
EXTENSIONS AND COROLLARIES OF RECENT WORK ON
HILBERT’S TENTH PROBLEM

BY

MARTIN DAvis

This paper consists of three separate notes related only in that each of the
three either extends or employs the results of [2], with which acquaintance is
assumed.

1. A sharpening of Kleene’s normal form theorem
By form of Kleene’s normM form theorem (cf. [1] or [3]) we my under-

stand the following ssertion"

THEOREM. There is a function U(y) and a predicate T(z, x, y) both belong-
ing to the class Q such that a function f(x) is partially computable if and only
if for some number e

f(x) V(minv T(e, x, y) ).

In its original form, this result ws stated with Q the class of primitive re-
cursive functions nd predicates. It is well known (cf. [3] nd [6]) that
smller classes Q suffice. We wish to point out here that (ssuming vribles
to rnge over the positive integers) we my tke for Q the following extremely
modest class"

(1) A function f belongs to Q if and only if f can be obtained by repeated ap-
plication of the operation of composition to the functions" 2, x.y, N(x) O,
U(x x) x, K(x), L(x), where K(x), L(x) are recursive pairing
functions.

(2) A predicate R x x belongs to Q if
R(x ,

where f, g e Q.

In fct, we my even tke U(y) K(y).
To see this we begin by noting that by Corollary 5 of [2], (or rther the

immediate extension thereof to predicates), we hve

VvT(z,x,u,y) V,....P(z,x,u,x,...,x,2,...,2") =0

{EVXl,...,xn j=lf(Z, x, u, x, x, 2, 2)

x, ..., 2 -.., 2 },
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wheref, g e Q,j 1, 2, m.

EA =

we see that

Now, using the fact that_
2A 2;B

II 2t iI 2B1,

V, T.(z, x, u, y) +--> /l.....x.R(z, x, u, y, xl x),

where R e Q. Now, let
a(t) K-(t),
q(t) L(K-J(t) ), j 2, 3, ...,n,

where the exponent on K indicates iterated application, so that q(t) Q,
j 1, 2, ...,n. Thus

V, T2(z, x, u, y) /t R(z, x, u, y, ql(t), "", qn(t)

/t S(z, x, u, y, t),
where S e Q.

Let f(x) be any partially computable function. Then the predicate
u f(x) is semicomputable (recursively enumerable). Hence, for some e,

u =f(x) /T2(e,x,u,y)

Finally,
f(x) K(min S(e, x, K(y), L(y) ).

So, we have derived Kleene’s normal form theorem with

T(z, x, y) S(z, x, K(y), L(y) and U(y) K(y).

2. Negative solution to a problem of Quine

In [4], Quine proposed the following problem:
Let us consider schemata constructed from the following ingredients: nu-

merals, variables ranging over the nonnegative integers, the symbols of sum,
product and power, -, and the truth-function signs.

Such a schema is called valid if it becomes a true sentence whenever all of
the variables occurring in it are replaced by numerals. The proposed problem
is to give an algorithm for determining whether or not a given schema of this
kind is valid.
We note here that the recursive unsolvability of this problem follows directly

from the results of [2]. For, to each exponential Diophantine equation,
E F, there corresponds, mechanically, a "translation": F A which is a
schema of the kind being considered. Moreover, E F has a solution if
and only if the schema (1 A) is not valid. Hence, an algorithm for
solving Quine’s problem could be used to solve the decision problem for ex-
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ponential Diophantine equations. But, by [2], there is no algorithm for solv-
ing this latter problem. Hence, Quine’s problem is likewise unsolvable.

3. Diophantine representation of recursively enumerable sets
in terms of a single predicate of exponential growth

A predicate p(u, v) will be called a Julia Robinson predicate if
(1) p(u,v) -- v <= uu,
(2) for each 1 > 0, there are u, v such that

p(u, v) A v > u.
We shall prove the following

TEOREM. Let S be a recursively enumerable set. Then there is a poly-
nomial P such that

S {x V,...,,, [P(x, xl, ..., x,, u, v) 0/ p(u, v)]}
for every Julia Robinson predicate p(u, v).

Since, e.g., the predicate v 2 / u > 1 is a Julia Robinson predicate,
we have

COROLLARY 1. Let S be a recursively enumerable set. Then, for some poly-
nomial P,

S {x[/,l.....,,.P(x, xl ,x,,u, 2) 0}.
This generalizes Corollary 5 of [2]. Moreover, the proof of Corollary 6 of

[2], if applied to the present Corollary 1 instead of to Corollary 5 of [2], yields

COROLARY 2. For every recursively enumerable set S there is a function
P(x, ..., x,, u, 2), where P is a polynomial, whose range (for positive
integer values of the variables) consists of the members of S together with the non-
positive integers.

If in particular we choose for S, the set of positive primes, we obtain a curi-
ous prime-representing function

It remains to prove the theorem stated above. In doing so we generalize
the methods, relating to Pell’s equation, of [5]. We recall the notation
x a,, y a, for the successive solutions of the Pell equation

x (a 1)y: 1.

LEMA 1. There is a Diophantine predicate b(a, u) such that
(1) b(a, u) ----> u >= aa,
(2) a > 1 -- /b(a,u).
Proof. This is a weakening of Lemma 8 of [5].

However, we are following [2] rather than [5] in taking variables to have the posi-
tive integers (rather than the nonnegative integers) as their range.
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LEMMA 2. There is a Diophantine predicate D(c, y, z) such that
(1) a > c / D(c,y,z) ---. a > y,
(2) /. /c D(c, y, z).

Then

LEMMA 3.
solution of

Let

D(c, y, z) / [b > y/kb > z / b(b, c)].

a > c/kD(c,y,z) /b[a > c >= b > y].

If y > 1 and a > y, then y [u/a] where u is chosen as a

u2- (ay2- 1)v 1 for which a <- u <- a.a.

Proof. By Lemma 9 of [5], y [(ay)/a], and by Lemma 10 of [5], the
number u is precisely (ay).

LEMMA 4.

Ai_<m (x y)

Vn,..., [A,-<-mE(ri, x, y, z,, a)/ A,<_ (r

where E is a Diophantine predicate, and where a > c c.
with the c c satisfying D(c y z).

Cm Zl Zm

Proof. We need only take

E(r, x, y, z, a) ,- V,, [(u: a y 1)v 1)/ r <- u <- a.ri

/X rx <- u < ri(x + 1)] V [x y 1].

LEMMA 5. If 1 < r < a and a > z, then

r a V,[r a:- 1)(z + s(a- 1)) 1].

Proof. This follows from Lemma 7 of [5].

LEMMA 6.

Va.a [F(x, .-., x, y, ..., y, z, ..., z, a, d) A (a, d)],
where F is a Diophantine predicate and p may be any Julia Robinson predicate.

Proof. We claim that, if we use the notation of Lemma 4,

Ai<-m (xi u.i)" +- Vrl,...,rm V Aim [E(ri, xi, yi, zi, a)

A (a > z,) A V, [r (a- 1)(z + s(a- 1))= 1]]
A V...., [A (D(c, y, z) A a > c)]

A A [r, ..., r d A p(a, d)]}.
[...] here means, as usual, "the greatest integer ...".
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For, if the right-hand side holds, then rl r, <= d <= a < aa, so that
by Lemma 5, r a,, and finally, by Lemma 6, x y.. Conversely, if
the left-hand side holds, choose ci so that D(ci, yi, z) is satisfied, then let
z max__<m z, and choose a, d so that a > c, a > z, p(a, d), and d > a.
Then

ri- a <- a d,

and the result follows by Lemmas 4 and 5.

LEMMA 7.
P such that

Let S be a recursively enumerable set. Then there is a polynomial

0] A (x,

Proof. This lemma is essentially a restatement of the main result of [2],
namely that every recursively enumerable set is exponential Diophantine.
The theorem now follows at once from Lemmas 6 and 7.
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