.

Let R be a fixed central element satisfying - 1, for example -4-1.
A (unimodular) -hermitian form over R is a pair (M, h) consisting of a reflexive
R-module M and an isomorphism of R-modules h: M ---> M* satisfying h* eh.
The notion of isometry of -hermitian forms is defined in the obvious way.

It is natural to ask for a classification of -hermitian forms over R. An obvious
necessary condition for two forms (M, h) and (M, h2) to be isometric is that their
underlying R-modules M and M2 be isomorphic. This leads us to fix an R-module
M and consider the set of all -hermitian forms on M.

Assuming that this set is not empty, we fix once and for all an -hermitian form
ho: M ---> M* and we equip the endomorphism ring A End(M) with the involu-
tion given by

f hf*ho. (1)

A straightforward calculation shows that all the -hermitian forms on M are of the
form h hoa, with a A .satisfying a, and that two such forms h hoa
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and g hob are isometric if and only if there exists u e A such that ua b.
Note that this is a particular case of the so-called transfer to the endomorphism ring
in hermitian categories (see [15, Chapter 7, Section 4] or [13]).

If a ring A is equipped with an involution then the above construction motivates
the introduction of the following equivalence relation on the set of units of A fixed
under the involution:

a b = there exists u e A such that ua b.

We shall denote the set of equivalence classes by 7-/(A). Two elements equivalent in
the above sense will be called congruent. Many classification problems in the theory
of quadratic and hermitian forms can be reduced to determining the congruence
classes in a suitable algebra with involution [3], [6], [8], [9], [11], [12], [13], [15].
Note that 7-((A) is also the cohomology set H (C2, A ) in non-abelian cohomology,
where the non-trivial element in C2 acts via L .-l.

In this article, we shall deal with the case where A is an order in a finite-dimensional
algebra over a local field.

The following notation will be in force throughout the paper:

K is a field complete with respect to a discrete valuation,
(.9 is the valuation ring of K,
k is the residue field of (9, assumed to be finite of characteristic :/: 2,
A is a semisimple K-algebra equipped with an involution ~" A A,
A is an O-order in A, stable under the involution, such that A K (R)o A.

The main question that we shall address in this paper is whether the canonical map
7-/(A) 7-((A) induced by the inclusion A Ais injective.

For instance, as an easy consequence of the classification of unimodular quadratic
forms over (.9 by their determinant, one sees that if A Mn (K) and A Mn (O), and
the involution is transposition, then 7-((A) 7"((A) is injective. A simple example
(see the next section) shows that even in the local "case one cannot expect the map
7-((A) (A) to be injective in general.
We show that (A) 7-((A) is injective if A is a hereditary order in a semisimple

algebra (hence in particular if it is a maximal order) or if it projects onto an order for
which the property holds (see Theorem 3.1 for a precise statement). We also show
that if (A) (A) is injective then this property extends to the endomorphism
rings of the self-dual projective modules over A. As a consequence, we prove that if
two unimodular hermitian forms on projective A-modules are isometric over A, then
they are isometric over A.
A particularly interesting case is when A OG, the group algebra over (9 of a

finite group G. We show that 7-((A) (A) is !njective if G is of odd order, or
if the p-Sylow subgroup of G is normal, where p is the characteristic of the residue
field k.
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1. Hereditary orders

In this section we consider the case where A is a hereditary order. We recall that
an order A is left hereditary if all its left ideals are projective as A-modules. One
defines in a similar manner the notion of right hereditary, but it is known that these
two notions are equivalent 14, Theorem 40.1 ]; so we shall simply write hereditary.

The structure of hereditary orders is known (see 14, Theorem 39.14]) and they
include in particular the maximal orders [5, Section 26].

THEOREM 1.1. IfA is a hereditary order in A then the natural map

(A) -- (A)is injective.

Proof. Let a and b be representatives of classes in 7-((A) that are congruent in A.
Let u A be such that ua b. We show that the hermitian form (A2, (a, -b)) is
isometric over A to the hyperbolic plane H(A).

Consider the homomorphism tp: A2 ___> A of left A-modules given by (x, y)
x yu. Since A is hereditary, the image tp(A2), which is isomorphic to an ideal in
A, is a projective A-module; hence M "= ker tp is a direct factor of A2. One verifies
immediately that the left submodule M C A2 is equal to its orthogonal M+/- with
respect to (a,-b). By a result of Knebusch [15, Lemma 7.3.7], the form (a,-b)
is stably isometric to H(A). Since Witt cancellation holds for A [15, Theorem
7.10.9], this shows that actually (a,-b)

_
H(A) as forms over A. But we also

have H(A)
_

(a,-a); hence, by Witt cancellation again, we conclude (a) - (b)
over A.

We give below a simple example of a (non-hereditary!) order A for which the map
7-/(A) --> (A) is not injective.

Example. Let rr be a uniformizing parameter in (9, and let e e (.9 be a unit which
is not a quadratic residue modulo

Let A M2(K), with the involution given by

(ab)(a cr-2 )c d bzr 2 d
(2)

and let A C ME(O) be the subring defined by

c2 d
a,b,c,d c: 0

One readily verifies that A is stable under the involution (2). The matrix (; 0)is
congruent to the identity matrix in (A) but not in (A). So in this case (A) does
not map injectively into (A).
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The ring A is actually the endomorphism ring of the arrow (1,7r2): O2 --> O2

associated with the quadratic form (1, zr 2) (see [3]), and 7-/(A) corresponds to the
set of (non-unimodular) quadratic forms (l, zr2), (e, e:rr2), (1, e:rr2), (e, 7r 2) }. The
defect in injectivity reflects the fact that the first tWO forms and the last two become
isometric over K.

2. Reduction of the set 7(A)

In order to generalize the result above to a certain class of rings which are not
hereditary, in particular to certain group rings, we reduce the study of the set 7-/(A)
of congruence classes of involution-invariant invertible elements of A to the study
of simple factors carrying involutions of orthogonal type in the semi-simplification
of A.

LEMMA 2.1 (Reduction modulo the radical). Let A be an algebra over a complete
local ring as above. Reduction modulo the Jacobson radical ofA induces a bijective
map 7-[(A)

_
7-[(A/ rad A).

Remark. Lemma 2.1 follows from more general known theorems ([2, Theo-
rem 5.1 or 1, Theorem 10.3]). We include an ad-hoc proof for the convenience of
the reader. For even more general analogues in hermitian categories, see [9], or [15,
Theorem 7.4.4].

Proof We first prove that the reduction map is surjective from the set A+ of
invertible elements of A fixed under the involution, onto the set (A/rad A)+ of
invertible elements of A/rad A fixed by the involution. Indeed, say [c] is invertible
in A/rad A and invariant under the involution, then ?, (c / &)/2 is invariant
under the involution and [,] [a]. Note that ?’, being invertiblemodulo rad A, is
automatically invertible in A.

Second, we prove that any congruence relation can be lifted from A/rad A to
A. Let zr be a uniformizing parameter for (.9. There is a positive integer k such that
rad(A)k C zrA C rad(A) [5, Proposition 5.22], so the topology defined by the radical
is equivalent to the zr-adic topology, and A is complete with respect to its radical.
Suppose we have c, A+ and v a unit in A such that a v/ mod rad A. We shall
construct a sequence (vi)i>_ ofunits in A with v v anda ------ l)ifl) mod(rad A) for
i> 1; this sequence will converge to a limit to A witha w/, thus completing
the proofofthe lemma. To construct the (n+ 1)st element in the sequence, we suppose
t =_ v,fl, mod(rad A)n, and let 8 v,f)n -a (rad A). Since fl and Vn are units
in A, there is a r e (rad A) such that vfl -8/2. We let v+ Vn + r. We then
have v,,+ln+ Vn)n + Vnfl + rflf) + r Vf) --8/2- 8/2 + r
v,,fl. 8 + r#f tr + r/f" with r/f e (rad A)2n. !"1
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Remark. In Lemma 2.1, and in everything that follows in Sections and 2, one
can replace the condition that 2 is invertible in A by the weaker condition that A
contains a central element c with ? + c 1. The proof above requires only minor
adjustments to include this situation. Note however that for the case of group rings,
that will be the focus of our interest in Section 3, the existence of such an element c
is in fact equivalent to 2 being invertible in (9, as can be easily seen by applying the
augmentation map to the identity - + c 1.

Let F be a field, and let be an involution of the first kind on Mn (F), (i.e.,
is the identity on F). Since transposition is also an involution of the first kind, the
Skolem-Noether theorem yields an element v Mn (F) such that for all x Mn (F),

vxtv-1. The matrix V is either skew-symmetric (v -v), in which case we
say that is of symplectic type, or symmetric (v v), in which case we say that
is of orthogonal type ([ 15, Chapter 8, Section 7], [11 ]).

More. generally, if (B, 7) is a central simple F-algebra with involution of the first
kind, we say that (B, ~) is orthogonal (respectively, symplectic) if (B (R)F F, is
orthogonal (respectively, symplectic), where F is the separable closure of F.

Let S be a semisimple algebra over a finite field F, with involution ~. We can
write S as a product of simple algebras, which are all rings of matrices over finite
extensions of F

S Sl x x Sr where Si M,, (Fi).
When we consider the action of the involution on the simple components, we see

that it switches some pairs ofcomponents, and stabilizes the others. Again, we denote
by the involution induced on the components or pairs of components. On a stable
simple factor Si, the involution is either of the first kind, or it is of the second kind,
i.e., it induces a non-trivial involution on the center Fi, in which case Fi is a quadratic
extension of the field F/+ fixed by the involution.
We will now show that the only non-trivial unimodular hermitian forms of rank

one are carried by the simple components on which the involution is of orthogonal
type. More precisely"

LEMMA 2.2. Let S be afinitely generated semisimple algebra over afinite field,
and let Sorth be the product ofthe simple components on which the involution is ofthe
first kind, oforthogonal type. Then (S) 7-(Sorth).

Proof It is clear that an element of S is invertible and invariant under the involu-
tion if and only if its projections on the pairs of simple subalgebras Si x Sj switched
by 7 and on the components stable under .- are invertible and 7-invariant, and also
that congruence of two elements is determined by congruence of the projections on
the stable components or pairs of components.
We first describe 7-t(M (Fi) x Mn, (Fi)) when 7 switches the two components.

There is an automorphism 0 of order 2 of M,, (Fi) such that for all x,y in Mn, (Fi),
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(x, y) (0(y), O(x)). So the elements fixed by are all of the form (x, O(x)).
But such elements are congruent to (1, 1) since (x, 0(x)) (x, 1)(1,0 (x))
(x, 1)(1, l)(x, 1). Hence 7-[(M,,,(Fi) x M,,,(Fi)) {1}.

Secondly, we consider simple components Mn, (Fi) on which the involution is of
the second kind, and show that 7-/(M,,, (Fi)) }.

Let denote the involution induced on F/. The involution which maps a matrix
M (mij) to its transpose conjugate t (ji) is of the second kind, and the
invertible elements fixed by the involution are the non-degenerate hermitian forms of
rank ni over Fi. To show that every such form h is diagonalizable, we show that h
represents a non-zero element c e Fi, so we can write h (c) h’ and proceed by
induction on hi. We have h(F’, F’’) Fi, and since Fi is a separable extension
of F/+, the trace map Tr: Fi Fi+ is not zero. So there are elements v, w e F/’
such that Tr(h(v, w)) - 0, and we have h(v + w, v + w) h(v, v) + h(w, w) +
h(v, to) + h(v, w) hence Tr(h(v, w)) h(v + w, v + w) h(v, v) h(w, w), so
at least one of the three values on the fight is non-zero: h represents a non-zero
value. Hence every matrix fixed by the involution is congruent to a diagonal matrix,
whose entries ct c,, are in F/+. But Fi is a finite field, so every element .in F/+
is the norm of an element in Fi, say c9 ,j, and hence the matrix is congruent
to the identity matrix. This shows that for this involution, 7-[(Mn,(Fi)) {1}, but
we also know that if is another involution of the second kind on Mn, (Fi) which
induces- on Fi, then is equivalent to -:-t. Indeed, by the Skolem-Noether theorem
there is an element y M,, (Fi) such that for all x e M,,, (Fi), . y-.ty
11 ]. Moreover, . y--ytxy,-y x implies that Z y-yt a.. Fi, and hence

y )yt .,ky so Z 1, and Hilbert’s theorem 90 yields a/z Fi such
that ,k =/z-. We can replace y by z =/zy to get t. -t .y /zy Z.
We showed above that z is congruent to 1, i.e., that there exists a matrix w such that
z tw. Consider the inner automorphism of Mn, (/7,.): 0 (x) wxw- We have
0 (., 110.113 -1 WZ-- "t zw-1 Wllj- t- "tt llO llO -1 t- "tt -0
So the algebras with involution (Mn (N),-:-t) and (Mn, (Fi), -) are isomorphic, and
hence for any involution ofthe second kind on Mn, (Fi), the set ofisomorphism classes
of rank one unimodular hermitian forms is trivial.

The last case we consider is that ofa simple componenton which the involution is of
symplectic type, say J vx v- with v -v. Suppose x 2, then xv vxt, and
(XI)) I)tx --VX --XI), SO XI) is skew-symmetric. But all skew-symmetric
elements are congruent[15, Theorem 7.8.1] so there is a z e M, (F) such that
xv zvzt, hence x zvztv-1 z so again x is congruent to and 7-/(M, (F/)) is
trivial.

So we have proved that the only components of S with non-trivial rank-one her-
mitian forms are the components on which the involution is of orthogonal type, i.e.
that 7-/(S) 7-/(Sortn). rn
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3. More general orders

In this section we establish a result that will allow us to extend Theorem 1.1 to a
larger class of orders that includes, as we shall see in the next section, group rings for
certain types of groups.

THEOREM 3.1. Let A be an O-order with involution in a semisimple K-algebra B
and let A A be a surjective, involution-preserving homomorphism which induces
an isomorphism (A/rad A)orth (A/rad A)orth. Ifthe natural map 7-((A) - 7-/(B)
is injective, then so is the natural map A - 7-[(A).

Proof. The natural inclusions A - A and A B induce a diagram of sets

(A) (A)

7-/(A) 7-/(B)

with 7-/(A) 7-(((A/rad A)orth) 7-/((A/rad A)orth) 7-/(A) by Lemma 2.1
and Lemma 2.2. By hypothesis, the vertical map 7-/(A) --> (B) is injective, so
in the diagram the composite maps from (A) to (B) are injective, and hence
7-((A) --> 7-((A) is injective. El

We now show that if 7-/(A) --> (A) is injective, then this property also holds
for the endomorphism rings of projective modules over A that afford a unimodular
hermitian form.

LEMMA 3.2. Let A be an O-order with an involution ~, and consider Mn (A)
endowed with the involution (aij) (fiji). Then the map A ---> Mn (A) given by
a diag(a, 1) induces a bijection TI(A)

_
7-/(Mn(A)).

Proof. Let A A/rad A. Then Mn(A)/rad Mn(A) Mn(A) (see [5, Proposi-
tion 5.14]. It is easy to see that the orthogonal components of Mn(A) are of the form
M, (S), where S is an orthogonal component of A. By Lemma 2.2, it is enough to
see that for these components the map S ---> Mn (S) given by x e- diag(x, 1)
induces a bijection 7-/(S)

_
7-/(M, (S)). But this is clear, since the elements of 7-/(S)

are classified by their determinant, and det diag(x, 1) det(x).

THEOREM 3.3. Assume that the map 7-[(A) ----> 7-I(A) is injective. Let h and
hE be unimodular hermitian forms on a projective A-module P. If hi and hE are
isometric over A, then they are isometric over A.
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Proof. First, sup.p...?se that P is free over A, say P An. Let Mn (A) be endowed
with the involution (aij) (h’/). Consider the following commutative diagram

7-/(A) . (A)

7-[(Mn(A)) 7-((Mn(A)),

where the vertical maps are as in Lemma 3.2. The map 7-((A) 7-[(Mn (A)) is
injective since Witt cancellation holds for forms over A 15, Theorem 7.10.9]. Hence,
by virtue of the above diagram, if (A) 7-t (A) is injective, so is (M,, (A))
7-[(Mn (A)), and we deduce that h and h2 are isometric over A.

Now, suppose that P is projective and let Q be a finitely generated projective
A-module such that P Q is free. Let H(Q) Q Q* be the hyperbolic hermitian
space on Q and define (Q’, g) (P, h I) 2- H(Q). Then (P, h ) 2- (Q’, g) and
(P, h2) .1_ (Q’, g) are hermitian forms with free underlying A-module.

It follows from our hypothesis that (P, h) 2- (Q’, g) and (P, h2) 2- (Q’, g) are
isometric over A. By the above considerations in the free case we conclude that
(P, h 2_ (Q’, g) and (P, h2) 2_ (Q’, g) are isometric over A. Finally, using Witt
cancellation for forms over A [15, Theorem 7.10.9], we see that (P, hi) and (P, h2)
are isometric. I’-I

Remark. Let P be a projective A-module that affords a unimodular hermitian
form h. We equip the endomorphism ring End^ (P) with the adjoint involution of h,
as in ). An equivalent formulation ofTheorem 3.3 is that if the map 7-/(A) 7-((A)
is injective, then so is the map 7-/(End^ (P)) - 7-/(Enda (P (R) K)).

In the case where A is hereditary, this result also follows directly from Theorem
I. and the fact that End^ (P) is hereditary as well 14, Theorem 40.21 ].

4. Group rings and G-forms over local rings

We now study the case of group rings OG, with the involution which sends each
element of the finite group G to its inverse, where as before (.9 is a complete discrete
valuation ring. We shall assume throughout this section that GI is not zero in (.9.
We recall that for any OG-module M, we can identify canonically the set of

hermitian forms on M with the set of G-invariant symmetric O-bilinear forms on M
via the isomorphism : Homo(M, O) HOmoG(M, OG), functorial in M, given
by .(f)(x) Yg f(g-lx)g (see, for instance, [10]).

LEMMA 4.1. Let G be a finite group and let k be any field. If the order of G is
odd, then the only self-dual absolutely simple kG-module is the trivial module k.

Proof. Suppose first that char(k) 0. Let X be an irreducible character of G
satisfying the self-duality condition X (g) X (g-l) for g G. Let 0 be the unit
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character. To show that X X0, it will be enough to show that the inner product
(X0, X) is nonzero. On the one hand, the sum Y’gl X (g) is divisible by 2, since each
term in the sum appears twice by self-duality. On the other hand, it is well known that

(1) divides GI (see, for instance, [16, Section 6.5, Proposition 17]), which implies
in particular that X (1) is odd. Hence

<x, xo) IG--[ x(g)
gEG

(mod 2).

In particular, (X, X0) :)/: 0. (See also [16, Section 13.2, Exercise 1].)
Suppose now that char(k) p > 0. We can assume without loss of generality

that k is a finite field. Let K be a local field whose residue field is k. We can also
assume that K contains all G I-th roots of unity.

The group C2 of order 2 acts naturally by duality on the Grothendieck groups
Go(KG) and Go(kG). One verifies readily that the canonical surjection
d: Go(KG) -- Go(kG) as well as its canonical section (see [16, Section 18.4]
for the definitions) commute with the action of C2. Hence d induces a surjection

d,.: /-0(C2, Go(KG)) -./-r(c2, Go(kG)).

Now, by the considerations in characteristic 0, we have/(C2, Go(KG)) Z/2Z,
with the nontrivial element corresponding to the unit representation K. It is easy to see
that k represents a nontrivial element of/(C2, Go(kG)), so d, is an isomorphism,
which proves the lemma. El

COROLLARY 4.2.
(kG/radkG)orth k.

Let k be a field and let G be a group of odd order Then

Proof. Let S be a simple component of kG/radkG "2_ k x SI x x Sr, with
S k and S stable under the involution. We extend the scalars to an algebraic closure
/: of k, and we decompose S (R)k Bl x x B. into simple components.
Now we consider the action of the involution on the components Bi. If Bi Bi,

we have a non-trivial self-dual simple G-module, which contradicts Lemma 4.1. So
the components Bi are switched by the involution, and we can write S (R)k C x Cp.
In particular, dimr,(S (R)k/c)+ dim(S (R)k )- 1/2 dim(S (R) ) so the involution
is of type II on S.

PROPOSITION 4.3. Let G be afinite group ofodd order. The natural inclusion of
group rings OG KG induces an injective mapfrom 7"((OG) to (KG).

Proof. By Corollary 4.2 we have (OG/rad OG)orth (kG/radkG)orth k,
so using Theorem 3.1 with A (9 and the augmentation map #: OG (.9 we
conclude that the natural map 7-[(OG) ---> 7-((K G) is injective. El
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PROPOSITION 4.4. Let p 2 be the characteristic of k, and let G be a group
whose p-Sylow subgroup Up is normal. Then the map 7-[(OG) - 7-[(KG) is
injective.

Proof. If p does not divide the order of G, then OG is a maximal order [5,
Proposition 27.1 ], so Theorem 1.1 applies. Otherwise we can take A O[G/Gp]
in Theorem 3.1; then A/rad A k[G/Gp] OG/radOG since k[G/Gp] is
semisimple and rad OG contains rcOG, where r denotes a uniformizing parameter
for (9, and the elements g for g Gp, which are nilpotent mod zr. I--I

Remark. Note that Proposition 4.4 covers the case of all finite abelian groups G.

Combining Propositions 4.3 and 4.4 with Theorem 3.3 we get the following result,
which can be interpreted as a "hermitian" version of [16, Section 16.1, Corollary 2].

THEOREM 4.5. Let G be afinite group either ofodd order or such that its p-Sylow
subgroup Gp is normal, where p is the characteristic of k. Let (P, g) and (Q, h) be
unimodular hermitianforms over OG, where P and Q are projective OG-modules.
If (P (R) K, g) and (Q (R) K, h) are isometric over KG, then (P, g) and (Q, h) are
isometric over OG.

Proof. In particular, P (R) K and Q (R) K are KG-isomorphic, so by [16, Section
16.1, Corollary 2], we conclude that P

_
Q as OG-modules. By Propositions 4.3

and 4.4, the map 7-((OG) -- (KG) is injective; hence, by Theorem 3.3, the forms
(P, g) and (Q, h) are isometric over OG. r-I

We now give a Grothendieck group interpretation of Theorem 4.5, which gener-
alizes [2, Theorem 3.5] to a larger class of groups.

For a ring with involution R (R OG or R KG in what follows) we denote
by KU0(R) the Grothendieck group of the category of unimodular hermitian forms
on finitely generated projective modules over R. If (M, h) is such a form, we will
denote by [M, h] the element of KU0(R) that it represents.

THEOREM 4.6. With the same hypotheses as in Theorem 4.5, the canonical homo-
morphism t" KUo(OG) --+ KUo(KG) induced by extension ofscalars is injective.

Proof Let be an element of kert. We write as a formal difference
[P, h] [Q, g]. It is known, and easy to see, that the isometry class of a form over
KG is completely determined by its class in K U0(KG), so (P (R) K, h) Q (R) K, g).
Since P and Q are projective modules over OG, we conclude by 16, Section 16.1,
Corollary 2], that P

_
Q as OG-modules. Applying Theorem 4.5, we have (P, h)

(Q, g) as hermitian forms over OG. Hence 0 as claimed. I-’1
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Finally, we give an application to the existence of integral orthonormal bases per-
muted by G. The following statement generalizes Corollary (2.4) in [6] to nonabelian
groups:

COROLLARY 4.7. Let G be a finite group as in Theorem 4.5. Let b: OG x
OG -, (9 be the G-invariant symmetric O-bilinearform defined by b(g, h) g,h
for g, h G. Let M C KG be a free OG-lattice self-dual with respect to b. Then
M has an orthonormal O-basis permuted by G.

Proof. There is an element m KG such that M OGm. Computing the
dual of M for the unit form, we get M OGrh-l so since M is self-dual, OGm
OGrh- and hence OGmrh OG so mrh OG and in fact mrh 7-((OG). Now
by construction, m 7-[(KG), and by the injectivity of 7-((OG) 7-[(KG),
this means that mrh 7-[(OG), so there is an element n OG such that nfi
mth. Let w n-m; then we have OGw OGm and wb n-lmfft- 1, so
fight-multiplication by w is an isometry from (OG, )) to (M, )), or equivalently,
a G-equivariant isometry of O-modules between (OG, b) and (M, b). 121

As an application, we give a different proof of the the following result found in
Erez-Taylor [7, Section 3].

COROLLARY 4.8 (Erez-Taylor). Let L/K be a tamely ramified Galois extension of
-U2odd degree. Let AL/r t/r, where /r is the different ofL/K. Then A/r has

a self-dual normal basis over (9.

Proof. It is known that L has a normal basis over K that is self-dual with respect to
the trace form (Bayer-Lenstra [4]), that is, (L, Try/r) -- (KG, b) as G-forms, where
b is as in Corollary 4.7. Moreover, A/r is self-dual with respect to TrL/r, and A/r,
is a projective OG-module if L/K is tamely ramified, by [17, Proposition 1.3], and
hence isomorphic to OG by 16, Section 16.1, Corollary 2]. So, by Corollary 4.7,
A/r has a self-dual (orthonormal) normal basis. I"1
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