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WHEN AN ENTIRE FUNCTION AND ITS LINEAR
DIFFERENTIAL POLYNOMIAL SHARE TWO VALUES

PING LI AND CHUNG-CHUN YANG

ABSTRACT. In this note, the relationship between a non-constant entire function f and its linear differential
polynomial L(f) has been obtained when they share two finite values, ignoring multiplicities, by applying
value distribution theory,. This confirms Frank’s conjecture as a special case. Entire solutions of certain
types of non-linear differential equations are also discussed.

1. Introduction

Let f and g denote some non-constant meromorphic functions. We say f and
g share a value b IM (CM) iff f(z) -b 0 : g(z) b 0, ignoring multi-
plicities (counting multiplicities). It has been shown [13] that if an entire function

f shares two finite values CM with its derivative, then f f’. This result has
been generalized to sharing values IM by Mues and Steinmetz (see [9]), and inde-
pendently by G. Gundersen in the case when both shared values are nonzero (see
[8]). Since then, many results have been obtained for this and related topics. It
has been shown in [6] and [7] that if a meromorphic function f shares two distinct
finite values a, b CM with f(k) (k > 1), then f -= f(k). When f shares three finite
values IM with its linear differential polynomial L(f) was studied in [5] and [10].
For a non-constant entire function f, some relationships between f and L(f) have
been obtained when f and L(f) share two distinct finite values CM (see [1]) or
share one value IM and another value CM (see 11 ]). For a comprehensive collection
of these results, we refer the reader to the Chinese monograph "Uniqueness theo-
rems of meromorphic functions" by Yi-Yang 14] newly published by Science Press,
China.

It was conjectured by G. Frank in [4] that if an entire function f shares two finite
values IM with its k-th derivative (k > 1), then f f(). In this note, we resolve a
more general problem which deals with an entire function f which shares two values
IM with a linear differential polynomial of f. In particular, we confirm Frank’s
conjecture.

Received November 11, 1998.
1991 Mathematics Subject Classification. Primary 30D35; Secondary 34A20.
The first-named author was supported by the returned student fund of the Ministry of Education, China.
The second-named author was partially supported by an RGC grant of Hong Kong.

2000 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

349



350 PING LI AND CHUNG-CHUN YANG

2. The lemmas and main results

The first lemma has been used frequently in dealing with value sharing problems
that can be easily derived from the lemma of the logarithmic derivative (see [12],
p. 14).

LEMMA 2.1. Let f be a transcendental meromorphic function, Pk(f) denote a
polynomial in f ofdegree k, and ai, 1, 2,..., n denote finite distinct constants
in C. Let

Pk(f)f(i)

(f al) (f --an)

If k < n, then re(r, g) o(T(r, f)), r , exceptfor a set of r offinite linear
measure.

LEMMA 2.2 (see [15], p. 13).
cx), then

Iffl(z)and f2(z)aremeromorphicinlzl < R (R <

( ) ( ) ( 1 )1 1
-N r, 72N(r, flf2) N r, N(r, fl) + N(r, f2) N r, 71

where O < r < R.

LEMMA 2.3 (Clunie [2], Doeringer [3]). Let f be a non-constant meromorphic
function and Q[f], Q*[f] be differential polynomials in f with Q[f] O. Let
n N and

fn Q.[f] Q[f].

Ifthe degree of Q[f] is not greater than n, then re(r, Q*[f]) S(r, f).

THEOREM 2.1. Let f be a non-constant entire function and a, b be two distinct
f, (k) 1) andcomplex numbers. Let g aof + a +... + akf (k >

f’(f g)
tp

(f a)(f b)’
(1)

where ao, a l, ak, (ak O) are small entirefunctions off Iff and g share a, b
IM, then we have

k

aitPi O.
i=0

Here 90 1 and Pi+I tp + tpgi, 0, k 1.
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Proof Since f and g share a, b IM, it is easily seen that the function o defined
in (1) must be entire. By using Lemma 2.1, we see that re(r, tp) S(r, f) := S(r),
where here and in the sequel, S(r, f) denotes some quantity satisfying S(r, f)
o(T(r, f)) as r oo, except for r in a set of finite linear measure. And thus we
have

T(r, o) S(r). (2)

When o 0, there is nothing to prove. So, we assume that tp 0.
From (1), we deduce that

1 .)+(r, 1 b)= N(r, f’
f f- (f-a)(f-b)/

( tP )<T(r,f-g)+S(r)=N r,f_g
m(r, f g) + S(r) < T(r, f) -t- S(r).

On the other hand, by Nevanlinna’s Second Fundamental Theorem, we have

+- r, + S(r).T(r,f) < N r,
f -a f -b

Hence

--( 1 ) ( 1 )+- r, + S(r).T(r,f)--N r, f_a f-b
By writing equation (1) as

(3)

1 f’ ( ) f’(f-g)

-f tp(f a)(f b)
1 and f- c tp(f c)(f a)(f b)’

where c e C\{a, b}, and using Lemma 2.1 again, we get

() ( 1 ) =S(r)’ c’C\{a’b}"rn r, --S(r) andm r,
f-c

(4)

Now rewrite equation (1) as

f,
tp(f a)(f b). (5)

f-g

By induction, and using the above equation repeatedly, we can derive the expression

f(i) ,}io Ot(i’J) fJ + Qi
1, 2,..., k, (6)

(f g)2i-1
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where

Qi Qi(f, g, g’, g(i-1))
(i,ltl2jt...j,)(f a)l’ (f b)12(g)jt (g,)h... (g(i-1))j,.

+/2+Jl +...+j/
Ii +/2 <2i

Here (i,j) and i(i,ltl2jt...ji) are small entire functions of f and tpi "= o/(i,2i) satisfies
recurrence formula

tpl tp, tpi+t tp + tptpi, 1, 2 k- 1. (7)

Since tp 0, one can easily prove that tpi 0, for 1, 2, k. From (6), g can
be expressed as

g Y’kl ’JfJ + Q, (8)
(f g)2k-

where ,j, j 1, k are small entire functions of f, and

k

’2k ao + aii, (9)
i=1

and

Q lll2jl’"jk (f a)l (f b)12(g)jl (gt)j2 (g(k-1))jk. (10)
tt +t2+Jr +’"+Jt-<

ii +/2 <2k

Here l12jl"’jt are small entire functions of f. From the expression for Q and by
using (4) and the lemma of the logarithmic derivative, we can get

Rewrite formula (8) as

Q ) S(r).m r,
f2k-lg

2k

,j fj g(f g)2k-
j=0

(11)

If ’2k 0, then the result is already proved. In the following, we consider the
case when ’Zk 0.

In this case, it is well known that T(r,ko ’jfJ) 2kT(r, f) + S(r). Hence it
follows from (12) and (11) that

2kT(r, f) < re(r, f2k-lg) -I- m r, 1

<_ re(r, f2k-l g) d- S(r)
_< (2k 1)T(r, f) + T(r, g) + S(r).

Q
-b S(r)

f2k-g!

Q. (12)
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Hence, we have T(r, f) < T(r, g) + S(r), which implies that

T(r, f) T(r, g) + S(r), (13)

because g is a linear differential polynomial ofthe entire function f. Now, by applying
Nevanlinna’s Second Fundamental Theorem to the entire function g and noting that
g shares the values a, b with f, we have

2r(r,g)+m r,
g-c

_( )( 1)( )( )< N r, +- r, +- r, +m r, +S(r)
g -c g-a g-b g-c

_( 1)(1)+- r, + S(r)< T(r,g)+N r,
f-a f-b

< T(r, g) -t- T(r, f) -t- S(r)
< 2T(r, g) -t- S(r), c C\{a, b},

which implies that

m r, S(r), c C\{a, b}. (14)
g-c

By applying Lemma 2.2 to the functions f f c and fz 1----/_c, it follows from
(4) and (14) that

(_c) (_c) (_c)m r, T r, -N r,
g -c g -c g -c

(_;) (_c)g
-N r, +S(r)=T r,f_ g-c

g c
-N r, +S(r)=N r,f_ c g-

= N(r’fl-c)-N(r’g-c1 ) -t-S(r)

T(r, f) T(r, g) -t- S(r) S(r). (15)

Now we define

g’(f g)
O (16)

(g-a)(g-b)
Since f and g share the values a and b, we see that is a nonzero entire function.
By using Lemma 2.1 on (16) and (15), we get

( _c,, ) (_c)m(r, ap) < m r,
(g-a)(g-b) + m r,

g-c
1 S(r), c C\{a,b}.
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Hence we have

T(r, ap) S(r). (17)

Denote by S(m,n)(a) the set of those points z C such that z is an a-point of f
with multiplicity rn and an a-point of g with multiplicity n. The set S(m,n)(b) can be
similarly defined. Let N(m,n) (r, ) and-(m,n) (r, ) denote the counting function
and reduced counting function of f with respect to the set S(m,n) (a), respectively. Let
N(m,n) (r, .1_. and -’(m,n) (r, .’7" be similarly defined. For any zo S(m,n) (a) U
S(m,n) (b),’fm (1) and (16) ve asily have

o(zo)(2f(zo) a b) m(f’(zo) g’(zo))

and

(zo)(2f(zo) a b) n(f’(zo) g’(zo)),
and thus ntp(zo) maP(zo).

If no map, then we have

n
f -a

which implies that

f’)(g’=--m g’)f -b g-a g-b

(f-ab)n (-a)
m

M C1
f -b

where C is a nonzero constant. If n - m, then, from the above identity, we get
nT(r, f) roT(r, g) + S(r), which contradicts (13). If n rn, then

f-a (g-ab)f-b
=-c2 g_ (18)

where c2 is a nonzero constant. If c2 1, then it follows from the above equation
that

1 c2 f c3 b a

c2 f-b g-b’
a-bq. Obviously, ca is different from a and b. Since f and g are entire,where C3 1--C2

the above equation shows that ca is a Picard exceptional value of f. Thus by the
Second Fundamental Theorem, we have

--( 1 ) ( 1 )+- r, +S(r)2T(r, f) < N r, f a ’"f b

which contradicts (3). Hence c2 1, and thus we get f g from (18). This
contradicts the assumption. Hence nt# map, for any positive integers rn and n.
Thus we obtain

+ Nm,n r, S(r) (19)N(m,n) r,
f_ a f-b
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It follows from (19) and (3) that

T(r, f) N r,
f -a

+ - r,
f b + S(r)

( ( f-a ) ( J

1 ))b--E -(m,n) r, + N(m,n) r, + S(r)
m,n a

(r, f-m+n>_5 (-(m,n) (r, "a) -(m,n) l ’b)) /S(r)

g(m,n r, + g(m,n r,
m+n5 ’f a g a

4
< -r(r, f) + S(r),

5

which implies that T (r, f) S(r), a contradiction. The proof ofTheorem 2.1 is thus
completed.

When ao, a, ak, (ak 0) are constants, we have the following:

THEOREM 2.2. Let f be a non-constant entire function and a, b be two distinct
complex numbers. Let g aof + alf’ +... + af(), (k > 1) and

f’(f g)
(f -a)(f -b)’

where ao, al, ak, (ak O) are constants. If f and g share a, b IM, then o must
be a constant satisfying

a0tp + alo
2 + + aktpTM =-- O.

Proof. From the proof of Theorem 2.1, we only need to consider the case where

’2k 0.
From (9) and the recurrence formula (7) for tpi, we can easily derive the expression

Y2k =-- P[tp] + akq9k,

where P[o] is a differential polynomial in tp with a degree less than or equal to k 1.
Since ’2k 0 holds in the present case, by applying Lemma 2.3 we see that o must
be a constant. Hence, by the recurrence formula (7), we have tpi oi, and thus the
formula )/2k 0 implies

a0 + atp + a2q9
2 + + aktP

k =_ O,

which completes the proof of Theorem 2.2.
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As a simple consequence of Theorem 2.2, we can resolve Frank’s conjecture as
follows.

THEOREM 2.3. Let f be a non-constant entire function and a, b be two distinct
complex number. Iff and f(k) (k > 1) share a, b IM, then f f(k).

From Theorem 2.1, we see that the problem of the entire function f and its
differential polynomial g sharing two values a, b is related to the problem of the non-
linear differential equation f’(f g) tp(f a)(f b) 0 having a non-constant
entire solution, where 0 is a nonzero entire function. In general, it is difficult to
judge whether the differential equation has a non-constant solution even for g f’.
However, for the very special case g f’, we can solve the equation completely.
We first prove a lemma.

LEMMA 2.4. Let f be a non-constant meromorphicfunction and or, fl, y be small
meromorphicfunctions off with ot 0 or y O. Furthermore, let

g af2 + f + y. (20)

lf-(r, f) S(r, f),-(r, 1/f) S(r, f) and-)(r, 1/g) S(r, f), then 2
4ay =_ O, where N 1) (r, 1/g) is the reduced countingfunction ofthe simple zeros ofg.

Proof. If a _= 0, fl 0, then there is nothing to prove. If c 0, fl 0,
then g fl(f + ). Therefore Nl)(r, f-) S(r, f). Hence, by the Second

Fundamental Theorem, we have

T(r,f) < N r,--f +- r,
f + +S(r,f)

< -N r, +S(r, f)
-2 f+

1
< -T(r, f) + S(r, f)

2
which leads to T (r, f) S(r, f), a contradiction.

Assuming that a 0, equation (20) can be rewritten as

g a(F2 A), (21)

where F f+B, A 2,A_. and B .P..
Fundamental Theorem, we have

If A 0, then by the Second

(1) ( 1 )T(r, F2) < r, -2 + r,
F2 A + N(r, F2) + S(r, F)

--(_IF) ( )N r, +- r,
F2_A

+S(r,F).
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Hence, (r, v-r’-a) S(r, F), for A - 0. By the assumption of Lemma 2.4, we see

that)(r, Tr’s’ff) S(r, f), thus

( ) (1)1 -’ r, + S(r, F) S(r, F)N(2 r,
F2_ A F- A

(22)

where N(2(r, f) is the reduced counting function of the multiple poles of f. Set

f’ F- B’
f F-B

(23)

Then we have T(r, ) S(r, f). Let z0 be a multiple zero of F2 A. We have

F2 (z0) A(z0) 0

2F(zo)F’(zo) A’(zo) O.
(24)
(25)

In the case that B’ .B 0, the above two equations lead to 2Z(zo)A(zo)
A’(zo) 0. Therefore by (22) we have 2),A A’ 0, and thus 2AB’ =_ BA’. That
is, A (cB)2, where c is a nonzero constant. From this and equation (21), we have

g ot(F cB)(F + cB).

If B 0, then, by the assumption, we have)(r, y_--c)=S(r, f) andl)(r, F+cB
S(r, f). Suppose that c # 1 (otherwise, c # -1). Then

_( 1)(1)T(r,F) < N r,
F-B + r,

F-cB
+S(r,F)

< -N r, +S(r, F)
2 F-cB
1

< -T (r, F) + S(r, F).
2

This is impossible. Hence we have B 0. That is, A 0.
In the case that B’ .B 0, equations (24), (25) and (23) lead to

A’(zo)- 2,(zo)A(zo) )2;(-0) ---) A(Z0) 0.

Hence, we must have A _---- D2 where D A’-2A Thus equation (21) becomes2B’-2kB"

g ot(F- D)(F + D).

With similar arguments, we can get A 0, which completes the proof ofLemma 2.4.
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THEOREM 2.4. Let go 0 be an entirefunction and a, b be two distinct complex
numbers. If f is a non-constant meromorphic function satisfying the differential
equation

f’(f f’) go(f a)(f b) O, (26)

then only one ofthefollowing cases holds:

(i) ab # O, go =_ ab and(a-b)

f =a+ce b-a or f b + cea-b,

where c is a nonzero constant.
(ii) ab O, go =- 1/4 and

f (a + b)(ce 1)2,
where c is a nonzero constant.

Proof Suppose that f is a non-constant meromorphic function satisfying equa-
tion (26). Since go is entire, we see that f is entire, too. From equation (26) and by
Lemma 2.1, we have re(r, go) S(r, f). That is T(r, go) S(r, f). Also from (26)
we easily see that

f a ==, f’ f’=a, f=b==, =b.

Therefore, by the Second Fundamental Theorem, we have

T(r,f) <_ N r, f-a’ + - r,
f_b

+S(r’f)

--( 1)(1)+- r,
f

+ S(r, f)<_ N r,
ft_a -b

<_ 2T(r, ft) + S(r, f)
_< 2r(r, f) + S(r, f).

Hence S(r, f’) S(r, f) :-- S(r).
Now we prove Part (i) of Theorem 2.4.
Since ab # O, from equation (26), we see that any zero of f’ must be a zero of go.

Therefore (r, ) S(r). Rewriting equation (26) as

(( ))( ) aWbf’(a-b)
2

f_
a + b f’ 2 1 1 (f,)z + + (27)

2 + 4992 go 2go 2

and using Lemma 2.4, we have

(a+b.)
2

(1 1)(a-b)
2

2go ,1
-4 4pz go 2

----0.
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abab Replacing tp by (a_b)2 in equation (27), we getThat is o (a_b)2.

( a-b)( b-a)f-a+ b f’ f-bq-
a f’ =-0,

which implies that

a-b
f, =-0f-a+ b

b-a
or f -b+f’ =-O.

a

Hence

f =- a + ce-a or f =- b + cea-,

where c is a nonzero constant.
Next we prove Part (ii) of Theorem 2.4.
Without loss of generality, we assume that a 0, and b 1. Thus, equation (26)

becomes

f’(f f’) tpf(f 1) 0, (28)

which implies that any zero of f’ must be a zero of f with multiplicity 2 if it is not a
zero of o. Let h "= f-,. Then

N r,- =S(r), N(r,h)--S(r). (29)

Equation (28) can be rewritten as

f,
1 )2 1
f f[(1 4tp)f + 4tp].

If o , then, from above equation, we see that

4tp(zo) 2O(zo)
f(zo) == f’(zo)

4tp(zo)- 1 4tp(zo)- 1’

and thus h(zo) 4(z)’!. where 4tp(zo) 1 0 and tp(zo) - 0. Noting that f 1o(zo)
implies that f’ and thus h 1, by the Second Fundamental Theorem, we have

T(r,f) < N r, f. 1 +- r,
f_ 4_.V + S(r)

4tp-1

< N r,h_ -t-- r, +S(r)h_4_e
< 2T(r, h) + S(r).
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Therefore o is also a small function of h. From the definition of h and equation (28),
we have

(hf’ )2 1 1
=hq

492 99

Therefore h + -rl l has no simple zero. Hence, by Lemma 2.4, we get 0.

Thus equation (28) can be written asThat is tp =_ .
(2f’- f)2 f. (30)

Let g := 2f’- f. We have f g2, and thus f’ 2gg’. From (30), we have
4g’ g 4-1. Therefore g ce 4- 1, and finally f (ce 1)2, where c is a
nonzero constant, which completes the proof of Theorem 2.4.

COROLLARY 2.1. Let f be a non-constant entirefunction and a, b be two distinct
nonzero complex numbers. If a, b are not the Picard exceptional values of f, and
furthermore, f a = f’ a, f b === f’ b, then f f’.

Proof. Let

f’(f f’)
(f a)(f b)

By assumption, we see that tp is an entire function. If 99 0, then f is a solution of
the differential equation

f’(f f’) tp(f a)(f b) O.

By Theorem 2.4, we see that either a or b is a Picard exceptional value of f. This
contradicts the assumption. Hence tp =_ 0. That is, f f’.

CONJECTURE. For any entirefunction tp and two distinct complex numbers a, b,
the entire solutions ofthe non-linear differential equation

f,(f f(k)) tp(f a)(f b) 0

arefunctions ofexponential type.

3. Concluding remarks

1. Note that, as assumed, g is homogenous in Theorem 2.1. However, from its
proof one can verify easily that the theorem is still true when g is non-homogenous,
i.e., g a-1 +aof +alf’ +... +akf(k, where ai (i -1, 0, 1, k) is a small
function of f.
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2. By counting the poles of f carefully, we can prove that Theorem 2.1 is still
valid for any meromorphic function f satisfying N(r, f) S(r, f), and the condition
"IM" is replaced by "IM*", where "IM*" is a less restrictive concept than the "IM"
concept introduced earlier in 11]. We say that f and g share a value b IM* iff

and

--( 1 ) ( 1 )N r,f_b -Nt r,f_b =S(r,f),

(1)N r, -N! r, -S(r,f),
g-b g b

where Nt (r, -b) is the reduced counting function of the common b-points of f
and g.

3. Finally, we conjecture that Theorem 2.3 still holds when a, b are two arbitrarily
distinct small functions of f.
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