DIOPHANTINE SETS OVER POLYNOMINAL RINGS'

BY
MArRTIN Davis aAND HiLArRY Purnam

Recent work (ef. [1], [2]) on decision problems for Diophantine equations
can be generalized to various rings other than the integers. In this paper,
we shall prove the recursive unsolvability of the analogue of Hilbert’s tenth
problem (cf. [2]) for the ring J[¢] of formal polynomials with integer coeffi-
cients.

1. Principal results

We begin with the following notational conventions:

J is the ring of rational integers, R is a recursive ring (in the sense of [3])
such that J < R. The letter £ with or without a numerical subscript is an
indeterminate. Where the contrary is not explicitly stated, capital Latin
letters stand for elements of R, lower case Latin letters stand for positive
integers, capital Greek letters stand for sets.

DerFintrioN. A set T is called Diophantine over R if for some polynomial
form P(&, &, +--, &) in the polynomial ring R[%, &, - - -, &), we have

XGE > Vyl"“vYnP(X? Yl? "';Yn) =0~

A similar definition may be given for predicates R(X:, -+, X.). We
have at once

CoroLLARY 1.1. If T is Diophantine over R, then T is a recursively enum-
erable’ set.

We shall be concerned with the following decision problem which we call
the Diophantine problem over R:

To determine of a given polynomial form P(&, +++, En) € Rl&1, -+, £u]
whether or not the equation P(& , -+, £x) = 0 has a solutton in R.

For R = J, the ring of integers, this is exactly Hilbert’s tenth problem.

Invoking the Church-Turing identification of recursiveness with effective
calculability, and using the fact that there exists a recursively enumerable
set which is not recursive, we have at once

CoROLLARY 1.2. If every recursively enumerable set of posttive integers is
Diophantine over R, then the Diophantine problem over R s unsolvable.

The main result of the present paper, whose proof we postpone, is

Received November 22, 1961.

1 This research was supported by the United States Air Force through the Air Forece
Office of Scientific Research of the Air Research and Development Command.

2 Note that R is recursive, so this concept is defined for sets of elements of R.

251



252 MARTIN DAVIS AND HILARY PUTNAM

TaeorEM 1.3. Every recursively enumerable set of positive integers is
Diophantine over JI£.

From Corollary 1.2 and Theorem 1.3 we have
CoroLLARY 1.4. The Diophantine problem over J[t] is unsolvable.

Let ¢ be a homomorphism from J[£] to J[£l/(Q(£)) where (Q(£)) is the
principal ideal of all multiples of the polynomial Q(£). We write J[£] for

JI£/(Q(£)). For each polynomial P(é, &, « -, &) in J[E] [&, &, - -+, &l
let P°(&, &, -+, &) be the polynomial over J[£'] obtained by replacing in
P(%, &, -+, &) each coeflicient by its image under ¢. Let

(1> z {xlvyl"":yné-’[ﬂ P(x7 Yla ) Yn) = 0}7
(2) 2 = {2|Vr o mpeown PP, Ya, -+, Vo) = 0},

Then, clearly, = < 2°. If in particular we choose for = a set which is stmple
in the sense of Post, then either =’ is simple or 3° is finite. Since a simple
set is not recursive, we have

It

COROLLARY 1.5. Either for every o, 3¢ is finite, or for some o, the Diophan-
tine problem over J[£'] is unsolvable.

But it is easy to prove

CoRrOLLARY 1.6. If the Diophantine problem over J (i.e., Hilbert’s tenth
problem) is solvable, so is the Diophantine problem over J[£’], where o is a
homomorphism of J[g] onto JI£]/(Q(E)).

Proof. The elements of J[£'] may, as is well known, be taken as elements of
J[g] of degree less than that of Q(£) added and multiplied modulo Q(%).
Hence

Voroormeszn P(Y1, -+, Y,) =0 &

VoV, a@) o™ o aspres P(Ma(£), -+, Ma(£)) = 0 mod Q(§),
where Q(£) is of degree m —+ 1 and M(¢) = Z:=0 a$?(g). That is,
Vrieovmesizey P(Y1, -+, Ya) =0 &

Va0 eeafd) oo™ e afp bo,ee - tyes [P (M1(8), =+, Ma(£))

Q(s) > by £,

where & = ¢ — (m + 1) and ¢ is the degree of P(M:(£), -+, M.(£)), and
the last polynomial identity is equivalent to the conjunction of (m + 1)
polynomial predicates, which proves the result.

Combining Corollaries 1.5 and 1.6, we have the curious result:

CoROLLARY 1.7. If 2 is any simple set expressed in the form (1), then either
=7 is finite for every o, or Hilbert's tenth problem is unsolvable.

It remains to prove Theorem 1.3.
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2. Some lemmas on Pell's equation

In what follows we assume familiarity with the notation and results of [4].
LemMa 2.1. X* — 3Y? = 1 has the same solutions in J[£] as in J.

Proof. Let [Py(£)]° — 3[P2(£)]’ = 1, where neither P;(£) nor Py(¢) is a
constant, and where, with no loss in generality, we may assume the leading
coefficients of P1(£), Ps(£) to be positive. Then, for ¢ sufficiently large, say
for £ = N, Pi(§), P2(£) are positive and increasing. Thus,

Pl(N) =qa; = a.

Pi(N 4+ 1) =a; > a;; hence a; = a;.
Pi(N 4+ 2) = ar > a;; hence ar = as.
In general,
Py(N +7r) = a,.
Similarly,

PyN +7r) = ar.
Hence, for ¢ > N,
Pi(£) + Pa(§)v3 2 aew + af-x V3 = (2 + Vv3)7.

But for ¢ sufficiently large, this inequality is certainly false. Hence, P;(§)
or Py(¢) must be a constant. But if one is constant, so is the other. This
completes the proof.

When ¢ = a, a positive integer, the solutions of

X-F-1Dyr=1

in positive integers are the numbers a, , a,, of [4], both of which are solutions
of the second order difference equation

(3) Un+2 = 2E'Un+1 - Un B

We now define sequences A.(%), AL (%) of elements of J[¢] by the require-
ments that each sequence satisfies (3), and that

Ag(8) =1,  Ao(®) =0,
Ayg) =& Au®) =1

Then we have
LemmA 2.2,  The solutions of
(4) X—-FE-nr=1

are given precisely by
X = 24.(8), Y =A.8).
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Proof. For each integer value of £ the values X = A,.(§), ¥ = A4n(§)
satisfy (4). Thus, the polynomial

P(g) = [A.(O)F = (£ = DMA(OF - 1

is equal to 0 on the integers and hence vanishes identically, i.e., the poly-
nomials X = A,(£), Y = A, (£) satisfy (4).
Conversely, let

UEF - (& -DVEF=1,

where U(%), V(§) are ultimately positive. Let N be chosen so that ¢ > N
implies U(¢) > 0, V(£) > 0. Then, for each ¢ > N,

U(a) = ¢y, Vi(a) = gy -
Thus,
Ua) + V(a) vV(a" = 1) = ¢ + jwy vV (a" = 1) = (a + V(" = 1))".
Hence, as a — «,

log (U(a) + V(a) v(a® = 1)) _  0(loga)
log (@ + +/(a2 — 1)) log a + 0(1)

Thus, for a suitable K, f(a) < K for all positive integers, and we may con-
clude that for some integer ¢, f(a) = ¢ for infinitely many values of a, so
that, for these values of a,

Ua) + V(a) V(a" = 1) = Ay(a) + Ag(a) V(" = 1).
Finally, the equations
U(a) = Aq(a),  V(a) = Ag(a)

must hold for infinitely many values of a and hence identically.

DerinttioN. If P(§) = Q(£)(¢ — a) + m, we write

m = Rem(P(§), £§ — a).
Lemma 2.3. Rem(4,(£),£—1) =n; Rem(A4,(%),&—2) = 2, = 4,(2).
Proof. By the remainder theorem, Rem(A4,, § — 2) = A4,.(2). But

’

clearly 4,(2) = 2,. Also, Rem(4, ,&— 1) = A,(1) = 1,. But a trivial
induction using the recurrence (3) suffices to show that 1, = n.

fa) = = 0(1).

3. Proof of the main result
LemMA 3.1.  The set II of all positive integers is Diophantine over J[£].

Proof. We claim that
Xell & \/A,B,C',D,U,V,W,Z,Y,R [(Y2 - 3R2 = 1)
ANX=A"4+B+CC+D+1D)ANY=X+U+TV+W+ 2.
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For, if X is a positive integer, we can represent it as 4> 4+ B* + C* + D* + 1.
For Y, R we select a solution of the Pell equation ¥* — 3R’ = 1, where
Y > X, and finally represent ¥ — X as the sum, U* + V* + W* + Z°, of
four squares.

Conversely, suppose X is a polynomial satisfying the condition on the right.
Then, by Lemma 2.1, Y, R ¢ II. But X(¢) < Y for all £, But, since X (§) is
one plus the sum of squares, it is positive definite, and hence if it is not con-
stant, it will assume arbitrarily large values. Thus, X(#) must be a con-
stant, i.e., X e II.

DEeriNITION. A predicate p(u, v) is called a Julia Robinson predicate if
(1) p(u, v) — v = u'
(2) for each k, there are u, v for which

p(u, v) N\ v > u'.

LevMa 3.2. If there is a Julia Robinson predicate which is Diophantine
over JI£|, then every recursively enumerable set is Diophantine over JI£].

Proof. By [1], for each recursively enumerable set Z of positive integers,
we may write

X € 2 < th,---,tk,u,v [P(tl, MY tk: U’) 7), x) = 0 /\ p(u) v)])

where P is a polynomial and p(u, v) is any Julia Robinson predicate. Sup-
pose that
p(’ll-, U) > VUIY"',Um Q(u7 v, Ul; Y U'm) =0

for some polynomial @, and let II be the set of positive integers. Then
XeZX o Voomovonon P(Toy +o, Te, U, V,X) =0
ANQU,V, Ui, -+, Un) =0 ATiell A+ ANTpell AN X eIl
ANUell ANV eIll.

LemMa 3.3. Let p(u,v) < v =2, N\ u > 3. Then p(u, v) is a Julia
Robinson predicate and is Diophantine over JI£|.

Proof. By [4, Lemma 4], 2" < 2, < 4". Hence, for u > 3,2, < 4" < u".
Suppose 2, < u” for some k and all w > 3. Then 2" < u* for all u > 3,

which is certainly false. Hence, p(u, v) is a Julia Robinson predicate.
Next, by Lemmas 2.2 and 2.3,

=2, o Vaiu A= (EF -1 =1]
AVald =@ -2+ AVald =@ (& —1)+ul}.

Finally,
u>3 © VA’B’C'DM=4+A2+B2+CZ—|—D2_
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Hence p(u, v) is Diophantine over J[g].
Theorem 1.3 follows at once from Lemmas 3.2 and 3.3.
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