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1. Introduction

Let us denote the set of all numbers (i.e., nonnegative integers) by e, and
the class of all sets (i.e., subcollections of e) by V. If f(x) is a function
from a subset of e into , we write f and of for its domain and its range re-
spectively. The set a is recursively equivalent to the set/3 (written
if there is a partial recursive one-to-one function p () such that a p and
p (a) /. This relation between sets is reflexive, symmetric, and transi-
rive. The class of all sets z such that z a is denoted by Req c. Using the

relation one can extend the system [e, -k, consisting of the set e and the
binary operations of ordinary addition and multiplication to the system
[A, +, of all isols. The method by which this extension can be obtained is
sketched in Section 1 of [4]; for a detailed exposition, see [2].

There is a subcollection of A, called the collection of all regressive isols,
which plays a special role in the present paper. We shall therefore recall
its definition and some of its properties. A function t, from e into e is re-
gressive if it is one-to-one and there is a partial recursive function p (x) such
that pt p, p (to) to, and p (t+) t, for every n. A set is regressive
if it is finite or the range of some regressive function. Every set which is
recursively equivalent to a regressive set is itself regressive; also, every re-
gressive set is recursively enumerable or immune. An isol is regressive if it
contains at least one regressive set, or equivalently, if it contains only re-
gressive sets. The collection of all regressive isols is denoted by A. Both
A and A have cardinality c. Let t and t* be one-to-one functions from
e into e. Then t is recursively equivalent to t*, (written t --- t’n) if there is
a partial reeursive one-to-one function p (z) such that pt p and p (t) tn*
for every n. This relation between one-to-one functions from e into e is
also reflexive, symmetric, and transitive. The basic property of regressive
functions is as follows. Let t and t*n be one-to-one functions from
with respective ranges r and r*. If t and t* are regressive functions,

t t* *

This enables us to ssocite with every infinite regressive isol T denumerable
fmily of functions, namely the fmily of M1 regressive functions rnging over
sets in T. It cn be shown that if T is a regressive isol, so is 2 r.

In [4] the sum of n infinite series of finite isols (i.e., ordinary numbers)
ws defined, provided the summation is performed with respect to n infinite
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regressive isol. Let am be a function from e into e, and let T e An. If T is
finite, say T k,

ram <am (0fork 0),
and if T is infinite,

am Req n=0j (t, (am)),

where 0 o, , (0, ..., m 1) for m => 1, and tn is any regressive func-
tion ranging over any set in T. It is proved in [4] that for T e A e, x e e,
x>=2,

T

1-+- x-f- x2 -f
x 1.

T

We shall see below (Theorem 1) that this can be generalized to

XT 1
X--1

forT eAn-- , XeA, X => 2.

2. Summary
Let f0(X), fl(X), be an infinite sequence of functions from A into

itself. For every number m => 1 we write

Ef,(x) E=-o f(x), IIf(x) II,=-o f,(x).

The subscript m indicates therefore the number of functions which are to be
dded or multiplied. We clearly have

(1) for every number m _>- 1 and every number x => 2,

IIm (1 +x2’) 2.x’= (x’- 1)Ix- 1).

It is the purpose of this paper to generalize (1) to

(2) for every regressive isol T _>_ 1 and every isol X => 2,

II (1 + x’) . x’ (x 1)/(x 1).

3. Notations

The well-known primitive recursive functions j, k, defined by

j(x,y) (x + y) @ + y + 1)/2 + x,

can also be denoted by j2, k21, k2 respectively.

jl (x) x,

j+l(xl, .--, xn+) j(j(xl,

j, (kn (z), ..., k,, (z) z

j (k (z), (z)) z,

We put

x), X+l) (n => 2),

(n 1 or n => 3).
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The last relation holds therefore for all n > 1. It is often convenient to write

(al, ...,a)* -j(al, "",an) (n >__ 1).

We recall that for every n => 1 the function j maps n one-to-one onto e.
For any set a, the set a with n => 0 is defined by

0 (0),

={(x, -, )*lx, ., x} (n->l).

Moreover,
j(a,) {j(x, y)[x e a and y e },

j (a,

j(a,b) {j(x, b

If several parentheses occur in some formula which involves the j-function,
we shall sometimes use square brackets. For instance,

j[m,(al, ..., a)*] j(m,(a, ..., a)*).
Also, association is to the right so that

pk (a) p (k (a) fgh (x) f (g (h (x) ).

The words "regressive function" will only be used in the sense of "one-to-
one regressive unction from into ." The function t is sometimes written
as (n) without any warning concerning a change in notation. We write
"a by p", if p(x) is a partial recursive one-to-one function such that
a (pandp(a) ft.

4. Definitions

Let T be a nonzero regressive isol. If T is finite, say T k,

x x
If T is infinite,

ErX Req E:=0j(t, n),

where e X and tn is any regressive function ranging over any set in T.
To prove that rX is well-defined we need only consider the case that

T is infinite. Let s and t be two regressive functions, and let and be
any two sets. It suffices to prove the two statements

(3) s

() . ? =oj (t n) E=o j(t, ?n).

Proof of (3). According to the hypothesis there exists a partial recursive
one-to-one function q(x) such that

ps q and (’n)[q(s) t].
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Let
f(z) j[ql(z), /(z)] for/(z) tiq;

then f (z) is a partial recursive one-to-one function such that

fj (s, y) j (t y) for all n and y.

This not only implies the conclusion of (3), but also the stronger result

for every e V, n=0 j (S, n) __. n=0j (t, ) by f.
The gain in strength lies in the fact that f does not depend on .

Proof of (4). Let 7 by q. Put

gn (Z) jn[q]Cnl (Z), ", q]Cnn (Z)

then g (z) is a partial recursive function of n and z such that

(Vn)[ . v by gn].

Let p (x) be a regressing function of t. We recall that p* (x) is a partial
recursive function with tip as domain such that for every n, p* (t) n.
Writing g(n, z) for g (z) we define

f (z) j[]c (z), g (p*]c (z), (z))].

Then f (z) is a partial recursive function and

fj (t, y) j[t, g (y)] for every n.

It followsthatfmaps :=oj (t ) onto :=oj (t v). Letzl j (xl y)
and z j (x2, y2) be two distinct elements of tiff Clearly,

x x. (z) ] (z)

If, on the other hand, xl x2, rhea yl y2.

is a one-to-one function of y, hence

g(p*(m), y) g(p*(m), ye)

f (z) f (z).

Put m x, then g (p*(m), y)

and f(z) f(z:).

Thus f (z) is a one-to-one function. This completes the proof of (4).
In order to define the infinite product we use ultimately vanishing sequences

of numbers, i.e., infinite sequences of numbers which have only finitely many
nonzero elements. For each such sequence {x}, we put

where p0 2, p n odd prime number (for n __> 1), and ]c is any number
such that x 0 for n > lc. The mapping 0 maps the collection of all
ultimately vanishing sequences effectively and one-to-one onto . In particu-
lar it maps the sequence/0, 0, 0, .../ which we also denote by/0/ onto the
number 0. With every sequence/al of sets we associate the set
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For any one-to-one function tn from e into e and any set we define

II (t, ) II:=0 [(0) + j (tn, 2)].
Let T be any nonzero regressive isol. If T is finite, say T k,

H, ( + x’) H,: (1 + X2’).
If T is infinite,

IIr (1 + X=’) Req II (t, ),

where e X and t is ny regressive function rnging over ny set r e T such
that 0 r. The purpose of the condition 0 e r is to ensure that 0 j (tn, =")
for every n.
To prove that this infinite product is well-defined we may restrict our

attention to the case that T is infinite.
tions, and let ( and n be any two sets.

(5) sn__-.t and O c ps -f- pt

(6) --n nd Opt

Let s. and tn be two regressive func-
It suffices to prove the two statements

II (t,)-.l] (,),

II (t, )
_

II (t, ).

Proof of (5). It follows from the hypothesis that there exists a partial
recursive one-to-one function q (x) such that

OqWpq, psq, and (Xfn)[q(s) t].

Let the partial recursive functions a (x) and b (x) be defined by

a= q+ (0), a(0) 0, xetiq a(x) q(x),

b j (a, e), bj (x, y) j[a (x), y].

The function b (x) is one-to-one, b (x) 0 if and only if x 0, and for every
ultimately vanishing sequence {x},

(7) {xn}*elI (s, ) * {b(x)}*elI (t, ).

We claim that there exists a partial recursive function f (x) such that

(8) f {{Xn}* ([Xn)[Xn eb]}, {x}* ef /({xl*) {b(x)}*.
For there exist recursive functions c (n) and d (n, x) such that

c({0}*) c(0) 0,

(9) c({x0, ,xk,0,0,’"}*) It+ 1 for xk 0,

Thus the function

satisfies (8).

d (, xl *) x for every k -> O.

f(x) IIo"-1 pbnd(n’z) 1 for x e {[x}* (Vx)[x b]},

The function f(x) is one-to-one in view of (7), (8), and the
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fact that b (x) 0 if and only if x 0. This does not only imply the con-
clusion of (5), but the stronger statement

for every, II (t,)II (s,) byf.

Proof of (6). Let _. by p. There exists a partial recursive function
p (x) of k and x such that for every k

p j[ (0), (ip)] + (0), p (0) 0,

pj[x, (yl y) *] =j[x, (p (yl), p (y) )*] forx 0.

This implies that for every k, the function p(x) is a partial recursive one-
to-one function of x which for every a 0 maps j (a, k) onto j (a, v). Put
p (k, x) pk (x). Let q be a regressing function of t. We use the partial

t-1recursive function q with 6q as domain and the property that q (x) (x)
for x pt. Consider the partial recursive function w (z) defined by

(o) o,
w(z) =j[k(z),p(2q*(),l(z))] fork(z) 0 and k(z) eq*.

It follows that

(10) for every number n, w(z) maps (0) A-j(t, 2) one-to-one onto
(0) -4- j (t 2).

Let zx j (x, y) and z j (x2, y) be two distinct elements of iw. Note
that z 0 if and only if w (z) 0. Thus, if exactly one of z and z. equals 0,
we have w (z) w (z.). Consider the case that zl and z are both different
from 0. Clearly,

x x (z) (z.) w(z) w(z).

Now assume xx x2; then yl y2. Putting m 2q*(xl) we know that
p (m, y) is a one-to-one function of y. Hence

yxy2 p(m,y) p(m, y2) W(Zl) w(z2).

Thus H (t, ) II (t, 7) by w (z).

5. Theorems
In order to establish (2) we have to evaluate an infinite series and to expand

an infinite product in an infinite series.

THEOREM 1. For every regressive isol T >= 1 and every isol X >= 2,

(11) rX= (X- 1)/(X- 1).

Proof. If T is finite, say T k, we can deduce (11) from the relation

k--1(X-- 1)S= X- 1, where Sk n=0X,
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which can be proved as in elementary algebra. Henceforth we assume that
T is infinite. Let r e T, and let t. be a regressive function ranging over r.

For the notion of a finite function and the definitions of r (x) and a, see
[2, pp. 181, 182]. Let0eeX. Put0 -- (0),

a- =oj (t, ),

Thus (0) is the set of all indices with which the functions in 5= occur in
the infinite sequence r0 (x), rl (x), of finite functions. We have

oeX-- 1,

8-- (0) eXr- 1,

Hence it suffices to prove

a e rX,
Xi"j(0, a) (X- 1) r

(12) j (0, a) _. (0).

With every f e 5= we associate the number

d(f) max{n[f(t) 0}.

Every function f e 5 with d (f) d is completely characterized by the finite
sequence y0, yd, where y f(t.) for 0 _-< i d. With every number
u of the form

u j[x,j(tn, (Yo, Yn--)*)]
we associate the function f such that

fu(t) y for 0 i n-- 1,

fu(t) x,

f(w) 0 for w (to, tn).

Thus we see that
uej(o,a) re5=.

We claim that the mapping u -+ fu maps the set j (o, ) onto the family 5=.

For letfes=. Ifd(f) O, weputxo=f(to). Then

fi,=f for u--j[xo,j(to,O)]ej(o,a).

Ifd(f) =n> 0, weputx=f(t)for0=<i=< n. Thenx0, and

f,=f for u-j[x,,,j(t, (Xo, ,Xn-)*)]ej(o,a).

For every number u e j (0, a) we denote the unique number m such that

fu r, by g (u). It follows that

(13) g(u) maps j(o,a) onto -(0).

We wish to show that g (u) has an extension go(u) which is partial recursive
and one-to-one. Let p (x) be a regressing function of tn, let 0 c- (0)
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and a0 j (tip*, e). We take the recursively enumerable set j (e, a0) as the
domain of go (u). Assume

u j[x, j (y, z) ]e j (eo, ao).

Let n p* (y). Then z determines a unique ordered n-tuple (Zo, z_l)
such that z (z0, z_l)*. Hence

u j[x, j (y, (Zo, z,_)*)].
We define go (u) as the unique number rn such that

rm(y) x, r,p(y) Z-l, r,p2(y) z_2, rp(y) z0,

r(w) =0 for we (y,p(y),... ,p(y)).

It is readily seen that go (u) is a partial recursive function which is an ex-
tension of g (u). We proceed to prove that the function go (u) is one-to-one.
Assume

Ul j[Xl ,j(yl (Vo va-1)*)] ej(eo

u j[x j (y (Wo w,-1) * e j eo ao

Let m (1) go (ul), m (2) go (u), f r() f. rm(2) Suppose f f..
We shall show that u u. We have

f (yl) x, a p* (y),

f p (yl) re-l, p (yl Va_ f pa (Yl) Y0,

f (W) 0 for w e (y p (y) pa (y) ),

f (y) x., b p* (y,),

f2p(y2) wb_, fp(y) wb_., f.p(y) w0,

f2(w) =0 for we (y.,p(y),...,p(y.)).
Since f f., we have f. (yl) f (y); however, f (y) xl, where xl 0.
Thus f. (y) 0, and this implies

yle (y., p(y), p(y)),

(14) Y pi (y) for some i with 0 -<_ i =< b.

Applying p-i to both sides of (14) yields pb-i(y)--p(y:); however,
b p* (y); hence p+ (y.) p (y.). We conclude

(15) p-+ (yl) p- (y) for some i with 0 =< i =< b.

Now suppose b were less than a. Then b i < a, and (15) would be false.
Thus b ->- a. Similarly we can prove a >= b. Hence a b, and (15) implies

pa-i+l (y) pa-i (y) for some i with 0 =< i =< a.

The last equality is false for 0 < i < a; also, it implies a 0, in case i a.
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Thusi=0 andyl= y2inviewof (14). Froma= b, yl= y2,fl=f.,it
readily follows that u u. Since the function g(u) mentioned in (13)
has a partial recursive one-to-one function as extension, namely go (u), the
proof of (12) is complete.

THEOREM 2.

(16)

For every regressive isol T >= 1 and every isol X,

II ( + x) .’ x.
Proof. If T is finite, say T k, the relation (16) reduces to

+X)(+X)(+x) (+X-)
I+X+X+X+... +X-,

which can be verified by expressing the left side as a polynomial in X. If
X 0, both sides of (16) equal 1. We therefore restrict our attention to
the case" Tinfinite, X>= 1. Let/-- (1, 2, -..). Put

v0 (0) +j(0, v), 0 [j (0, 0) (0),

(0) q-j(l, j(1, n),

w. (o) + j (2, ), (2, V),
V3 (0) q-j (3, vs), 3 j (3, v3),

, (0) q- j (n, n), G j (n, n),

II:=o, :=0.
We proceed to prove

(17) there exists a partial recursive one-to-one function with /as domain
and t as range.

It is clear that 3’ and ti are infinite recursively enumerable sets. Let
x {xl* /. If x= O, we define f (x 0. Assumex#0, say

x {x0, xk, 0, 0, --.}*, where xk # 0.
We then define

2 2.e= sg(x) for 0_<i_< /c, m= e0. -t- -t-e"
Note that for every i with 0 <= i =< /c, either x 0 or xi e j (i, v2) and that
the value of e tells us whether the first or second alternative is realized; these
two alternatives exclude each other, since 0 " for every n _>_ 1. We have

if e0 1, x0 j(0, yn) for someynev,

if e 1, x j[1, (y., y.)*] for some y, y e v,

if e. 1, x j[2, (y4,’",y4)*] for somey4,-.. ,yev,

if e 1, x j[/c, (y,,, y,)*] for some y,l, y., e ,
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where the hypothesis of the last conditional is true. For each i with 0 _-< i =< /c
we have" ei 1 implies that (xi) represents an ordered 2i-tuple of elements
of 7. We define

f (x) j[m, (Zi, Zm) $],
where zl, zm is the ordered m-tuple of elements of obtained by con-
catenating the sequences represented by those (xi)’s among

(I) (x0), ,(x),

for which e 1 (in the order in which they occur in (I)). Thus
f(x) e . Hence f(x) is a partial recursive function from / into ti.
Let xl and x2 be two distinct elements of ,. If exactly one of x and x2 equals
0, exactly one of f(x) and f(x) equals 0; hence f(x) f(x.). Now assume
both x and x are different from 0, say

xl {Xl0, x, 0, 0, ..-}*, where xl 0

x {x20, x2q, 0, 0, -..}*, where xq O.
Then

kf (x) m osg (x). 2i, kf (x) m =o sg (xi)" 2’.

Hence m m: implies f(xl) f(x.), and we may restrict our attention to
the case m m2, i.e., the case

p--q and (Vi) [i <= p sg (xl) sg (x) ].

Writing m for m (and m.) we have

f (x) j[m, (z, z,)*], f(x) j[m, (z21, z.m)*].

Since x x2, there exists a number v such that 0 <= v <= p, sg(x)
sg(x.) 1, while l(x,) and l(x.) represent distinct ordered 2-tuples of
elements in 7. In view of the fact that the elements of these ordered 2-tuples
occupy the same positions in Zll, zm as in z, z. we see that

(z, z)* (z., z)*

hence f(x) f(x:). Thus f(x) maps one-to-one into ti. Finally, let
yet. Ify--0, theny--f(x) forx--0. Now assumey0, say

y j[m, (y, y,)*],

2wherem=e0. -t- -t- e," 2 with e, 1.

We can effectively deconcatenate the ordered m-tuple yl, y into (read-
ing from the left to the right)

an ordered 1-tuple, in case e0 1,

an ordered 2-tuple, in case el 1,
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an ordered 4-tuple,

an ordered 8-12 -tuple,

an ordered 2-tuple

in case e2 1,

in case es-1 1,

(we know that e =1).

p+l {il0 =< i_-< x+ lande+l,i-- 1},

Pa’(n) {a(i) 10 =< i =< n and ei 1}

a{ilO <= i <- n and ei 1} a(p).

If n assumes successively the values 0, 1, then p runs over the class Q
of all finite sets, p,(,) a(p,) over the class of all finite subsets of a pa,
and a’ (n) over the set

2Req()X p, C ot} e

It follows from the definition of a (n) that a’ (n) is strictly increasing because
a (n) is. Using the three facts

2a(0) 2a(n+l)a’ (n -- 1) e+,o. -- -t- e+,+.

It follows that

For0 <= i <= s, let in case e 1,

y2. y2.2i

be the ordered 2Ltuple arising in the deconcatenation of yl, ym Define
x= [Xn}*,wherex=Oforn> s, andfor0 =< i=< s,

x 0, in case e 0,

x j[i, (y2., y2.2)*], in case e 1.

We then see that y f (x), where x e -/. Thus f is a partial recursive one-to-
one function with /as domain and as range. This completes the proof of
(:7).
With every strictly increasing function a (n) from e into e we associate the

function
2a(0)a (n) eno" "- 45" enn’2a(n),

Where e,0, e,, is the sequence of zeros and ones such that

2 .2 n.n-- enO" + Wen,,

This implies that if i (n) denotes the identity function, so does i’ (n). We use
the well-known enumeration p0, pl, without repetitions of the class Q
of all finite sets defined by

p0-- o, p+l= (y,... ,y),

where y, y are the distinct numbers such that

x 1-- 2-t- 2.
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2a(0) .2a(n)a (n) =e,o. + +e,,

mx l } --< mx/i +, 1},

we see that if a (n) is regressive, so is a’ (n). Let us now return to the proof
of (16) for X >= 1, T infinite and regressive. Every regressive isol contains
some retraceable set which does not contain 0. Let e X, 0 r, r e T, r

retraceable, t the (regressive) function which enumerates r according to
size. Put

The set yS belongs to the left side of (16). Also, t’ is a strictly increasing
regressive function which ranges over the set {xIpx c r} 2 T. Hence 8
belongs to the right side of (16). It therefore suffices to prove

(18) 3
, .

We shll construct mpping f from into using the prticulr prtil
recursive one-to-one function f which we used in the proof of (17). Let

* x}* f xe If =0, let (x) =0. If 0, say

z (x,... x, 0, 0, .-.}*, where x 0,
the b + 2 numbers

2 2e=sg(x) for 0ib, m e0. +...+e.
cn be computed from x. Let for every i 0,

x=0 if x=0,
j[, z(x?)] if 0;

then we hve for every i 0,

either x =x =0,

or x=j(t,y) for someyendx=j(i,y).
Let p (x) be regressing function of t., then

x=0 if x =0,

x, [p (x), z(x,)] if x, 0.

Define x {Xn} * then x cn be computed from x. Now compute f(x), sy

f (x) j[m, (z z) *].
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Thenf (x) is defined by

fa (x) j[t’ (z z,)*].
Note that

(z z,) * lf (x) t emo" 2
t() + -- e. 2t(b),

where e0,.--,e can be computed from x, and t(0),..-,t(b) frown
(b) k (x); here x is the exponent of the highest prime which divides

x -- 1. Thus fa (x) can be computed from xa. We leave it to the reader
to verify that fa maps one-to-one onto ta. Using the tact that t and t’
are strictly increasing regressive functions, one can also prove that both fa
and its inverse have partial recursive extensions. It then follows by [4,
Proposition 1] that ,a a, i.e., that (18) is correct. This completes the
proof of (16).

ConoAnY. For every regressive isol T >= 1 and every isol X >= 2,

IIr (1+x) (xr- 1)/(x- 1).

Remark. Let A denote the collection of all cosimple isols, i.e., of all isols
which contain a set with a recursively enumerable complement. We know
that

X, YeA XreA,
X =< Y and Y

by [2, Theorems 56, 140]. Clearly, for X >_- 2, T -> 1,

(Xr- 1)/(X- 1) _-< Xr- 1.

It follows therefore from Theorem 1 thut rX is cosimple for every regres-
sive cosimple isol T _>_ 1 and every cosimple isol X __> 2. For X 0 this
infinite series equals 1, and for X 1 it equals T (cf. [4, Theorem 2]). The
condition X >_- 2 may therefore be omitted. If T is regressive and cosimple,
so is 2 r. We conclude by Theorem 2 that IIr (1 --X) is cosimple for
every regressive cosimple isol T => 1 and every cosimple isol X.
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