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MINIMAL MODELS FOR NON-FREE CIRCLE ACTIONS

AGUSTf ROIG AND MARTINTXO SARALEGI=ARANGUREN

ABSTRACT. Let : 1 ) M -- M be a smooth action of the unit circle on a manifold M. In this work,
we compute the minimal model of M in terms of the orbit space B and the fixed point set F C B, as a
dg-module over the Sullivan’s minimal model of B.

The question we treat in this work is the following: Given a smooth action " 1 )

M M, is it possible to construct a model of M using just basic data? The answer
is well known when the fixed point set is empty (in particular, when the action is free).
A dgc algebra model of M is given by a Hirsch extension of the dgc algebra Sullivan
minimal model .A(B) of the orbit space B

(1) .A(B) (R) A(x),

where the degree ofx is 1 and dx defines the Euler form ofthe action (for example, see
[8]). This formula does not apply when the fixed point set F is not empty. Roughly
speaking this happens because the Euler form does not live on B.

Our answer to the above question is a minimal model of the deRham dgc algebra
f2 (M) of M, which is a dg module over the Sullivan minimal model .A(B) of B.
Such structure is associated to M by means of the canonical projection zr: M B.
We prove that the minimal model of M, as an ,4(B)-dg module, is the graded cone

dX//(M) t(B) (e’ .A//(B, F),

where dX//(B, F) is a sort ofrelative minimal model ofthe pair (B, F) and e’: .A4 (B, F)
--+ .A(B) is a degree 2 map. This map is determined by the Euler class of the action
and it will be described below. We also prove that, for F 0, the formulas (1) and
(2) coincide.

There are some algebraic invariants of M and F that are closely related: Poincar6
characteristic, localization, rational homotopy We add another item to this list:
the minimal model of M and F. In fact, considering the ,4(B)-dg module structure
associated to F by means of the natural inclusion t" F B, we prove that the
minimal model of F as an t(B)-dg module is the graded cone

.A(F) ,4.(B) (i’ A(B, F),

where i’: AA(B, F) A(B) is a degree 0 map. This map is determined by and
will be described below. Observe that the minimal models .Ad (M) and dXA (F), as
.A(B)-graded modules, have the same basis except for a shift by 2.
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We are also interested in the Borel space Ms M xs , where an 4(B)-dg
module structure is defined by means of the canonical projection p: Mt --+ B. We
prove that the minimal model ofM is the graded cone

.M(Ms, [.A(B) (R) A(e)] ()q, [A/I(B, F) (R) A(e)],

where deg e 2, de 0 and q(b (R) e") e’(b) (R) e’ + i’(b) (R) en+l This formula
implies that the equivariant cohomology H (M) (i.e., the cohomology of Ms can
be computed using just basic data by means of the long exact sequence

--+ [H (B) (R) A(e)]’ --+ H (M)-- [H (B, F) (R) A(e)]’-’ [H (B) (R) A(e)]
TM

--+

Moreover, when the Euler class vanishes, we prove that the equivariant cohomology
of M is just H (B) [H (F) (R) A+ (e)]. We also translate some classic results (Lo-
calization Theorem, equivariant formality in terms’of basic data. In connection
with the minimal models of M, Ms and F the reader can consult [1] and [2].

Let us illustrate these results with the suspension of the Hopf action on 3. The
north and south poles of the total space 4 are the fixed points of the action and the
orbit space is 3. We work in the category of A(a)-dg modules, where deg a 3.
From the above formul we get

j/(4) A(a) (R) {1, Cn / n N}, with

deg cn 2[-],
dco a, dCl O, dcn+2 a Cn,

.h/[ (o) A(a) (R) { 1, Yn / n N}, with

deg Yn 2[ n+lW-]’
dyo O, dyl a, dyn+Z a

M(4 (R)S’ oo) A (e, a) (R) {1, Cn / n N}, with

deg Cn 2[n+3-5--]’
dco a, dCl e a, dcn+2 a. Cn.

The minimal model .M(4) (resp..M (g0), resp..M(4 (R)S SOO)) is a free A (a)-graded
module over the cohomology H* (Y,r) of the homotopy fiber Y,r of zr (resp. Y,, resp.
Yp). So, we find the following relations between the Poincar6 polynomials of these
spaces:

Py. 1 2 -k tZPr, (1 2)
We prove that these relations are genetic if B is simply connected and of finite type.
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The main geometric tool used in this work are Verona’s controlled forms [24]. In
fact, when the set of fixed points F is not empty the orbit space B is not a regular
manifold but a singular one, more precisely a stratified pseudomanifold. For such
a space Z, Verona proved that the complex of controlled forms f2 (Z) compute the
cohomology of Z. We prove more, namely that the minimal models A(Z) and .M (Z)
can be computed using controlled forms. It is important to notice that the Euler form is
not a controlled form, nevertheless it appears in this context as a morphism ofA(B)-dg
modules e: f2 (B, F) (B) (cf. [12]). In the writing of .M(M) (resp. .M (F))
theoperatore’(resp, i’)isamodelofe(resp.oftheinclusioni" f2 (B F) (B)).

The starting point of the work is the observation that the cohomology of M can be
computed by the graded cone f2 (B) [e (B, F). This formula also applies to semi-
free actions of g3 [23]. So, all the results of this work extend to this kind of actions.
A similar formula appears when one deals with an isometric action : x M M,
considering on B controlled basic forms instead of controlled forms [23]. Again, we
conclude that the results of this work apply to isometric flows. In particular, we get
the inequality

H-’ ((M, F)/.T’) + dim H+’
(F) < dim H+’

(M),
i=0 i=0

when the flow is not trivial.
On the algebraic side, we develop to some extent the Theory of dg minimal mod-

ules. This kind of minimal objects was previously studied by the first author (cf. 18],
[19], [20]) and independently by Kriz and May (cf. [13]).

The organization of the work is as follows. The first section is devoted to the
algebraic tools we need to work with A-dg modules. In the second section we present
the singular spaces we find when we deal with circle actions. Controlled forms are
introduced in the third section. The main result of this paper is proved in the fourth
and last section. Four technical lemmas are proved in the appendix.
A manifold is considered to be connected, without boundary and smooth (of

class C), unless otherwise is stated. The field of coefficients is
We thanks Yves Felix, Steve Halperin, Pascal Lambrechts, Vicente Navarro Aznar

and Daniel Tanr6 for their useful comments. The authors thank the referee for their
useful indications.

Convention. Throughout this paper, minimal models in the category of dgc alge-
bras will be denoted by .A(-). Minimal models in the category of dg modules will
be denoted by .M(-).

I. Dg-module minimal models

In this section we will develop the algebraic machinery necessary to prove Theo-
rem 4.3: we define what is meant by a minimalfactorization ofa morphism of A-dg
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modules, prove its existence and uniqueness and a result concerning maps induced
between them.

1.1. A-dg modules. Let A be a dgc algebra. An A-dg module M is a graded
vector space together with a product A (R) M ---+ M and a differential d: M -----+ M
of degree + which satisfies Leibniz rule. Both graduations of A and M are over
the non-negative integers. A quasi-isomorphism (quis) is an A-dg module morphism
which induces an isomorphism in cohomology.

Let us begin with an immediate generalization of the cone of a morphism of
complexes in the category of A-dg modules. Let P: M N be a morphism of A-dg
modules of degree p Z. This is the same as a degree 0 morphism of A-dg modules,

P: M[-p] ---> N,

where M[-p] means the A-dg module M shifted by -p; it is graded by M[-p]n

Mn-p and the product IZM[-p]" A (R) M[-p] ---> M[-p] and the differential dM[-p]"
M[-p] ---> M[-p] change signs according to

lZM[_p](a (R) m) (--1)lal’PlzM(a (R) m)

dM[_pl(m) (--1)PdM(m).

We shall denote by N p M the A-dg module graded by

N @o M N @ M[1 p]

and with product and differential given by

a. (xy) (( a.y
1)lal’(p-1)a X)

where a. x denotes/zM(a (R) x). Finally, when we say that the sequence of A-dg
module morphisms

O...__> M..2_> N C_. p..---+O

0 are usual exactis exact, we simply mean that 0 Mn Nn pn
sequences of A-modules for all n.

1.1.1 Remark. A short exact sequence of A-dg modules as above is the same as
the quis of A-dg modules

N o M ( P.
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LEMMA 1.1.2. Given a morphism o: M --+ N of A-dg modules ofdegree p, we
have a short exact sequence of A-dg modules

0----+ N - N $cp M ( M[1 p] -----+ 0.

Proof Obvious.

Associated to the above exact sequence, there is the long exact cohomology exact
sequence of

--- H" (N) H" (N p M) ( H"+1-"
(M) - H"+’

(N) --+ ....
To end this elementary differential homological algebra, let us point out that a (de-
gree p) homotopy between two A-dg module morphisms o, : M N of degree
p, is an A-dg module morphism h" M ---> N of degree p 1, such that

(-1)Pdh

One can verify that this notion of homotopy coincides with the one defined in [20]
using a path object.

1.2. Minimal A-dg modules. (cf. [10], [15], [18]). Let M be a A-dg module and
n a non negative integer. A degree n Hirsch extension of M is an inclusion of A-dg
modules M ,---> M (A (R) V") in which:

1. V is a homogeneous vector space of degree n.
2. A (R) V" is the free A-graded module over V.
3. The differential of M (A (R) V") is induced by the differentials of M and A

and the choice of a linear map d: V" --+ M"+1

A morphism of A-dg modules M 9 (A (R) V") ---+ N is given by a morphism
of A-dg modules o: M -----+ N and a linear map f: V" N" subjected to the
condition Ood doff
A minimal KS-extension of M is an inclusion of A-dg modules L: M N

together with an exhaustive filtration {N(n, q)}(n,q)el of N, indexed by ! {(n, q)
N x N} with lexicographical order, such that:

1. N(0,0)=M.
2. For q > 0, N(n, q) is a degree n Hirsch extension of N(n, q 1).
3. N(n + 1, 0) lim---, N(n, q).

q

1.2.1 Remark. N is therefore of the form M $ (A (R) V), where V is a bigraded
vector space. This kind of object plays the r61e of the KS-extensions of 10], denoted
by B (R) A V, with the tensor product replaced by the direct sum and the free dg-algebra
over V replaced by the free A -dg module over V.
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A minimal KS-factorization of an A-dg module morphism o: M N is a
commutative diagram of A-dg module morphisms

(3)

M

Meg(A(R) V) N

in which p is a quis and is a minimal KS-extension. If M is the zero A-dg module,
we speak of minimal KS-modules and minimal KS-models.

1.3. Models of A-dg modules. Let now (3) be any commutative diagram of A-
dg module morphisms. In this situation, we will say that p is an M-morphism. If
p is also a quis, we will simply say that it is an M-quis. A homotopy between two
M-morphisms which restricted to M is the identity will be called also a M-homotopy.

Alternatively, we could have said that p is a morphism of M\DGM(A), the cate-
gory ofA-dg modules under M. So, a minimal KS-factorization is, simply, a minimal
model in M\DGM(A) (see [20] for the precise statement of this).

THEOREM 1.3.1. Let A be a dgc algebra and let o: M N be an A-dg module
nmorphism such that o.. H (M) (N) is a monomorphism. Then there exists

a minimal KS-factorization ofo.

Proofl See Appendix.

COROLLARY 1.3.2. Let A be a dgc algebra and let N be an A-dg module. Then
there exists a minimal KS-model ofN.

THEOREM 1.3.3 (cf. [11], [18]). Let A be a dgc algebra and

M

X M(A(R) V)

a commutative diagram of A-dg module morphisms in which is a minimal KS-
extension and o is a quis. Then there exists an A-dg module morphism or: M (A (R)

V) X such that at and tpcr id.

Proof. See Appendix.

In other words, every M-quis whose target is a minimal KS-extension of M has a
section which is also an M-morphism. This implies the uniqueness up to isomorphism
of minimal models well known in other categories.
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COROLLARY 1.3.4. Two minimal KS-factorizations ofthe same M-morphism are
M-isomorphic and the isomorphism is unique up to M-homotopies.

Proof It follows easily from Theorem 1.3.3, taking into account that the category
M\DGM(A) is a closed model category in which all objects are fibrant (cf. [17], [20,
Corollary 2 to Proposition 1.15]). r-1

Particularly, if we take M 0, the zero A-dg module, we obtain"

COROLLARY 1.3.5. Two minimal KS-models of the same A-dg module are iso-
morphic and the isomorphism is unique up to homotopies.

Given a morphism P: M - N of A-dg modules we will need to construct a model
of N p M. This will be done by means of the following results:

COROLLARY 1.3.6. Let 9: M -- N be a morphism of A-dg modules and let
PM: M’ --+ M and Pie: N’ -- N be two minimal models. Then there exists a
morphism tp,: M’ ---> N’, unique up to homotopies, that renders commutative up to
homotopy the diagram PM

M’ M

N’ N
We will loosely say that tp, is a model of

Proof. It follows from Theorem 1.3.3 and the model category structure [19,
Proposition 1.16]. El

PROPOSITION 1.3.7. Consider the above diagram. Let h: M’ N be a homo-
topy between 9opm and plvo9’. Then

[9m
])9’ fN 99 M

is a quis.

Proof. Let us verify that commutes with differentials.

(-)-a

(dpv p
0

phi)_ (p0/v p)( (_l)_,d)
dh + (-1)’hd (p9’ OpM)
(_l)-’dpm (_l)O-’pMd ]
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And this is zero because pta and PN commute with differentials and h is a degree p
homotopy between q)opt and pNoo’. Next, we put in the following obviously
commutative diagram with exact rows:

And therefore is a quis by the long exact sequence of q) and q)’ and the Five
Lemma.

Finally, we will need the following result concerning minimal dg modules and
graded cones.

LEMMA 1.3.8. Let o: M A be a degree p morphism of A-dg modules, with
M a minimal A-dg module. IfM<(l-p) 0 then A (9o M is a minimal A-dg module.

Proof. Let M A (R) V. Then, as a graded module, A (9 M A (R) (N (9 V).
So we can define an exhaustive filtration in A (9 M as follows. Let W(n, q) be the
N-vector spaces

0 ifn =q =0

W(n,q)=
IR ifn=0andq=l
V(n+l-p,q-1) ifn=0andq> 1
V(n+ 1-p,q) ifn 7 0

and put

(A(9oM)(n,q)=A(R)( ( W(m,r)).(m,r)<(n,q)

Then, all the inclusions (A (9o M)(n, q 1) (Ao M)(n, q) are degree n Hirsch
extensions.

1.3.9. Links with topology. Before studying the relative case, let us show one
example where these minimal dg-modules appear in topology. Let p: E B be
a continuous map between two topological spaces. We have the induced morphism
p*: At(B) --+ At(E) between the real algebras ofpolynomial forms making A(E)
an At(B)-dg module. Now, assume that B is connected, of finite type, with Jr (n)
acting trivially on (Yp) H (Yp N), where Yp denotes the homotopyfiber of p.
Then, by the second Theorem of Eilenberg-Moore (see [9] and [3]), we have

H" (Yp) - Tor AR(B)(1I, A,(E)).
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By [20], this differential torsion product can be computed with a minimal model of
A(E) as an A(B)-dg module. Let .M(E) AR(B) (R), V be this minimal model.
Then

H* (Yp) H* (]1 (R)AR(B) d(E)) H* (I (R)AR(B) (AR(B) (R) V)) V

because (R)AR(B) (A(B) (R) V) V has zero differential due to minimality. So, the
known Hirsch-Brown model of E,

H*.M(E) A(B) (R) (Yp)

is a minimal model as A(B)-dg modules. In particular, if we take B to be a point,
we find that H* (E) is the minimal model ofA(E) as a -dg module.

Extensive use of the minimal Hirsch-Brown model for the Borel construction is
made in [2].

1.4. Models of couples, existence and uniqueness. In fact, we will need some-
thing more than simply dg-minimal models over a fixed N-dg algebra. The process
we are going to perform is the following: starting with an A-dg module M, we are
going to compute first the dgc algebra minimal model of A:

p. A-.7-+ A

(i.e., the classical Sullivan minimal model). Then, by means of the dgc algebra quis
p, we will make M an A’-dg module by defining the product with elements of A’ by

a m p*(a) m,

where the product in the right-hand side is the product of M as an A-module. Let us
note p* (M) for the dg module M with this structure of A’-module. Finally, we will
compute the minimal model of p* (M) as an A’-dg-module:

9: M’-:+ p*(M).

In other words, we will compute the minimal model of the couple (A, M) in the
category DGM ofmodules over all algebras. The objects of this category are couples
like (A, M). Morphisms are also couples

(f, 9)" (A, M) -+ (B, N)

where f" A --+ B is a morphism of dgc algebras and 9" M N is a dg-module
f-morphism; that is to say, a morphism of A-dg modules M f*(N). In other
words,

9(a’m)=f(a)’9(m) for alla6A, m6M.
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The algorithm we have described brings us the "true" minimal model

(p, tp)" (A’, M’) (A, M)

in the sense that the couple (A’, M’) is unique up to isomorphism (of DGM) and the
couple of quis (p, o) is also unique up to homotopies (of DGM): this follows from
[20, Theorem 3.4], which tells us that the couple (A, M) is minimal in DGM if and
only if A is a minimal lI-dgc algebra and M is an A-dg minimal module.

2. Stratifications and unfoldings

In this work we fix an effective smooth action S x M M (non-trivial!). The
orbit space of the action is B and rr" M --> B is the canonical projection. The action

induces on M a natural stratification by classifying the points of M according to
their isotropy subgroups. This stratification is invariant by the action of 5, so the
orbit space B also inherits a stratified structure. In this section we specify these facts.

2.1. Stratifications. A stratification of a paracompact topological space Z is a
locally finite collection Sz of disjoint connected manifolds called strata, such that:

(i) Z ISsSz S.
(ii) S tq S’ 7 0 S C S’ (and we write S < S’).
(iii) (Sz, <) is a partially ordered set (poser).
(iv) There exists an open stratum R which is the maximum

We shall say that Z is a stratified space. Note that R, called regular stratum, is
necessarily dense. A singular stratum is an element of Sz different from R. We

.K,singshall write "-’z for the family of singular strata and Ez C Z for its union. The
length of Z, written len Z, is the biggest integer n for which there exists a chain
So < S < < S of strata. In particular, len Z 0 if and only if Z is a manifold
endowed with the stratification Sz {connected components of Z}. Notice that the
length is always finite.
A continuous map (resp. homeomorphism) f: Y Z between two stratified

spaces is a morphism (resp. isomorphism) if it sends the strata of Y to the strata of Z
smoothly (resp. diffeomorphically). We shall write Iso(Z) for the group of isomoro
phisms between Z and itself. A morphism f: Y Z induces a poset morphism
fs Sr ---> Sz by putting fs S) D f S). We shall say that f is a strict morphism if
the map fs is strictly increasing.

2.1.1. Examples.
fication.

Through this work we shall find the following kinds of strati-

(a) On a connected manifold N we always may consider the 0-length stratification
Sv {N}. A stratum S C Z inherits from Sz such a stratification.
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(b) Any open subset W of Z inherits naturally from Sz a stratified structure
satisfying len W < len Z. The stratification is Sw {connected components
of S N W / S Sz }. Notice that the inclusion W Z is a strict morphism.

(c) Suppose Z compact. On the product N x cZ, where cZ is the cone Z x
[0, 1[/Z x {0}, we have the stratification Svcz {N x Sx ]0, 1[ / S
,-qz} t3 {N x {vertex 0 of cZ}}. Notice that len N x cZ len Z + 1. A point
of cZ will be denoted by [[x, t]] with (x, t) Z x [0, 1]. The vertex 0 of cZ
is [Ix, 0]].

Unless otherwise stated, we assume that the spaces W, cZ and N x cZ are endowed
with the stratification described above. Later on, we shall show how determines a
natural stratification on M and B.

2.2. Stratified pseudomanifolds. When the strata are assembled conically we
find stratified pseudomanifolds. We introduce this notion. An open subset W of a
stratified space Z is said to be modeled on the stratified space L if there exists an
isomorphism o: IR’* x cL W. The pair (W, o) is said to be a chart of Z. A family
of charts {(W, o)}, where the family {W} is a covering of Z, is called an atlas.
We shall say that the stratified space Z is a stratifiedpseudomanifold if there exists

a family {Ls}ssn, of stratified pseudomanifolds such that for any point x Ez we

can find a chart (W, P) modelled on Ls with 99(0, t) x, where S is the stratum of
Z containing x. The space Ls is the link of the stratum S.

This definition makes sense because it is made by induction on the length of Z
(len Ls < len Z). A stratified space with len Z 0 is always a stratified pseudo-
manifold. Each of the examples given in 2.1.1 is a stratified pseudomanifold when
Z is a stratified pseudomanifold. This definition is slightly more general than that of
stratified pseudomanifold of [9] since we allow the singular strata to have codimen-
sion 1.

2.3. Unfoldings. The computation of the cohomology of a stratified pseudoman-
ifold Z using differential forms is possible using the controlled forms of Verona [24];
but we need some extra data on Z so that these controlled forms will make sense.
The original definition uses a system of neighborhoods of singular strata subjected to
some compatibility conditions. A more comprehensive and less technical alternative
is presented in [21] where a desingularisation of Z is used. With this blow-up, the
controlled forms of M and B are more easily related.In this work we follow this point
of view.

Consider Z a stratified pseudomanifold. A continuous map/: Z -- Z, where
Z is a (not necessarily connected) manifold, is an unfolding if the two following
conditions hold:

1. The restriction ta’: /t (R) ---+ R is a local diffeomorphism.
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2. There exist a family of unfoldings {E,s" Ls --+ Ls}sS,zn, and an atlas ,4 of Z
such that for each chart (U, o) .,4 there exists a commutative diagram

n x L"x]- 1, 1[ E(U)

Nn x cLs U

where

(a) o is a diffeomorphism and

(b) Q(Xl Xn, (, t) (Xl Xn, ffEs((), Itl]l).

This definition makes sense because it is made by induction on the length of
Z. When len Z 0 then Ez is st a local diffeomorphism. The restriction
Ez" L; (S) S is a fibration with Ls as a fiber, for any singular stratum S.

For each of the examples of 2.1.1 we-have the following unfoldings"

(a) N N and Ev identity.
(b) I’ =/2 (W) and Ew restriction of Ez.
(c) N x cZ N x Zx]- 1, 1[ andEvcZ(y,,t) (y,Ez(, Itlll).

Aorphism f: Y --+~ Z between two stratified spaces, endowed with unfoldings

E~r:~Y --+ Y and Ez" Z Z, is a liftable morphism if there exists a smooth map
f" Y --+ Z with Ezof Ezof. Each tp is a liftable morphism. The inclusion
W Z is a liftable morphism.

From now on Z denotes a stratified pseudomanifold endowed with an unfolding
Ez" Z-- Z.

2.4. Stratifications induced by the action. We present the structure of stratified
pseudomanifold of M and of the orbit space B. For technical reasons we need to
consider only in thisparagraph a smooth action : G xM --+ M ofa closed subgroup
of the unit circle on a manifold M. The properties listed below follow mainly from
the Slice Theorem (see [12]).

Stratification. Consider the equivalence relation defined on M by x y if Gx
is equal to Gy, where G {g G / (g, z) z} denotes the isotropy subgroup of
a point z M. Each of the equivalence classes of is an invariant sub-manifold of
M. The family SM of the connected components of the equivalence classes given by
this relation defines a stratification on M. The family SB {zr(S) / S SM defines
a stratification on the orbit space B. When G is connected the map zrs is bijective
and therefore zr is a strict morphism.
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We shall write Gs for the isotropy subgroup of a point (and therefore any point) of
a stratum S. Notice that Gs is a closed subgroup of G. According to this subgroup
there are three types of strata: regular stratum (Gs is 1), exceptional stratum (Gs is
finite different from 1) andfixed stratum (Gs is fi). Notice that the restriction of the
canonical projection rr: M --+ B to S is a principal fibration over zr(S) with fiber
G/Gs. We shall write F for the union of fixed strata. We shall identify F C M with
zr(F) C B by

Links. For any singular stratum S C M fix a point x on it and let ns be the unit
sphere of a slice transversal to the stratum S at x. The action induces the orthogonal
action s" Gs x 3ns --+ 3ns; this action has no fixed points (almost free action).
Notice that ns is necessarily even for a fixed stratum. The link of S is the sphere
ns endowed with the stratification induced by s. The link of zr(S) is the quotient
space 3ns /Gs. Notice that this link is homologically a sphere or a real projective
space when S is an exceptional stratum [4] and a complex projective space when S
is a fixed stratum 16].

Unfoldings. It is proven in [12] that MAossesses an equivariant unfolding
/M" M M (relativeto a free smooth action " G x M M) in sucha way_that
the induced map/2B" M/G --+ B is an unfolding of B. Moreover, if: M M/G
is the canonical projection, we have/2Bo zrOM. So, the morphism zr is liftable.

3. Controlled forms

Controlled forms were introduced by Verona to compute the cohomology of a
stratified pseudomanifold Z using differential forms [24]. We present this notion in
this paragraph, following the approach of [21].

3.1. Definitions. A differential form o9 on theregular stratum R of Z is said to
be liflable if there exists a differential form on Z, called the lifting of o9, such that

Z2o9 on 1(R). By density the lifting is unique. The differential form o9 can
be tangential or transversal to the strata; in the first case we get controlled forms and
in the second case we get perverse forms.
A liftable form o9 is a controlledform if it induces a differential form ogs on each

singular stratum S, that is, if [z:(s) *zogs. So, we can see o9 as the family of

differential forms {ogs f2 (S)}sSz.
We shall write g2,(Z) the complex of controlled forms (or the deRham-Verona

complex). This subcomplex of the deRham complex f2 (R) is in fact a dgc algebra.
To see that, notice that if the differential forms o9 and r/ are controlled, then the
differential forms o9 + r/, o9/x r/and do9 are also controlled since, for each stratum S,
they satisfy"
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and

dw L(s) d L(s) d(.os.

For a stratum S, we have the restriction operator Rs" 2v(Z) (S), defined
by Rs(w) Ws, which is a dgc algebra operator and therefore endows (S) with a
structure of v (Z)-dg module.

PROPOSITION 3.1.1.
(S) is onto.

When S is closed the restriction operator Rs: f2o(Z)

Proof. Fix (U, b) achartofA. Considero: ]in - ]Rand/3" ]- 1, 1[ ,two
smooth maps taking the value 1 on a neighborhood of 0. The map f" Z Z
defined from fcb(x x,,, [’, t]) =ct(Xl x,) 3(t) is a controlled form. In
fact, its lifting is the smooth map f: Z I defined from f"(xl Xn, [, t])
t(Xl Xn) 3(Itl) which is constant on the fibers of Z;z. A standard argument
shows that there exists a partition of unity subordinated to ,4.
We reduce the problem to show that Rs" f2o (U) f (U tq S) is onto. Since S is

closed then U f3 S is the lowest stratum of U and therefore the question becomes this:
Is the restriction operator RR," g2, (n x cLs) g2 (n) onto? And the answer is
clearly yes. D

3.2. Relative controlledforms. Consider Y a union of strata of Z. A relative
controlledform on (Z, Y) is a controlled form on Z vanishing on Y, that is, ws 0
for each stratum S C Y. We shall write f2, (Z, Y) the complex of relative controlled
forms, which is a dgc algebra. If we consider the restriction operator

then we can write f2 (Z, Y) Ker Rr.
The wedge product/x: f2v(Z) x fv(Z, Y) --- 2,(Z, Y) endows flo(Z, Y)

with a structure of f2, (Z)-dg module. The natural inclusion f2, (Z, Y) ’--+ g2, (Z) is
a morphism in the category of fl, (Z)-dg modules.

3.3. Controlled model. The deRham-Verona complex fl, (Z) depends on the
unfolding chosen, but for a stratified space its cohomology does not: H (f2v (Z))
H (Z), the singular cohomology with real coefficients (cf. [24],[21] where controlled
becomes zero perversity). But we have a stronger result at the level of dgc algebra
minimal models. Recall that the dgc algebra minimal model .A(Z) of Z is just the dgc
algebra minimal model of AR(Z), the dgc algebra ofpolynomial differential forms on
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the simplicial set Sing(Z) of singular simplices of Z. The dgc algebra f2 (Z) is easier
to handle than AR(Z), but we need to know that their dgc algebra minimal models
are the same. This follows immediately from the following Theorem (cf. 10]).

THEOREM 3.3.1.
algebras

Let Z be a stratified space. Then there exist two quis of dgc

f2 (Z) ---+. +-- A(Z).

Proof. See Appendix. !-1

3.4. Relative controlled model. As in the absolute case (cf. Theorem 3.3), the
model of a morphism f: Z --+ Z between two stratified spaces can be computed,
under certain conditions, using controlled forms instead of polynomial forms. These
conditions involve the unfolding:

[P1] f preserves controlled forms: f%o f2o (Zp) for any o 6 f2o (Z).
[P2] f preserves liftable simplices (see Appendix for the exact definition).

We shall say that an f satisfying the two conditions is good.
For good morphisms at least, we have a relative version of Theorem 3.3.

THEOREM 3.4.1. Let f: Z’ --+ Z be a good morphism ofstratified spaces. Then
there exists a commutative diagram ofdgc algebra morphisms

in which the horizontal arrows are quis.

Proof. See Appendix.

The two examples of good morphisms used in this work are described in the
following proposition.

PROPOSITION 3.4.2.
are good morphisms.

The projection rr" M --+ B and the inclusion t" F B

Proof See Appendix. r!
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4. Models for M and F

This section is devoted to constructing the minimal models of M and F in the
category of differential graduate models over the dgc algebra minimal model .A(B)
of B. As in other contexts (Euler-Poincar6 characteristic, Localization Theorem,
rational homotopy theory ), these two models are intimately related, in fact, they
are free 4(B)-graded modules over the same (up to a shift) graded vectorial space.

4.1. Model ofa stratified space. Let Z be a stratified space. As we showed in
Theorem 3.3.1, its minimal model as a dgc algebra can be computed from 2 (Z). So
let

pz" A(z) -- 2(z)

be a quis of dgc algebras, with .A(Z) a minimal one. Next, let f: Z’ --> Z be a
good morphism. Then we can endow f2 (Z’) with a structure of jt(Z)-dg module by
means of the composition

ACz) - Cz) o (z’).

Since we will always consider this structure of module in f2v (Z’) we shall not write

pf*(f2v (Z’)) but simply f2o (Z’). In the same way, we also consider AR(Z’) as an
4(Z)-dg module.

PROPOSITION 4.1.1.
modules are isomorphic.

The minimal models of f2o(Z’) and AR(Z’) as 4(Z)-dg

Proof It follows from Theorem 3.4.1. The commutativity of the diagram given
by this result means that p’ and p are quis of Jt(Z)-dg modules. El

Let us denote by Ad(Z’) this minimal model as .A(Z)-dg module. It obviously
depends on f but not on the several choices we have made in this construction: the
dgc algebra jr(Z), the quis Pz and the .A(Z)-dg module minimal model of f2o (Z’)
(or A(Z’)). Despite all these choices, the ft(Z)-dg module minimal model A4 (Z’)
is unique up to isomorphism by Section 1.3.

4.2. Minimal model ofF. The fixed point set F plugs into the category of 4(B)-
dg modules through the natural inclusion t: F ---> B, which is a good morphism. We
have already seen in Section 3.2 that f2o (B, F) is an (B)-dg module and therefore
an 4(B)-dg module. We shall write .A//(B, F) for the relative minimal model of
(B, F), that is, the minimal model of f2v (B, F) as .A(B)-dg module. Notice that the
inclusion i: f2 (B, F) - f2 (B) is an 4(B)-dg module morphism. We shall write
i’: ./VI(B, F) A(B) to represent any of its models (see Corollary 1.3.6). The
degree of and i’ is 0.
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PROPOSITION 4.2.1.

(4) M(F) 4(B) i, M(B, F).

Proof. Consider the exact sequence 0 --+ f2 (B, F) f2 (B) -- fl (F) --+ 0
(cf. Proposition 3.1.1). Then, by Remark 1.1.1 we have an .A(B)-dg module quis
between f2v (B) i) ’, (B, F) and fl (F). So, by Proposition 1.3.7 we have an .A(B)-
dg module quis between jr(B) i, .M(B, F) and f2 (F). Since 4(B) i’ .M(B, F) is
a minimal 4(B)-dg module (cf. Lemma 1.3.8) then by uniqueness we get .M(F)
jr(B) i, .M(B, F) (cf. Corollary 1.3.5). v1

COROLLARY 4.2.2. Let us suppose that B is offinite type and simply connected.
Then .M(B, F) is thefree jt(B)-graded module generated by *- (Y,).

Proof. From Section 1.3.9 we know that .M(F) is a free al(B)-graded module
over H* (Y,) and therefore.M(F) Jt(B)h[flt(B) (R) (Y,)] for some h ofdegree 1.
From the above proposition we get the result wanted.

4.2.3. Remarks. M of finite type implies B of finite type. From [5] we know
that if M is of finite type then F and (B, F) are of finite type. Using the long exact
sequence associated to (B, F) one concludes that B is also of finite type.

M simply connected implies B simply connected. Considering twisted neigh-
borhoods of orbits (cf. [5]) one easily checks that a loop on B lifts in a path on M.
Since the orbits of M are connected, we are done.

4.3. Minimal model ofM. The fundamental vector field X ofthe action is defined
by X(x) Tlx(1), where x 6 M and x" ’ M is given by dOx(g) (,x).
Since this vector field does not vanish on R we can consider the dual form 6 f2 (R),
relatively a riemannian metric /x on R. When this metric is good (cf. [12]) the
derivative dX is a basic form relative to the projection zr" R zr(R). So, there
exists a differential form e 6 922 (zr(R)) such that dX zr*e. Both differential forms,
and e, are liftable. We shall say that e is an Eulerform. They are not controlled forms

because their restrictions to the links of fixed strata do not necessarily vanish. But the
maps X: (M, F) f2 (M) and e: f2 (B, F) f2v (B), given by , /x ?,
and o - e/x o9, are well defined .A(B)-dg module morphisms. We shall write
e’: .M (B, F) --+ .,4(B) a model of e. Notice that the degree of e and e’ is 2.

The main result of this work is the following:

THEOREM 4.3.1.

(5) .M M .A B [e’ .M B F
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Proof Let Ig2v(M) {w f2v(M)/fLxw 0}, the complex of invariant
controlled differential forms. We have seen in [12] that the inclusion I f2o (M)
fly (M) is a dgc algebra quis. We endow lfl, (M) with the natural structure of,4(B)-
dg module by means of the composition

71"*
.A(B) f2 (B) f2o (M),

which is well defined since zr*(f2v(B)) C Ig2v(M). The inclusion If2o(M)
g2o (M) is now a quis of 4(B)-dg modules. Each invariant differential form w is
written uniquely as o r*c + X A r*/; when w is controlled then c 6 f2o (B) and
/3 6 f2o (B, F) because X is tangent to the links of fixed strata. So, the operator

(6) A" ff’2v(B) e g2o(B, F) --+ If2o(M)

given by A(ct,/3) r*c+X/r*/3 is an .A(B)-dg module isomorphism and therefore
.A(B) e’ J(B, F) is a model of M as .A(B)-dg module (cf. Proposition 1.3.7).
Minimality again follows from Lemma 1.3.8.

4.3.2. Remarks. (a) Formula (4) and (5) show that .Ad(F) and A/I(M) are free
.A(B)-graded modules over the same (up to a shift by 2) basis.

(b) This theorem contains the classic result saying that, when the action is almost
free (that is, F 0), the dgc algebra minimal model of M is A(B) (R) A(x) with
deg x 1 (cf. [8]). Let us see that.

In this case A/I(M) A(B) e’ 4(B) and e’ is the multiplication by a certain e 6

4(B) of degree 2. The quis of.A(B)-dg modules we have constructed r/: .M(M) --+

f2, (M) satisfies r/(a, b) a. 1 +b. r/(0, 1). Consider the product on A/I(M) given by
(a, b). (a’, b’) (a. a’, a. b’ + (-1)dega’b. a’). A straightforward calculation shows
that is a quis of dgc algebras. But the two dgc algebras A/[ (M) and t(B) (R) A (x)
are quasi isomorphic by using (a, b) - (a (R) 1 + b (R) x).
We establish now some consequences of these results.

4.4. Poincar polynomials. Given a topological space X we shall write Px for
its Poincar6 polynomial, that is, Px(t) )_ dim H" (X) n.

n>_0

COROLLARY 4.4.1.
PY, t2(1 Pr,).

Suppose B offinite type and simply connected. Then 1

Proof We have seen in Proposition 4.2.2 that J4(B, F) is a free (B)-graded
module over ff*- (Y,). Applying the same method to rr we conclude that A//(B, F) is
a free t(B)-graded module over (Yr). So, dim (Yr) 1, dim H (Yr) 0,
dim H (Yr) dim H (Y,) 1 and finally dim H" (Yr) dim H

"-2
(Y) for n > 2.

This gives the result.



802 AGUSTI ROIG AND MARTINTXO SARALEGI-ARANGUREN

4.5. Vanishing of the Euler class. Actions with vanishing Euler class [e] 6

H (B F) have a particular status (cf. [12] for a geometrical interpretation). In the
sequel we show how A/[ (M) contains information about the Sullivan minimal model
of M in this case.

When the Euler class vanishes we can choose a convenient riemannian metric on
M so that e itself vanishes (cf. [12]). Thus e’ 0. The minimal model A4(M) is of
the form .A(B) (R) E with E and dE C .A(B) (R) E+. It supports a dgc algebra
structure by putting on E the trivial product: 1 v v if v E and E+ E+ 0.
This dgc algebra structure shall be called na’ve. It contains the following information
about M.

COROLLARY 4.5.1. If the Euler class vanishes then the na’ve dgc algebra struc-
ture of.h/l(M) has the same real homotopy type ofM. Moreover, rr (B) injects into

zr$ M).

Proof. The operator A: fl (B) 0 fl (B, F) fl (M) is a quis of A(B)-dg
modules which becomes a quis of dgc algebras when considering on the source the
following product:

(7) (ct, 3)" ctt, 1’) (o. ’, (--1)degtct /’ + (--1)degt"degct’. 3)"

This dgc algebra contains the real homotopy type of M.
Let P(B,F): .A4(B, F) -+ f2v (B, F) be the relative minimal model of (B, F). The

operator

PB P(B,F): .A/I(M) .A(B) o .All(B, F) ,(B) o v(B, F)

is a quis of A(B)-dg modules which becomes a quis ofdgc algebras when considering
the product (7) in both terms. This dgc algebra contains the real homotopy type of
M. Notice that the dgc algebra structure on A/I(M) given by (7) is just the naive
structure. This gives the first part of the corollary.
We shall write .A(B) AY, with differential 0, and A/I(M) AY (R) E, with

differential d. We have dl^r 0 and dE C AY (R) E+. This last property allows us
to construct a KS-extension

(AY, 0) (AY (R) E, d)

(AY (R) AX, 8)

such that tPl^r id ^r and o(x) C AY (R) E+. Recall that rr, (B) H (Y, Oo) and

zr (M) H (Y X, 80), where O0 and 80 are the linear part of 0 and 8 respectively.
Since (AY, 0) is minimal we just have 0o 0 and therefore zr, (B) Y. On the

other hand, the composition 8o X - AY (R) AX projon A Y projon y vanishes: if
x e X then #(8x) d(tPx) d(AY(R)E+) C AY(R)E+. So, zr(M) YH (X, 80)
and the proof is finished since r* becomes the inclusion Y ,-+ Y H (X, 80).
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4.5.2. Remarks. (a) When B is also contractible then .A/[ (M) E is just a dgc
algebra with trivial product and, by minimality, with zero derivative. In other words,
M is a wedge of spheres.

(b) The Gysin sequence associated to (5) implies that the cohomology of B injects
into the cohomology of M; in fact, we have the short exact sequence

H" H
*-I

0--+ H* (B) (M) --+ (B, F) --+ O.

The last statement of the corollary implies that, when M is of finite type and simply
connected, we have the short exact sequence

0 zr*(B) (R) zr*(M) (R) I n’*(Y.) (R) I -- O.

(c) The naive structure of A/I(M) appears when e’ 0, but the previous result
needs the vanishing of the Euler class itself as is shown in the following exam-
ple. Consider the action " g x Cn CFn given by z. [z0, z zn]
[z0, Z.Zl,..., z. Zn] (in homogeneous coordinates). Here the fixed point set is
F CF tO CI?n- and the orbit space B is the closed cone over CI?n-. So, B is

ac),clic and e’ 0. The Euler class does not vanish since it generates H (B F)
H’(C?n- x]0, 1[) . The minimal model we have computed in Theorem 4.3.1 is

A/[(Cn) 0/*- (CF tO CFn-). Considering the na’fve structure on it we get
A//(Cn) H* (g2 v g4 v... v g2n) as dgc algebras. But clearly this dgc algebra
does not contain the real homotopy type of CI?n.

4.6. Cohomological dimension. Write dimc (X) for the cohomological dimen-
sion of the topological space X; i.e., dimc (X) sup{n 6 N / H" (X) # 0}.

COROLLARY 4.6.1. Underthe hypothesisofCorollary4.4.1, ifthenumbersdimc (B)
and dimc (Y,) arefinite then dimc (M) dimc (F) or dimc (F) + 2.

Proof. From Corollary 4.4.1 we get dimc (Y,r) dimc (Y) 0 or dimc (Y,)
dimc (Y,) + 2. Now considering the homotopy fibrations associated to zr and we get
dimc (M) dimc (B) + dimc (Y,r) and dimc (F) =dimc (B) + dimc (YL) and then
we get the result. D

We find examples of this situation when M Cn, where g acts by complex
multiplication, and M n+2 1 , n, where gt acts by multiplication on the
first factor and trivially on the second factor. When M is compact and oriented the
condition dimc (M) dimc (F) 0 does not occur and the condition dimc (M)
dimc (F) + 2 is equivalent to saying that F possesses a connected component of
codimension 2. This is also equivalent to the fact that B has a boundary. So, under
the conditions of Corollary 4.4.1, if dimc (B) < oo and B has no boundary then
dimc (Yr) dimc (YL) oo.
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4.7. Equivariant cohomology. The equivariant cohomology of M is the co-
homology of the quotient space Mst M xs’ o, written Hs(M). The natural
projection p: Ms, B induces a natural structure of4(B)-dg module on M#. Here
we compute the equivariant minimal model of M, that is, A4soo (M) A’[ (M#).
We shall write A (e) for the polynomial algebra generated by an element e of

degree 2. The trivial .A(B)-dg module structure will be considered on it. The main
result in this framework is the following:

THEOREM 4.7.1. If thefixed point set F is not empty, then

(8) A4so (M) [4(B) (R) A(e)] q, [A4(B, F) (R) A(e)],

where q’(b (R) en) e’(b) (R) en + i’(b) (R) e"+l.

Proof. The equivariant cohomology can be computed using the complex f2st (M)
If2 (M)(R)A(e), endowed with thederivatived(oo(R)en) (dw)(R)en +(ixo)(R)en+l.

Here ix denotes the contraction by X. Proceeding as in [21, p. 213] one shows that
the two dgc algebras If2(M) and I f2v(M) are quasi-isomorphic. Therefore the
equivariant cohomology of M is computed by using I f2 (M) (R) A (e) and p induces
the operator P" f2v(B) If2(M) (R) A(e) defined by P(a) zr*ot (R) 1. Under
these transformations the 4(B)-dg module structure on If2 (M) (R) A(e) is given by

a (o (R) en) P(pB(a)) (09 (R) en), with a jr(B), 09 IQo(M).

Now we compute the minimal model of I f2 (M) (R) A (e) relative to this structure.
The jt(B)-dg module isomorphism A. f2v (B) (e (B, F) If2o (M) induces

the .A(B)-dg module isomorphism

V" [f2v(B) (R) A(e)] )q [f2v(B, F) (R) A(e)] -----+ If2v(M) (R) A(e),

where q( (R) e") ( /x e) (R) e" + () (R) en+l Proceeding as in Theorem 4.3.1 we
get that a model of lf2o(M) (R) A(e) is just [A(B) (R) A(e)] q, [A//(B, F) (R) A(e)],
where q’(b (R) en) e’(b) (R) en + i’(b) (R) en+l. This model is minimal because of
Lemma 1.3.8.

Notice that for the almost free case (F 0) we have obtained the following non-
minimal .A(B)-dg module model: [.A(B) (R) A(e)]i,(R)e [A(B) (R) A(e)]; the minimal
one is just .A(B).

4.7.2. Remarks. (a) Poincard polynomial. When F -- 0, B is of finite type and
simply connected the relation between the homotopy fibers of p and rr is given by
Pr, (1 2) P,p (same proof as that of Corollary 4.4.1).

(b) Extension ofscalars. The complexes f2s, (M) and .Ms (M) naturally support
a structure of A(e)-dg module. The al(B)-dg module quis we have constructed is in
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fact a A (e)-dg module quis. For this structure, the extension of scalars of Ads (M)
is just A//(M), that is, 1 (R)A(e) J3 (M) .All (M). In other words, the model of
the fiber of M M ---> B is "the fiber of the model" (cf. [10]).

(c) Vanishing Euler class. Since e’ 0 one has f14o (M) isomorphic to 4(B)
[.M (F) (R) A+ (e)], relative to both module structures. We conclude that the coho-
mology of B injects into the equivariant cohomology of M, that is, we have in fact
the exact sequence 0 ---> H (B) ---> Ht (M) ---> H (F) (R) A+(e) --+ O.

(d) Equivariant cohomology. Formula (8) says that we can compute the equivariant
minimal model AJ (M) in terms of basic data: i’, e’: .M(B, F) -- A(B). The
equivariant cohomology H (M) can also be computed in terms of basic data. In fact,
the shortexact sequence0--+ .A(B)(R)A(e) .Adso (M) -- .M(B, F)(R)A(e) 0
associated to (8) (el. Lemma 1.1.2) gives the long exact sequence

--> [H (B) (R) A(e)]’ --> H$(M)
q*

---> [H (B, F) (R) h (e)]’-’ ------> [H (B) (R) h (e)]
’+’

---> ...,

which determines Hs (M) in terms of i*, e*" H (B, F) H (B).
(e) Equivariantly formal spaces. Put r: M ---> Ms the inclusion given by

r(x) class of (x, 1). The manifold M is equivariantly formal if the restriction
map r*: Hs, (M) ---> H (M) is surjective (cf. [5], [6]). We can translate this condition
in terms of basic data by considering the commutative diagram

q$

S (M) [H(B, F) (R) A(e)]
i-

[H (B) (R) A(e)]
TM

H (M) Hi-1
(B, F) H (B)

where Yt([a,] (R) e") [c,]. Since the restriction 9: Coker q* ---> Coker e*
is surjective, the manifold M is equivariantly formal if and only if the restriction

e*
fit: Ker q* Ker e* is surjective. In other words, any string [c0] 0 fits into a

i* e* i* e* i* e*
string 0 -- [an] ---> [fin] --"" "+ [/50] -- [or0] ---> 0.

(f) Localization Theorem. This theorem asserts that the restriction map RF" M --+
F induces an isomorphism between their localizations S- Hs (M) and S-Hs (F).
We can translate this theorem in terms of basic data saying that the map

V: H (B, F; S-A(e)) ---> H (B, F; S-’A(e)),

defined from V([w]) e. [w] + [w/x e], is an isomorphism. This comes from the
fact that the Localization Theorem is equivalent to the vanishing of S- H$ (M, F)
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and from the exact sequence

--+ [n (B, F) (R) A(e)]’ nt (M, F)
q*

--+ [n (B, F) (R) A(e)]’-’ ----+ [n (B, F) (R) A(e)]
’+’

--+

obtained as in (d). In fact, for S 1, ep, e2p }, the inverse of V is given
by 7-1([09]) Y’n>_O -jP=-d(-1)(n+l)P-l-J(e-P)n+lej [09/x eP(n+)-J-], which
makes sense since the differential form em vanishes for large enough m.

4.8. Semifree S3-actions. The results developed until here for circle actions
extend directly to semifree 3-actions. This comes essentially from the fact that
formula (6) applies (up to a shift) here (cf. [22]). We don’t give all the results butjust
the main one.

Consider : 3 M M, a semifree smooth action of3 on a smooth manifold
M. Let F be the submanifold of fixed points. Semifreeness means that 3 acts freely
on M F. The orbit space B is a stratified pseudomanifold whose singular strata
are the connected components of F. The inclusion t" F B induces the inclusion
operator i: f2 (B, F) ---+ f2v (B) which is an Jt(B)-dg module morphism ofdegree 0.

Here the Euler form e lies on f2 (B F) and induces the A(B)-dg module morphism
e: f2 (B, F) ----+ f2o (B) of degree 4. The A(B)-dg module minimal models of these
operators are i’ and e’ respectively. The main result in this framework is the following:

THEOREM 4.8.1.

M(M) jr(B) )e’ M(B, F)
M(F) jr(B) )i’ M(B, F).

Proof. Follow the path taken in the Theorem 4.3.1. El

4.9. Isometricflows. An isometricflow is a real smooth action : x M M
preserving a riemannian metric/x on the smooth manifold M. The fundamental vector
field X ofthe action is a Killing vector field. We shall write " for the singular foliation
determined by the orbits of the action. The fixed point set is a manifold denoted F.
Notice that in this case the orbit space B M/ can be very wild (even totally
disconnected!). For this reason it is customary to work with "basic objects" (objects
living on M transverse to the flow and invariant by the flow) instead of working
directly with the objects living on B. For example, a basicform is a differential form
on M which is transverse to the flow (ix09 0) and invariant by the flow (Lx09 0),
a basic controlledform is a controlled form on M verifying ix09 ixd09 0
We shall write

o M/.T’)
v M F /.;F)

for the complex of basic forms,
for the complex of basic controlled forms,
for the complex of basic relative controlled forms.
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When the action is periodic we have in fact a circle action and these complexes
become, up to isomorphism, g2 (B), f2 (B) and f2v (B, F) respectively.

The three complexes above are in fact dgc algebras. The dgc algebra minimal
model of f2o (M/.7:) and g2 (M/.T’) are the same and they will be denoted by .A(M/.T’)
(cf. [23]). We work in the category of A(M/JC)-dg modules. The A(M/-dg
module minimal model of flo ((M, F)/.T) will be denoted by A4((M, F)/gc).

The inclusion t: F M gives the inclusion operator i: 2o((M, F)/J:’) --f2 (M/ which is an A(M/.T’)-dg module morphism of degree 0. Here the Euler

form e lies on ((M F)/.T) and it induces the A(M/.T’)-dg module morphism
e: f2 ((M, F)/J:) -- (M/.T’) of degree 2. The A(M/J:)-dg module minimal
models of these operators are i’ and e’ respectively.
We shall write X O/Ot if there exists a diffeomorphism M B x sending X

on a multiple of O/Ot. The main result in this framework is the following:

THEOREM 4.9.1. IfX :/: O/Ot then

./M M .A M/. le, ./M M F /.,
.,M F .A M/J:’) , ./M M F /2F)

Proof. If we prove that the inclusion I f2o (M) - g2o(M) and the restriction
fl (M) --+ f2v (M) are dgc algebra quis, then it suffices to follow the path taken in the
proof of the Theorem 4.3.1.

An isometric flow defines a singular riemannian foliation .T" where the orbits
are all closed or the closures of the orbits are all tori (cf. [14]). In the first case
the natural projection zr" M -- M/ becomes a locally trivial fibration and, by
orientability, a trivial one. So, X O/Ot and we are in the second case. Using
the Mayer-Vietoris argument we can replace M by a toms endowed with an
linear action. The problem is then to prove that the inclusion I
and the restriction g2 () g2o (q[’) are dgc algebra quis. Since the flow is regular
then f2v () f2 (T). By density, the complex I g2v (’I[’) I fl () becomes flr (’I[’)
{o fl (’) invariant by q[’}. Since q[’ is compact, we already know that the inclusion
f2r () - 2 () is a dgc algebra quis (cf. [7]).

In the case X O/Ot this result would imply H* (M) H* B x which is

false. We finish the work by extending to isometric flows a well-known result related
to periodic actions.

COROLLARY 4.9.2. IfX # O/Ot then, for any r >_ O,

nr-l
((M, F)/,7") + Edim H

r+2’
(F) < E dim H

r+2i
(M).

i=0 i=0
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Proof. From the above formula we get the following long exact sequences:

H H H-’ H+ ...,---> M/.T) g --+ (M F /.T) --+ M/.]’) ---->

H H H H
TM

--> M F /.T) -- (M/Y) -- F) M F /jk-’) --->

Since the action is free out of F the above theorem admits the relative version
.A//(M, F) JA((M, F)/.T)@e’ A4((M, F)/.T). This gives the long exact sequence

H H((M, F)/.T) --> (M, F)

H
i-,

H
TM

((M, F)/jI:’) ((M, F)/Y) --Finally, by considering the long exact sequence associated to (M, F) one gets all
the ingredients to proceed as in [5, pag. 161 to obtain the following Smith-Gysin
sequence:

H H((M, F)/.T’) (M)

H
i-I

H H
TM

-+ ((M, F)/.T) (F) ((M, F)/.T)

Now it suffices to follow the procedure of [5, page 127].

When M is compact the group of isometries of (M,/z) is a compact Lie group.
So, the action of I extends to an action of a torus q[’. For this action we have the
inequality

H- ((M, F)/’) + dim H"+’
(F) < _, dim H

r+2‘
(M),

i=0 i=0

for each r > 0 (cf. [5]), but notice that in general H* ((M, F)/.T) and H* ((M, F)/q)
are not equal.

5. Appendix

In this Appendix we give the proof of Theorem 1.3.1 (existence of a minimal KS-
extension), Theorem 1.3.3 (uniqueness of a minimal KS-extension), Theorem 3.3.1
(minimal model versus controlled forms), Theorem 3.4.1 (relative minimal model
versus controlled forms) and Proposition 3.4.2 (examples of good morphisms).

5.1. ProofofTheorem 1.3.1. To begin with, put N (0, 0) M, t(0,0) id M and

P(0,0) o. Let us assume that we have already constructed

t(n,O)" M ----+ N(n, 0) and P(n,o)" N(n, O) X
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such that

(i)(.,o)

(ii)(,o)

(iii)(,o)

t(n,O is a minimal KS-extension,

D(n,O)t(n,p) qg, and

(P(n,0))." H’ (N(n 0)) --+ (X) is an isomorphism for
0 < < n 1 and (P.,0)): is a monomorphism.

Now, for q > O, take V(n, q) H"+’ (N(n, q 1), X) and consider it as a ho-
mogeneous vector space of degree n. Take also a linear section s of the natural
projection Z"+’ (N (n, q 1), X) ---> V (n, q). So for every v 6 V (n, q), we have

1)
"+’

sv (to xo) N(n, q- such that

(00) (P(n,-l) ?d)(::)"
Define

N(n, q) N(n, q 1) (A (R) V(n, q))

with differential dv to. Also define l(n,q)" M N(n, q) as the composition
of t(n,q_l) with the natural inclusion of N(n, q 1) N(n, q). Finally, take
P(n,q): N(n, q) ----+ X to be the morphism of A-dg modules induced by P(n,q-1) and
the linear map f: V (n, q) X defined by fv xo.
Let us verify that

(i)(n,q)

(ii)(n,q)

(iii)n,q)

t(n,q is a minimal KS-extension because of
(i)(n,q_l) and the definition of t(n,q),

P(n,q)t(n,q) P(n,q-1)t(n,q-1) "-q)because of
the definitions and (ii)(n,q_l),

)i. H’ H’(P(n,q) (N (n, q)) (X) is an
isomorphism for 0 n.

In fact, for < n, P(n,q) coincides with P(n,q-1) and so the morphism induced
in cohomology is an isomorphism by (iii)(n,q_l). In degree n, the natural inclusion
N(n, q 1) N(n, q) induces a monomorphism in cohomology because new
generators can only kill cocycles in degree > n. So (P(n,q)): is a monomorphism
and all we need to prove is that it is also an epimorphism: Let [x] H" (X) and

)"[x] Im (P(n,q-1) (otherwise we are done). Then x defines a non-zero relative
cohomology class v [(0, x)] V(n, q). By definition, v [(dr, p(n,q))V]. So

,q) 1) X tg(n,q 1) gd) (;)= (P(n,q-l:--dy)
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1)
n+’ Xwith N(n q y As a consequence,

(P(n,q)) [1) t] [x]

and so (P(n,q)) is an epimorphism. Lastly, put N(n + 1, 0) lim-. N(n, q),
q

t(n+l,0) lim--, t(n,q), f)(n+l,0) lim P(n,q) and let us verify the induction hy-
q q

pothesis. Conditions (i)(n+,0) and (ii)(n+,o) are trivial. For (iii)(n+,o), (P(n+l,O))’."
HH (N(n + 1, 0)) (X) is an isomorphism for 0, n because all of the

(p(#,q))i. are isomorphisms by (iii)(n,q) and (p(n+,o))+ is a monomorphism, because
Zn+l

if a N(n + 1, 0) is such that [P(n+l,o)a] 0, then, as a N(n, q) for some q,
we would have p(n,q)a dx for some x X. So v [(a, x)] V(n, q + 1) will
kill the class [a] in Hn+

(N (n, q)) and therefore in Hn+’
(N (n + 1, 0)).

5.2. ProofofTheorem 1.3.3. We will confine ourselves to the case M 0, since
this is the only case we need in this paper. Let N A (R) V, and assume we have
already built

O’(m,O)" N(m, O) X

in a such way that for all m < n,

(i)m Pa(m,O) id V(m,O), and

(ii)m or(re,o) [N(m’,O) am’,O) for all m’ < m.

We will define

a(n+l,0)" N(n + 1, 0) X

satisfying (i)n+l, (ii)n+l and then the section of p will be

a lim a(n,O).

To do this, we will extend Cr(n,O) to morphisms

O’(n,q)" N(n, q) X

in such a way that for every p < q,

(i)(n,p) pO’(n.p id N(n,p), and

(ii)n,p) aCn,p) INCn.p’) a(n,p,) for all p’ < p.

Once we have these a(n.q) for all q > O, we will put

O’(n+l,O) lirn a(n.q),
q

which will satisify (i)n+l and (ii).+.
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So let us begin the construction of the O’(n,q). For q 0, a(n,0) exists by induction
hypothesis. Assume we already have O’(n,p for all p _< q. Then, consider the Aodg
module

X (n, q) Im (a(n,q)" N (n, q) ---> X).

Since pO’(n,q) id N(n,q), O’(n,q) is a monomorphism; then O’(n,q)" N(n, q) --+ X (n, q)
is an isomorphism. If we apply the Five Lemma to the long cohomology sequences
of the following commutative diagram of exact sequences of A-dg modules

0 X(n,q) X X/X(n,q) 0

0 N(n,q) N N/N(n, q) 0

it follows that t5 is a quis of A-dg modules.
Next, let V (n, q + 1) be an JR-vector space such that

N(n, q + 1) N(n, q) (A (R) V(n, q + 1))

and let j be the composition V "J--> N --+ N/N(n, q). Since dV C N(n, q),
we have j V C Z(N/N(n, q)), and so we have an ]-linear morphism Hj" V --+
H (N/N(n, q)) which we can lift to Z (X/X (n, q))"

V H (N/N(n, q))

Z(X/X(n,q))

H(X/X(n,q)).

In fact, N/N(n, q) is an A-dg module concentrated in degrees > n. So B" (N/N (n, q))
0 and the previous diagram in degree n is just

Z"(X/X(n,q))

J
Z"(N/N(n,q)).
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Next, consider the pull back

(X/X (n, q)) x v/s.,. N N

X/X(n,q) N/N(n,q)

and the morphism induced by r" X -- XX(n, q) and p: X N,

(zr, p)" X (X/X (n, q)) x /o,,q
N.

It is an epimorphism: if (, y) (X/X (n, q)) x
So,

N/N(n,q) N then px y e N(n, q).

(7t’, p)(X O’(n,q)(pX y)) (. O, px (px y))

(2,,y).

So, we can lift (), i) to X:
X

f
(r, p)

V (X/X (n, q)) x /.,q, N.

Then f and O’(n,q induce the morphism of A-dg modules O’(n,q+l)" N(n, q + 1) X
we were looking for:

O’(n,q+l) lu(,q) ’(n,q) and O’(n,q+l Iv f.

To see that it is an A-dg morphism, it suffices, by definition of a Hirsch extension, to
verify that

(r(n,q)d df

ZSo, let v e V" then rrfv ,kv e (X/X(n, q)). So, 0 drrfv rrdfv. Hence
dfv X(n, q) Im rr(n,q). Let o 6 N(n, q) be such that dfv cr(n,q)rO. Apply p
to both sides of this equality and, by the previous diagram, we get

pdfv dpfv =dr
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and, by induction hypothesis (i)(n,q),

pO’(n,q)(.O

So do w, as we wanted.
Finally, crfn,q+l) satisfies (i)(n,q+l) and (ii)(n,q+l) by construction.

5.3. ProofofTheorem 3.3.1. This result generalizes to stratified spaces the result
asserting that the dgc algebra minimal model of a manifold can be computed using
its deRham complex. The proof is adapted from 10] using the same notation. It will
be sufficient to prove that the dgc algebra minimal model of f2 (Z) is that of AR(Z).
For this purpose we construct a commutative diagram

P! P2

2v (Z) E(LS(Z)) AR(Z)

C(L.._S(Z)) C(Sing(Z))

where fl, f2, f3, and P3 induce cohomology isomorphisms and P2 and Pl are dgc al-
gebra morphisms. This implies that/92 and/91 are also dgc algebra quasi-isomorphisms
and the Proposition is proved. We construct the diagram in several steps.

L Unfolding of A (see [21]). The unfolding of the standard simplex A, relative to the
decomposition A A0 , .... Ap, is the map

/ZA" A--A0 x... x Ap-1 x Ap A

defined by

/ZA ([X0, to] [Xp-l, tp-1], Xp) toX0 "+" (1 to)tXl +... + (1 to)’..
(1 tp-E)tp-lXp-1 + (1 to)’’’ (1 tp-1)Xp.

Here Ai denotes the closed cone A X [0, 1]/Ai x {0} and [xi, ti] a point ofit. This
map is smooth and its restriction/ZA: int (A) -- int (A) is a diffeomorphism (we
write int (P) P 0P for the interior of the polyhedron P). It sends a face U of
A on a face V of A and the restriction/ZA" int (U) -- int (V) is a submersion.

This blow-up is compatible with face and degeneracy maps.
1. Face. Let 3F: F -- A be a codimension one face of A; the induced

decomposition is F Ao ,... * Aj-I.* Fj..,. Aj+,,,1 *.’. * Ap (we have written
0 X X). The lifting of d;F is the map 8F: F --+ A defined by

ifFj # 0
(Z0 Zj-I, tgj, Zj+I Zp-l, Xp) if Fj 13, j # p.Oj vertex of

8(z) and (z0 zj Zp_l, Xp)
(ZO Zp-2, [Xp-l, 1]) if Fj 13, j p, and

(ZO Zp-2, Xp_ )"
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This ma,,p is smooth (affine in barycentric coordinates), sends F isomorphically on a
face of A and satisfies/XAO3F VOlZF.

2. Degeneracy. Let tr: D A P} -+ A be a degeneracy map with go(P)
Q e Aj. The induced decomposition is D A0 ,... Aj-1 (Aj {P}) A)+I

Ap). The lifting of tr is the map o" D --+ A defined by

(z0 [txj +(1-t)Q, tj] Zp-l,Xp) ifj <pandzis(z0
[tx) +(1 t)P, tj], Zp_l,Xp),D(Z) (ZO Zp-l, tXp 4- (1 t)Q) if j p and is
(zo Zp-l, txt, 4- (1 t)P).

This map is smooth (linear in barycentric coordinates) and verifies/zzxoo
ffDOlJD.

On the boundary A we find not only the blow-up 0 Zi of the boundary A of Zl
but also the faces Bi Ao ... ’/ki-1 (Ai 1}) x OAi+, x.-. x ’Ap-a x Ap
with e {0 p 2} or p 1 and dim Ap > 0, which we shall call badfaces.
Notice that dim/xzx(Bi) dim(A0 Ai) < n dim Bi.

H. The simplicial set

LS(Z). On a stratified pseudomanifold it is not possible to define smooth simplices
directly as in 10]. For this reason we introduce the notion of liftable simplices. Let
Z Zn=dimR az Zn-1 ) Z0 Z-1 be the filtration of Z, that is,
Zi is the union of strata with dimension smaller than i. A liflable simplex is a singular
simplex o: A --+ Z satisfying the following two conditions.

[LS1] Each pull back qg-l(zi) is aface of A.

Consider {i0 ip} {i e {0 n} / -l(zi) # -l(Zi_l) andlet Aj bethe
face of A with o- (Zij) q- (Zij_ 1) * Aj. This defines on A the O-decomposition
A A0...., Ap.

[LS2] There exists a smooth map o: lk Z with/2zoO qgo/xzx, where the
unfolding ofA is taken relative to the O-decomposition of A.

The qgO3F-decomposition (resp. qgoro-decomposition) is just

F A0 *’.. * Aj-1 * fj Aj+ ,... mp
(resp. D Ao ,... * Aj-I * (Aj , {P}), Aj4-1 ,..., Ap).

So, for a liftable simplex o the simplices OF(o) q)o6F andso() oocro are liftable
simplices. The face map OF and the degeneracy map so verify the usual compatibility
conditions. Put LS(Z) the family of liftable simplices. So, (_L__(Z), O, s) define a
simplicial set.

1For the notions related with simplicial sets, local systems we refer the reader to [10].
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Notice that a liftable simplex tp sends the interior of a face A of A on a stratum
S of Z and that the restriction tp. int(A) -- S is smooth (using face maps we can
suppose A A and there we know that/ZA" int (A) -- int A is a diffeomorphism).

IlL The local systems C and E. The local system C on Sing(Z) (resp. L_..S(Z)) is
defined in [10, 14.2] in such a way that the space of global sections C(Sing(Z))
(resp. C(LS(Z))) is the complex generated by the singular simplices (resp. liftable
simplices) of Z.

Consider a simplex A endowed with the decomposition A0 ..., Ap. A liftable
form on A is a family r/ {/a E f2(int (A))}IA faceofzx} of differential forms pos-
sessing a common lifting E fl (), that is,

r/=/ZAO,(t4) on int (H), for each face H of A.

The lifting ’ is unique. Since/ZA is an onto submersion with connected fibers then
the lifting forms are exactly the differential forms o on A satisfying o(v,-)
dab(v, -) 0 for any vector of A with (/ZA),(V) 0, that is, the basicforms on A.
In the sequel we shall use both of points of view.
A liftable form on {o: A --+ Z} LS(Z) is a liftable form on A relative to its

O-decomposition. For any o: A --+ Z liftable simplex we shall write Eo {liftable
forms on tp}, which is a dgc algebra complex.

Consider tF: F - A a face map and cro: D -- A a degeneracy map. We define
the face operat,,,or OF" Eo -- Eae() and the degeneracy operator so: Eo -- Eso(,)
by OF( 8’ and so( " respectively. These operators verify the usual
compatibility conditions and thus define a local system E on LS(Z). Notice that the
space E(LS(Z)) of global sections of E is a dgc algebra.
When Z is a manifold endowed with the stratification Z}, liftable simplex becomes

smooth simplex and so LS(Z) Singoo (Z). Moreover, E becomes the local system
Aoo of Co differential forms.

IV. Operators p and f
The operator/93 is just the inclusion, which makes sense since any liftable

simplex is a singular one Proceeding as in [2 1 one proves that this inclusion induces
an isomorphism in homology and therefore that/93 is a quasi-isomorphism in the
category of graded vector spaces.

The operator P2 is defined as follows. For each 09 6 Ar(Z) and each liftable
simplex tp of Z we let/xxwo be the lifting of (p2(o))o. This operator is a dgc algebra
operator.

The operator Pl is defined as follows. For each o 6 f2 (Z) and each liftable

simplex o of Z we let* be the lifting of (Pl (w))o. This operator is a dgc algebra
operator.
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The operator fl is given by integration of differential forms on simplices:

where o AR(Z) and tp is a singular simplex of Z. The deRham Theorem says that

fl is a quasi-isomorphism in the category of graded vector spaces [10].
The operator f2 is given by integration of differential forms on simplices:

where o f2 (Z) and 9 is a liftable simplex of Z. This operator is differential if

we have fBi* 0. To prove this, we write S for the stratum of Z containing

9(int (/zzx (Bi))); since * o,/XA Os we get fB,* 0 because dim Bi >

dim/za (ni). Proceeding as in [21] one proves that f2 is a quasi-isomorphism in the
category of graded vector spaces.

The operator f3 is is given by integration of differential forms on simplices:

where EL(_..(Z)) and P is a liftable simplex of Z. This operator is differential
since fn, V 0; this comes from the equality ’0 /zx (rl,)z,,(, on int (Bi). We
already know that the local system C on LS(Z) is an extendable local system [10,
Proposition 14.11 ]; if we prove that D is an extendable local system it will follow that

f3 is a quasi-isomorphism in the category ofgraded vector spaces 10, Theorem 12.27].
This fact comes from the Poincar6 Lemmaand the Extension Property we prove below.
For this purpose we fix a decomposition A A0 ,... Ap.

POINCARI LEMMA. H ({liftableforms on A}) .
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We prove H ({basic forms on }) . First suppose that dim Ap > 0. Let t9 be
a vertex of Ap. Consider the following maps:

hi: A x [0, 1] -- A defined by

hl(roxo +... -F rpXp, t) roxo +... + l’p-lXp-1 "JI- rp(tO + (1 t)Xp),

h2" A [0, 1] - A defined by

h2(z0 Zp-l, Xp, t) (zo Zp-1, tO + (1 t)Xp).

They are smooth homotopy maps between A (resp. A) and A’ A0 .... Ap-1
{9} (resp. A’). Since/zA(hE(z0,..., Zp-l,Xp, t)) hl(/Zzx(Z0 Zp-l,Xp), t) the
basic forms are preserved and hE induces a homotopy operator between the complex
of {basic forms on A} and the complex of {basic forms on A’}.

Suppose dim Ap 0, that is, Ap {tg}. Write V for the simplex A endowed
with the decomposition A0 * Ap-2 * (Ap-1 * {tg}). Since the map r" V A,
defined by r(zo Zp-2, tXp-1 q- (1 t)) (zo Zp-2, [Xp-1, t], v), is a
diffeomorphism verifying/ZAor /ZV, we getthat the complexes {basic forms on A}
and {basic forms on V} are isomorphic.

Alternatively applying these two procedures we arrive at the case A { and
here it is clear that the cohomology of {basic forms on A _=

EXTENSION PROPERTY.

liftableform on A.
Each lifiable form on 0A possesses an extension to a

Let 0A E ’ (int (A)) / A face of 0A be a liftable form on 0 A. Let ’ E
f2 (ff"A) be the lifting, whichis a basic form satisfying ’--/zxr/aH on int (H)for
each face H of A. Since the fibers of/z,x: 0A --+ 0A are not necessarily connected
then we cannot identify liftable forms with basic forms.

First notice that any form on 0A possesses an extension to a form on A. Moreover,
ifthe form is basic then its extension is necessarily basic (the restriction/z zx" int (A) -int (A) is a diffeomorphism). So, it suffices to extend ’to a basic form defined on 0 A.

Consider F: F --~ A ~where F~ is a face of 0A. Using fa~ce maps one con-
structs a smooth map dF" Ff -- A sending isomorphically F on~ a face of 0A
and satisfying AOF FOlZF. Notice that in this case the map dF is not neces-
sarily unique (codim A F can be greater than 2). This equality impliesthat 0IF
{r/A / A face of F}, the restriction of r/to F, is a liftable form with lifting d’. Recall
that this form is/zF-basic.

For each {0 p 1} we put Vi /zA(Bi), whose induced decom-
position is just Vi A0 .... * Ai. Define the projection pri" Bi -- Vi by
pri(zo zi-, (xi, 1), zi+ Zp-, Xp) (zo zi-1, xi). This map sends
(the interior of) a face of Bi on (the interior of) a face of Vi. We define on Bi the

r*8"form ’i P vl, which is a basic form because/z,x lzvopri. Moreover, ’i is,the lifting of Olv," if H is a face of Bi then ’i Pri 8v,/ZxOzn) =/zxrhzan) on
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int(H).Since the lifting is unique the forms {Yo ,p_} define a basic form on
0A 0 A, the union of bad facies. Again, the uniqueness of the lifting implies that
this form coincides with ’ on 0 A. Therefore, the extension of ’ is constructed.

Commutativity. One easily checks that f30pl f2 and f3 op2 =/930 fl, that is,
diagram (9)is commutative. Since fl, f2, f3,/93 induce isomorphisms in cohomology
(as graded vector spaces) and P2, P are dgc algebra morphisms then P2, Pl are dgc
algebra quasi-isomorphisms. So, the dgc algebra minimal model of Z is that of

(Z). n

5.4. ProofofTheorem 3.4.1. We shall say that a morphism f" Z’ --+ Z between
two stratified spaces is good if it satisfies the two following conditions"

[P1] f preserves controlled forms: f*o) e flv(Z’) for any o e f2v(Z).
[P2] f preserves liftable simplices, fotP’-decomposition tP’-decomposition and

foO’ e L_S(Z) for any o, e L_.S(Z’).

Now consider the diagram

no(z’)
p’ pl

E(_(Z’)). A(Z’)

Pl 102
(Z E(gS(Zll A(Z

where the pull backs are defined as follows.
For each o9 e At(Z) and each liftable simple tp of Z’ we put (f*a)o, Ogfotp,.

This operator is a dgc algebra morphism.
Since f is good then f*" f2 (Z) --> f2o (Z’) is a well-defined dgc algebra operator.

For each ) e E(LS(Z)) and each liftable simple tp of Z’ we put (f*rl)tp OfoO,
which makes sense since f is good. One easily checks f*op’ pof* and f*op2
2 J which ends the proof E3

5.5. ProofofProposition 3.4.2. We first prove the following lemma

LEMMA. Let o. A ---> M be a simplex satisfying [LS1 ]. Then, thefamily ofstrata
ofM meeting Im tp is totally ordered.

We prove that if F1, F2 are two faces of A and S, $2 two strata of M with
O(int (Fi)) t3 Si 0, 1, 2, then S < $2 or $2 < S.

Since tp-1 (MdimSi) (resp. tp-1 (MdimSi-1)) is a face of A meeting int (Fi) (resp. not
containing int (Fi)) thenint (Fi) C tp- (MdimS,) (resp. int (Fi)fqtp-1 (MdimSl_l) I).
So, int (Fi) C o- (Mdim Si Mdim Si- and by connectivity we get int (F,.) C <P- (Si).
Notice that this implies O(Fi) C Si.
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Now consider F3, the smallest face of A containing F1 and F2. Let S3 be a stratum
of M with tP(int (F3)) f3 $3 0 (it always exists!). From the previous paragraph we
get tp (int (F3)) C $3 and o(F3) C $3 and therefore S1 t3 $3 0, $2 f3 $3 0 and so
S1 _< $3 and $2 _< $3.

Let us suppose dim $1 _< dim $2. Since the face tp-1 (MdimS,) contains int (F)
and int (F2) then it also contains F3 by minimality. Thus $3 C MdimS2 which gives
dim $3 _< dim $2 and therefore $3 $2. Finally, S _< $2.

Now, in order to verify Proposition 3.4.2, we need to verify conditions [P1]
and [P2].
Projection
[P1] This holds since zr is a liftable morphism.
[P2] Let o. A -- M be a liftable simplex. Following the lemma the family of strata

meeting Im o can be written as So < S < < Sp-1 < Sp. The tP-decomposition
of A is A Ao ,... * Ap with A0 ,... * Ai -1 (SO I,.,I... I,.J Si). Since rr is a
strict morphism then the family of strata of B meeting Im (zrotP) is zr (S0) < r(S1) <

< zr(Sp_l) < r(Sp). So, A0 ,... Ai (zrotP)-(zr(So) t_J t.J zr(Si)) which
implies that the (zroO)-decomposition of A is the tP-decomposition. The lifting of
zroO is just oP.
Inclusion .
[P1] Since len(F) 0, we have f(F) fl(F). Notice that the operator

*" g2 (B) - fl (F) is just R.
[P2] Let P" A F be a liftable simplex, that is, a smooth map P" A S where

S is a fixed stratum. So, the P- and the (,o0)-decompositions are just A A. On the
other hand, since/2: Z;(S) - S is a fibration and A is contractible then we can
construct a smooth map p" A Z with/zzop ,oP. So, this map is the lifting of
toO. E!
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