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ON THE ALAOGLU-BIRKHOFF EQUIVALENCE
OF POSETS

STEVO TODORtEVI( AND JINDIICH ZAPLETAL

ABSTRACT. We show that under the Proper Forcing Axiom, the Alaoglu-Birkhoffequivalence on separative
posets of the first uncountable size roughly coincides with regular embeddability. We also investigate the
behavior of the equivalence under the Continuum Hypothesis.

Introduction

Attempts to classify small partially ordered sets according to certain criteria are by
now a standard part of set theory [TI ], [T2]. In practice this usually means counting
classes of certain equivalences of posets. The following definitions tell at least part
of the story:

(1) P Q if there is a poset R such that both P, Q are (isomorphic to) its dense
subsets.

(2) P > Q if there is a function f: P --> Q such that for every q Q there is
p e P such that every p’ <p p has f(p’) "<Q q. Such a function is called
Moore-Smith convergent [MS] or a Tukey map [Tu]. > is a preorder on posets
and it naturally generates an equivalence via the definition P Q if P > Q
and Q > P.

(3) P >- Q if there is a function f: P ---> Q such that preimage of every open
dense subset of Q under f contains an open dense subset of P. Such a function
is called Alaoglu-Birkhoff convergent [AB] and the preorder >- generates the
Alaoglu-Birkhoff equivalence , through P Q if P >- Q and Q >- P.

(4) On separative posets P, Q define Q < P if RO(Q) can be completely embed-
ded into RO(P). This is a basic forcing-theoretic notion; let P t>< Q if Q < P
and P < Q.

Classical results [D] say that each of these equivalences has at most countably
many equivalence classes of countable posets. Since the Proper Forcing Axiom tends

Received November 5, 1997.
1991 Mathematics Subject Classification. Primary 03E50; Secondary 06A06.
The first-named author was partially supported by NSERC ofCanada and grant 0401A from the Science

Foundation of Serbia. The second-named author was partially supported by grant GAR 201/97/0216.

281

(C) 1999 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America



282 STEVO TODOR(EVI( AND JINDICH ZAPLETAL

to generalize certain properties ofw to w it is interesting to ask whether there can be a
sensible classification of equivalence classes of posets of size b under PFA. Indeed,
for the directed partial orders the first three equivalences defined above coincide and
it was proved in [TI that under PFA there are only finitely many equivalence classes
of directed posets of size b. For the general partially ordered sets the situation is
more complex, since in ZFC there are the maximum possible 2 many equivalence
classes of posets of size R in both and <. However, in the context of PFA there
are only countably many -----equivalence classes of posets of size R. The study of
along these lines was suggested in IT2].

In this paper we show that there are 2’ many -classes of posets of size bl under
PFA. This is nevertheless proved in a way which provides a good understanding of
the relations -<, -"

THEOREM 1. Suppose PFA holds and P, Q are arbitral, separative posets of
size . Then Q -< P (and only i( there is an open subposet Q’ c Q with Q’ < P.

Thus in the context ofPFA the relations -<, , can be reduced to the logically simpler
<, <. The nonclassification result for then easily gives 2t many --nonequivalent
posets of size R under PFA.

Our notation follows the set-theoretic standard as set forth in [J]. Co is the forcing
for adding to many Cohen reals with finite support product, R O(P) for a separative
poset P is the completion of P and for a Boolean algebra B the set ofnonzero elements
of B is denoted by B+.

1, Simple properties of the Alaoglu-Birkhoff preorder

In this section we make several basic observations about the nature ofthe relation -<.

CLAIM 2. Suppose P P’, Q Q’ and P >-Q. Then P’ >- Q’.

Proof. Without loss of generality the four posets can be assumed pairwise dis-
joint. Since P, P’ and Q, Q’ are codense, there are partial orders <* on P to P’ and
<** on Q to Q’ so that

(1) _<* restricted to P or P’ is exactly equal to _<p or <p, respectively, and the
same on the Q side

(2) both P, P’ form dense parts of the poset (P tO P’, _<*) and.the same holds on
the Q-side.

Now fix an Alaoglu-Birkhoff convergent function f: P Q. We must produce
a convergent function from P’ to Q’. For each p’ 6 P’ choose a condition q’ 6 Q’
such that there are p <* p’ in P andq >** q’ in Q with f(p) q. Then the function

f’: P’ Q’, .f’: p’ q’ is Alaoglu-Birkhoff convergent.
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To see that, suppose D’ C Q’ is an open dense set. The set D C Q given by
D {q Q: ::lq’ D’ q <** q’} is open dense as well and by the convergence of
the function f there must be an open dense set E C P with f"E C D. Then the
set E’ {p’ e P’: 3p E p’ <* p} C P’ is open dense and its image under f’ is
included in D’ as required. I--I

CLAIM 3. Suppose P >- Q’ and Q’ is an open subset ofa poset Q. Then P >- Q.

Proof. If f: P ---> Q’ is Alaoglu-Birkhoff convergent then so is f: P -- Q.
For whenever D C Q is open dense then D C) Q’ c Q’ is open dense and so there is
an open dense set E C P such that f"E C D th Q’ c D. [3

CLAIM 4. Suppose Q, P are separative posets and Q P. Then Q -< P.

Proof. Fix a complete embedding zr" RO (Q) ---> R O (P) and the corresponding
projection pr: RO(P)-- RO(Q)givenbypr(b)= l-E{c 6 RO(Q): zr(c)/xb
0}. The following are well known [J] and easy to verify:

(1) pr preserves order.
(2) pr(IRoP)) IRO(Q)and pr maps nonzero elements of RO(P) to nonzero

elements of R O (Q).
(3) Whenever a < pr(b) in RO(Q) then zr(a)/x b - 0 in RO(P).
(4) pr(a / b) < pr(a) /x pr(b) in RO(Q), for all a, b RO(P).
(5) pr(rt(a)) a for all a R O(Q).

Since Q RO(Q)+ and P RO(P)+ it is enough to prove that pr is an
Alaoglu-Birkhoff convergent function from R O(P)+ into R O(Q)+. Fix an open
dense subset D C RO(Q)+ and let E {b 6 RO(P): pr(b) D}. We shall
complete the proof by showing that E C RO(P)+ is open dense.

And indeed, E is open since pr preserves order. For the density, note that if
b 6 RO(P)+ then any element of RO(P)+ of the form b/x zr (a) belongs to E
where a D, a < pr(b). This follows from the fact that b/x zr(a) -: 0 by (3) and
pr(b /x rt(a)) < pr(rt(a)) < a D by (4)and (5). I--I

Note that Q < P is a E (P, Q) fact, a statement about existence of Boolean
algebras Bp, BQ codense with P, Q respectively and a projection function pr: Bp --->

BQ satisfying the propeties (1)-(6) above. Thus Q <z P is upwards absolute between
models of set theory. This is in sharp contrast to Q -< P which is a E2(P, Q)
statement and generally not upwards absolute.
We shall now associate with every poset P ideals 3/p(C), x a cardinal, such that

Q -< P is equivalent to 3Q(K) C 3p(t() for c IQI IPI.
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Definition 5. Let P be a poset and X a set of subsets of [,.J X. We say that X is a
character of P if for every sequence Di: E [J x of open dense subsets of P there
is some x E X with ix Di O.

If the poset P is separative, then saying that X is a character of P is to say that
there is a condition in P forcing "every ordinal valued total function from J x has
a ground model subfunction with domain in X".

Definition 6. 71p (x) is the set of those X CPower(x) which are not characters
of P.

It is not hard to see that 2p (x) is closed under subsets and unions For the latter, note
that if X, Y are not characters of P as witnessed by sequences (D: t 6 x ), (E,: c 6

x) of open dense subsets of P respectively, then X tO Y is not a character of P either--
consider the sequence (D tq E" ct 6 x).

LEMMA 7. Let P, Q be posets and x QI IPI

2o(x) 2p(x).
Then Q -< P fandonly

Proof. On one hand, if P >- Q--as witnessed by a function f: P Q--then
every character X of P is also a character of Q: If D: ot 6 x are open dense subsets
of Q, fix E,: ct E x, open dense subsets of P such that f"E,, C D. Since X is a
character of P, there is a set x 6 X such that I"l. E is nonempty, containing some
condition p 6 P. But then ["],x D, is nonempty as well, containing f(p). Thus X
is a character of Q and 3Q(X) C 3p(X).

On the other hand suppose P )z Q. Let A (f, Z): f: P Q is a function and
Z c P is a somewhere dense set such that f"Z C Q is nowhere dense} and define
X by x X ifx C A and [..J{.f"Z: (.f, Z) x} C Q is dense. Since IAI _< IQI IPI it
is enough to show that X is a character of P and not a character of Q.

On the Q side, for each (.f, Z) E A choose an open dense set Di.t:z C Q disjoint
from the nowhere dense set .f"Z. Suppose that for some x 6 X the intersection
{Di.t:zI, (f, Z) x} is nonempty, containing some condition q 6 Q; then, since
x 6 X, there must be some (g, Y) E X and p 6 Y such that g(p) < q. So g(p)
together with q belongs to all the sets Dif.z/, (.f, Z) 6 x, in particular, to Dig.rI, which
is a contradiction to the choice of Dig.rI. Thus the collection {Dif.z>: (.f, Z) 6 A}
shows that X is not a character of Q.

To prove that X is a character of P, suppose by way of contradiction it is not, as
witnessed by a family Eif.zl: (f, Z) 6 A }. Then for each p E P there is a condition
q 6 Q such that no element of the set LJ{f"z: p Ei.t:zI} c Q is below or equal
to q--otherwise the set x {(.f, Z): p Eif.z would be in X, the intersection

{Eif.zl: (.f, Z) x} is nonempty containing p and {Elf.z/: (f, Z) E A} would
not be a counterexample to P having a character X. Now the function g: P -- Q,
g: p - q is not a witness to P >- Q and so there must be a somewhere dense set
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Y C P such that g"Y C Q is nowhere dense. Look at the pair (g, Y) A and choose
some condition p Y f3 Elg.r>. By the definition of the function g, there should be
no element of the set I,.J{f"Z: p Ei.t:z C Q below or equal to g(p); on the other
hand, g(p) belongs to that set. A contradiction. I’-I

While the right-to-left direction of the previous lemma has a purely existen-
tial proof, in practice the comparison of characters of posets gives a strong hint
about the possible candidates for Alaoglu-Birkhoff convergent functions. Interest-
ing characters include {w}min separative posets this character means somewhere
b0-distributivitym[w ]"mfor example the random algebra has this characteruand
{S C w" S stationary}mSacks forcing has this character under the Proper Forcing
Axiom.

2. Under

If one assumes a strong construction principle like , many posets of size R will
be <-comparable. The following lemma says that, in particular, Q < C,o, for every
poset Q of size R under . Note that Co,, does not have the character [w ]" since
the C,o,-generic function from w to 2 has no infinite subfunction from the ground
model.

LEMMA 8. () Suppose P, Q are posets ofsize and P does not have character
[w]’’. Then Q < P.

Proo.f. Fix an enumeration {q,: ct 6 w} of Q and a sequence {D,: a w}
guessing subsets of Q. Let S C to be the stationary set {ct 6 w: D C {qtJ: / c} is
open dense}. Fix an enumeration {p,: ot 6 S} of Panda sequence E: a 6 S ofopen
dense subsets of P such that every infinite subcollection has an empty intersection.

Note that we may assume that {PtJ: / 6 a tq S} N E 0 for all ot 6 S. For
if this failed on a stationary set of c S then by a Fodor-style argument it would
be possible to find even a stationary subcollection of {E," ct 6 S} with a nonempty
intersection. And if this failed on only a nonstationary set of ct S it would be easy
to remove these and rearrange the rest so that we get {PtJ: /3 6 c N S} E, 0 for
all ct S as required.
Now for each p 6 P, say p p, for some c S, there is q 6 Q such that for all

/3 6 ct + with p 6 Et the condition q has an element of Dt above it. To see this,
enumerate the finite set {/ ct + 1: p 6 EtJ in an increasing order as {/0 /,,
and by induction on 6 n / build conditions qi 6 DtJi so that q0 > q > > q,,
in Q. This is certainly possible as the sets Dt C {qt: / /Ji} are dense, and q q,,
is as desired.

The function f: P ---> Q, f: p - q is a witness to P >- Q. For fix an open
dense subset D C Q and an ordinal c 6 S such that D fq {q J: / 6 c} D. We
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claim that .f"E C D, and this will complete the proof of P >- Q. And indeed, if

P Pr Ea then ot _< }, and by the construction of f the condition f(p) has an
element of D, C D above it. Since D is open, f(p) D as desired. E!

Already under the Continuum Hypothesis it is not hard to produce 2’ many
-nonequivalent separative posers ofsize R. Let S C to and define Ps {f: dom(f)
is a countable subset ofto all of whose accumulation points belong to S and rng(f)
2} ordered by f >_ g if .f C g and the set sup(dom(.f)) fq dom(g) \ dom(.f) is finite.
It is not hard to see that Ps adds reals and its generic extension is determined by the
function from tov to 2 that is the union of all functions in the generic filter.

CLAIM 9. Suppose S, T C to. Then Ps has character Xr {A C to" o.t.A
to, sup(A) T} fand only (f S f3 T is a stationa, subset o.fto.

Proof. First, suppose that S tq T is stationary and D," ot 6 to is a sequence of
open dense subsets of Ps. We must find a.set A C to with o.t.A to, sup(A) T
and Not6a D, -7: 0. To that end, move into any generic extension V[G] with the same
reals and a closed unbounded set C C S q T, C V[G] (see [B]). There, build a
decreasing sequence pa: ct to of conditions in Ps and a sequence f,: ct to of
finite functions from to into 2 so that

(1) sup(dom(pa)) C,
(2) p+l sup(dom(p,)) p,
(3) for ct limit p, I._Jea Pt,
(4) pa+ U fa Da.

This is easily done; the only difficulty is at successor stages where we first find a
conditionq < p, in D, withsup(dom(q)) C and then let f, q sup(dom(p,,))fq
dom(q) \ dom(pa) and p,+ q \ .f,.

By a Fodor-style argument it is now possible to find a stationary set U c to and a
finite function f such that every a U has .f .f, or.. Fix a set A C U ofordertype
to whose limit is in C and such that writing A {or0, o in increasing order we
have dom(.f,,,) C o,,+. Let/ sup(A) C C S f3 T and p Pt U U,,,o .f,,.

On the other hand, assume S
to such that for every set A C to of ordertype to and with supremum in T the
intersection Aorta Da isempty. Fix aclub C C to disjoint from SNT, enumerate each

/.infinite maximal interval I of to disjoint from C by a,, n e to and fix an inclusion-
decreasing sequence E,,: n to of open dense subsets of Ps whose intersection is
empty. Then for a e to define the sets D, {p Ps: P decides the a-th bit of

for some (unique) infinite maximal intervalthe Ps-generic function}
I C to disjoint from C and D,, {p Ps: P decides the ot-th bit of the Ps-generic
function} otherwise.
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Now suppose A {ct0 a ...} is a set of countable ordinals with limit in T.
There are two cases.

(1) If sup(A) C then sup(A) S and no p Ps decides the values of the
Ps-generic function on all the or,,, n to, since such p would have to include A
in its domain and would therefore have an accumulation point sup(A) outside
of S, contrary to the definition of Ps. Consequently NaEA D, 0.

(2) If sup(A) C then there must be an infinite maximal interval I C to disjoint
from C such that for almost all n to, or,, I. Then AcEA D,, C ,, E,, O.

In any case, -)otA D,, 0 and the sets D,, a to, witness the fact that Xr is
not a character of Ps.

Now there is a collection {Si: 2’} of 2’ many stationary subsets of
which are pairwise not equal modulo the nonstationary ideal. Then Psi, 2’ are
mutually -nonequivalent posets: if -7: j I then there will be a stationary subset
T of one of Si, Sj which is disjoint from the other one, and consequently one of the
posets Ps,, Psi has the character Xr {A C to" o.t.A to, sup(A) T} and the
other does not. This shows that Psi Ps via Lemma 7. And of course under the
Continuum Hypothesis the posets Ps have size

The separative a-centered posets X(A) defined in Section 4 of [T2] can also be
proved to be non--equivalent. It is interesting to compare the above example with
the 2’ many non-w-equivalent posets of size R produced in ZFC by the first author
in [T2].

Thus we proved that under the quasiorder -< on posets of size R has a top
(namely, C,o, and a complicated structure. The last claim of this section shows that
Souslin trees constitute a bottom, if we look only at the posets with no countable
locally dense subsets.

CLAIM 10. Suppose P is a poset ofsize R with no somewhere dense countable
subsets and T is a Suslin tree. Then P >- T.

Proo.f. Any injection f: P -- T is Alaoglu-Birkhoff convergent. To see this,
fix an open dense set D C T; as T is Souslin, IT \ DI < R0, as f is one-to-one,
f-(T \ D) is at most countable, and since there are no small somewhere dense sets
in P, there must be an open dense set E C P disjoint from .f- (T \ D). Then
.f"E C D as desired in the definition of Alaoglu-Birkhoff convergence.

3. Under the Proper Forcing Axiom

Our goal in this section is to prove Theorem from the introduction. Fix posets
P and Q and a function f: P Q. The question of interest is whether f: P Q
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is Birkhoff-Alaoglu convergent absolutely, that is, in any model containing .f, P and
Q, or whether it is perhaps possible to disturb the convergence of the function by a
reasonably regular forcing, that is, if one can force a somewhere dense subset X C P
such that f"X C Q is nowhere dense.

Assume for now that the posets P, Q are separative and Q has a finite character,
meaning for every q 6 Q there are only finitely many elements of Q above it. In
such a situation we split into two cases depending on whether or not the following
formula holds:

there is p 6 P and an open dense set D C Q
such that for every finite set d C D and every p’ < p p

there is p" < p p’
such that for every q

_
d f(p") Q q holds.

(*)

LEMMA 11. Suppose (,) holds. Then there is a c.c.c..forcing R, R I- there is a
sornewhere dense set X C such that f"X C 0 is nowhere dense, so . ceases to
be convergent.

Proof Fix p 6 P and D C Q as in (,) and for notational simplicity suppose that
p is the largest element of the poset P. Let R (c, d): c C P, d C D are finite
sets and Yp c Yq d f(p) :Q q} ordered by coordinatewise reverse inclusion.
So R is a straightforward attempt to force a dense (below p) set X C P and an
open dense set Y C Q such that f"X C) Y 0: if G C R is a generic filter set
X I,.J{c: (c, 0) G} and Y [..J{d: (0, d) 6 G}. Standard density arguments
using (,) show that X C P will indeed be dense and Y C Q will be open dense with

f"X f3 Y 0. So the lemma follows once we show that the forcing R satisfies the
countable chain condition.

Here the finite character of Q is used. To prove one of the strong forms of c.c.c.
let {(c,, da): ot w} be a collection of conditions in R; a subcollection of size R
consisting of pairwise compatible conditions will be found.

Fora oo definee, {q D: 3p c,, f(p) <Q q} C D. Note that
e,d,, 0, the sets c,, d, and (by the finite character of Q)e are finite and conditions
(c, d), (c, d) for a 4:/3 are compatible just in case e qd e qd 0 then
their lower bound is (c,, t_J ct, d t_J dt 6 R.

By standard Z-system arguments a subset I C w of full cardinality can be found
such that the sets {e: a I}, {d,: ot I}, {e, d: c 6 I} form A-systems with
respective roots e, d, b.

CLAIM 12. e b N e and d b f) da for every at I.

Proof Note that both e and d are subsets of b since they are both subsets of every
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e,, tO b: c 6 I. On the other hand if q 6 b then there are two mutually exclusive
cases.

(I) If q belongs to e, for infinitely many ct I then q e, so actually every
hasq eaandq d.

(2) If q belongs to d, for infinitely many c I then q d, and q e,, and q
holds for every I.

Thus b is a disjoint union of e and d and the equalities in the claim immediately
follow, ffl

CLAIM 13. e CI dt Ofor eve. or, [3 I.

Proof We havee C’ld/ bfqe t"ld eNd/ C e Cd O, where
the first inclusion follows from the definition of the root b, the second equality is a
consequence of the previous claim, the next inclusion follows from e C e end the
last equality comes from the definition of R.

The last claim shows that the conditions (ca, d,): ot I are pairwise compatiblem
they even form a centered system. The Lemma has been proven. I,I

On the other hand, suppose (,) fails. In such a case it is not hard. to see that f
is a witness for P -< Q in any universe containing P, Q and f and the results of
the previous lemma cannot be used. Rather, we shall find a P-name for a Q-generic
filter.

LEMMA 14. Suppose (,)fails. Then there is an open subset Q’ C Q such that

Proof. Recall that the failure of (,) means that for every p 6 P and an open
dense set D C Q one can find a strengthening p’ < p p and a finite set d C D such
that for every p" <p p’ there is q 6 d with f(p") <_Q q. NOW suppose G C P
is a generic filter. For each open dense set D C Q in the ground model a condition
p(D) G and a finite set d(D) can be found such that for every p <p p(D) there
is q d(D) with f(p) <O q. We shall use the collection {d(D): D a ground model
open dense subset of Q} to construct a V-generic filter H C Q in V[G], completing
the task.

Note that for each finite set I of ground model open dense subsets of Q there is a
function h t: I Q such that h (D) d(D) C D and the range of h is centered.
To see that, just choose a condition p 6 G below all the p(D): D 6 1 and let hi(D)
be some condition in d(D) above f(p). This is well defined by p < p(D) and the
choice of p(D) and d(D), and certainly f(p) is a lower bound of the range of hl.
Now by the compactness principle applied in V[G] there is a function h defined on
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all ground model open dense subsets of Q such that h (D) e d(D) and the range of h
is centered as a subset of Q. Since d(D) C D, the upwards closure H of the range
of h is a centered set meeting all open dense ground model subsets of Q, therefore
H V[G] is a V-generic filter on the poset Q.

Theorem now immediately follows. Suppose the Proper Forcing Axiom holds
and P, Q are separative posets of size R. On one hand, if there is an open subset
Q’ c Q with Q’ P then P Q by virtue of Claims 3 and 4. On the other hand,
suppose P >- Q. From PFA it follows that Q has a dense subset of finite character
[T2] and since both -< and z are preserved under the transfer to dense subsets we may
assume that in fact Q itself is of finite character. Pick an Alaoglu-Birkhoff convergent
function f: P Q. There are two cases according to whether (,) above holds or
not.

(I) If (,) holds then by Lemma 11 there is a c.c.c, forcing R violating the conver-
gence of fruit introduces a somewhere dense set X C P whose image under

f is nowhere dense in Q. A routine application of Martin’s Axiom, a conse-
quence of PFA, now gives such a set X C P already in our universe. Thus f
is not Alaoglu-Birkhoff convergent, a contradiction.

(2) If (,) fails then by Lemma 14 there is an open set Q’ c Q such that Q’ < P.

Since the first case leads to a contradiction, this completes the proof of Theorem 1.
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