
DIOPHANTINE SETS OVER POLYNOMINAL RINGS

MAIWlN DAVIS AND HII,AI PIWN&I

Recent work (cf. [1], [2]) on decision problems for Diophntine equations
cn be generMized to vrious rings other thn the integers. In this pper,
we shll prove the recursive unsolvbility of the nlogue of Hilbert’s tenth
problem (cf. [2]) for the ring J[] of formal polynomiMs with integer coeffi-
cients.

1. Principal results
We begin with the following notational conventions:
J is the ring of rtionl integers, R is recursive ring (in the sense of [3])

such that J R. The letter with or without numericM subscript is n
indeterminate. Where the contrary is not explicitly stated, cpitM Ltin
letters stand for elements of R, lower cse Ltin letters stand for positive
integers, cpitM Greek letters stund for sets.

DEFINITION. _A_ set Z is clled Diophantine over R if for some polynomiul
form P(0, , ) in the polynomial ring R[0, , ], we hve

X e V v....,r, P(X, Y,..., Yn) O.

A similar definition my be given for predicates R(X, ..., Xn). We
hve t once

COIOLLAIY 1.1. If is Diophantine over R, then is a recursively enum-
erable set.

We shM1 be concerned with the following decision problem which we cM1
the Diophantine problem over R"

To determine of a given polynomial form P(, ..., ) e R[, ..., ]
whether or not the equation P ,,) 0 has a solution in R.

For R J, the ring of integers, this is exactly Hilbert’s tenth problem.
Invoking the Church-Turing identification of recursiveness with effective

cMculbility, nd using the fact that there exists recursively enumerble
set which is not recursive, we hve t once

COlZOLL&R 1.2. If every recursively enumerable set of positive integers is
Diophantine over I, then the Diophantine problem over R is unsolvable.

The mMn result of the present pper, whose proof we postpone, is
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THEOREM 1.3. Every recursively enumerable set of positive integers is
Diophantine over J[].

From Corollary 1.2 and Theorem 1.3 we have

COROLLARY 1.4. The Diophantine problem over J[] is unsolvable.

Let a be a homomorphism from J[] to J[]/(Q()) where (Q()) is the
principal ideal of all multiples of the polynomial Q(). We write J[] for
J[]/(Q()). For each polynomial P(0, 1, ) in J[] [0, 1, ],
let P(0, , ) be the polynomial over J[] obtained by replacing in
P(0, , n) each coefficient by its image under a. Let

(1) 2; {xlVr,.....r,,[]P(x, Yx, ..., Y,) 0},
(2) 2; {xlVr,.....r,zI.,P(x, Y,,..., Y,) 0}.
Then, clearly, 2; 2. If in particular we choose for 2 a set which is simple
in the sense of Post, then either 2 is simple or Z-; is finite. Since a simple
set is not recursive, we have

COROLLARY 1.5. Either for every , Z-’; is finite, or for some (r, the Diophan-
tine problem over J[] is unsolvable.

But it is easy to prove

COROLLARY 1.6. If the Diophantine problem over J (i.e., Hilbert’s tenth
problem) is solvable, so is the Diophantine problem over J[], where is a
homomorphism of J[] onto J[]/(Q() ).

Proof. The elements of J[] may, as is well known, be taken as elements of
J[] of degree less than that of Q() added and multiplied modulo Q().
Hence

Vrx,...,r,at. P( YI Y,) 0

Va(ol’,...,a(ml,,...,a(on’,...,a(mn,,j P(M(), ..., M,() =- 0 mod Q(),

where Q() is of degree m -f- 1 and M() j=0 a)(). That is,

Vrl.....r[,] P(Y, Y) 0 -Va(o1),...,a(ml),...,a(on’,...,afmn),bo,...,blzj [P(M(), ..., M())

where/ q (m -f- 1) and q is the degree of P(M(), M($)), and
the lavt polynomial identity is equivalent to the conjunction of (m if- 1)
polynomial predicates, which proves the result.

Combining Corollaries 1.5 and 1.6, we have the curious result"

COROLLAaY 1.7. If Z is any simple set expressed in the form (1), then either
Z---; is finite for every , or Hilbert’s tenth problem is unsolvable.

It remains to prove Theorem 1.3.
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2. Some lemmas on Pell’s equation
In what follows we assume familiarity with the notation and results of [4].

LEMMA 2.1. X 3 y2 1 has the same solutions in J[] as in J.

Proof. Let [PI()] 3[P2()] 1, where neither PI() nor P() is a
constant, and where, with no loss in generality, we may assume the leading
coefficients of P(E), P2() to be positive. Then, for sufficiently large, say
for />- N, P(), P.() are positive and increasing. Thus,

PI(N) a >-_ ao.

P(N- 1) a1 > a; hence aj >_- a.

PI(N 2) ak > at; hence ak-> a:.

In general,

Similarly,
P(N + r) a.

P2(N + r) >- at.

Hence, for > N,

PI() + P()V’3 >- a_ -t- a- v’3 (2 + V’3)-But for sufficiently large, this inequality is certainly false. Hence, P()
or P:(}) must be a constant. But if one is constant, so is the other. This
completes the proof.
When a, a positive integer, the solutions of

X- (- 1)Y= 1

in positive integers are the numbers a,, as of [4], both of which are solutions
of the second order difference equation

(3)

We now define sequences A,(), A () of elements of J[] by the require-
ments that each sequence satisfies (3), and that

Ao(/) 1, Ao(/) O,

A() , A’() 1.
Then we have

LEMMA 2.2. The solutions of

(4) X- (-- 1)Y 1

are given precisely by
X =t=A(}), Y =i=A(}).
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Proof. For each integer value of the values X An(), Y A’,,()
satisfy (4). Thus, the polynomial

p() [A()] (- )[A’()]
is equal to 0 on the integers and hence vanishes identically, i.e., the poly-
nomials X An(), Y A’ () satisfy (4)

Conversely, let
[u()] (- )[v()]: ,

where U(), V() are ultimately positive. Let N be chosen so that > N
implies U() > 0, V() > 0. Then, for each a > N,

U(a) a,(a) V(a) as(a).

Thus,

U(a) - V(a) %/(a 1) af(a) - aj(a)%//(a2- 1) (a - %/(a 1))’(a).
Hence, as a --. ,

f(a) log (U(a) + Y(a) /(a 1)) 0(log a) --0(1).
log (a + ’(a 1)) log a + 0(1)

Thus, for a suitable K, f(a) < K for all positive integers, and we may con-
clude that for some integer q, f(a) q for infinitely many values of a, so
that, for these values of a,

U(a) -t- V(a) /(a 1) Aq(a) -t- A(a) /(a- 1).

Finally, the equations

U(a) Aq(a), V(a) Aq(a)

must hold for infinitely many values of a and hence identically.

DEFINITION. If P() Q()( a) - m, we write

m Rem(P(), a).

LEMMA 2.3. Rem(At(),- 1) n; Rem(A(),- 2) 2 A(2).

Proof. By the remainder theorem, Rein(An, 2) An(2). But
A’ But atrivialclearly A (2) 2 Also, Rem( , 1) A (1) 1’

induction using the recurrence (3) suffices to show that lt n.

3. Proof of the main result

LEMMA 3.1. The set II of all positive integers is Diophantine over J[$].

Proof. We claim that

Z II - /A,B,C,D,,v,W,z,Y,R [(Y--3R 1)

/ (X A + B + C + D + 1) / (Y X+ U- V- W+Z)].
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For, if X is a positive integer, we can represent it as A A- B -- C -- D -4- 1.
For Y, R we select a solution of the Pell equation Y 3R = 1, where
Y > X, and finally represent Y X as the sum, U -4- V A- W -4- Z, of
four squares.

Conversely, suppose X is a polynomial satisfying the condition on the right.
Then, by Lemma 2.1, Y, R e II. But X() < Y for all . But, since X() is
one plus the sum of squares, it is positive definite, and hence if it is not con-
stant, it will assume arbitrarily large values. Thus, X() must be a con-
stant, i.e., X e II.

DEFINITION. A predicate p(u, v) is called a Julia Robinson predicate if
(1) p(u, v) ---> v <= u,
(2) for each k, there are u, v for which

(u, v) A v > u.
LEMMA 3.2. If there is a Julia Robinson predicate which is Diophantine

over J[], then every recursively enumerable set is Diophantine over J[].

Proof. By [1], for each recursively enumerable set 2: of positive integers,
we may write

x e /tl,...,tk., [P(tl, ..., tk, u, v, x) 0 A p(u, v)],

where P is a polynomial and p(u, v) is any Julia Robinson predicate. Sup-
pose that

p(u, v) - V,...,, Q(u, v, u, ..., v,) o

for some polynomial Q, and let II be the set of positive integers. Then

X eZ - Vrl,...,rk,,v,,,...,m[P(T1,"’, Vk, U, V,X) 0

A Q(U, V, U, ..., U,) o A T eII A T ell A X eli

A U II A V r].

LEMMA3.3. Let p(u, v) v 2, A u > 3. Then p(u, v) is a Julia
Robinson predicate and is Diophantine over J[[].

Proof. By [4, Lemma4],2 2<4. Hence, foru> 3,2<4 <u".
Suppose2 < uforsomekandllu > 3. Then2" < uforllu > 3,

which is certainly false. Hence, p(u, v) is a Julia Robinson predicate.
Next, by Lemmas 2.2 and 2.3,

v 2 +- V,, {[A- (2-- 1)(A’)2= 1]

A / [A Q.( 2) + v] A / [A’ Q.( 1) -t- u]}.
Finally,

u > 3 - /,s.c.,u 4+A2+ B+ C2+ D.
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Hence p(u, v) is Diophntine over J[].
Theorem 1.3 follows at once from Lemmas 3.2 and 3.3.
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