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BROWNIAN MOTIONS ON A HALF LINE
Dedicated to W. Feller
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[u(/) u(O)]p(dl)

Numbering. 1 means formula 1 of the present section; 2.1 means formula
1 of Section 2, etc.; the numbering of the diagrams is similar.

1. The classical Brownian motions

Consider the space of all (continuous) sample paths w’[0, -t-oo) -- R
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182 K. IT AND H. P. McKEAN,

with coordinates (t, w) (t) (t >- 0), the field A of events
-1 t,(A) (w’((tl), (g.),1. B writ:... (t))eA)

0 < tl < t < <: t, AB(R),
and the Gauss kernel

2/2t/ 1/22. g(t, a, b) e-(b-a) (2t)

Because of

3a. g t, a, b) > O,

3b. f g(t, a, b) db 1,

n > 1,

t, a, b e O, -- >< R.

the function

ft g(tl a, bl)g(t2 h, 51,52) g(t,, t,-l., b,,- b,)4. Pa(B)

dbl db2 db,,
--1of B Wtlt...a(A) e A is well-defined, nonnegative, additive, and of total

mass -t-1 for each a e R1, and, as N. Wiener [1] discovered, the estimate

5. f g(t, a, b)db < constant X 6-1t1/2e-e/2t, O,
a--bl>e

permits us to extend it to a nonnegative Borel measure P(B) of total mass
+ 1 on the Borel extension B of A (see P. Lvy [3] for an alternative proof).
Granting this, it is apparent that P,((0) e db) is the unit mass at b a.

P(B) is now interpreted as the chance of the event B for paths starting at the
point a and the sample path w’t (t) with these probabilities imposed "is
called standard Brownian motion starting at a.
Given >_- 0, if B e B and if wt+ denotes the shifted path w+t’s -- (t + s, w),

then 4 implies

6. Pa(w+t eB (s)’s <- t) Pb(B), b (t),

i.e., the law of the future (s)’s > conditional on the past (s)’s <= de-
pends upon the present b (s) alone (in short, the Brownian traveller starts
afresh at each constant time >- 0).
Because the Gauss kernel g(t, a, b) is the fundamental solution of the heat

flow problem

7.
Ou 10u
O-f - Oa-- t, a) e (0, + o X R1,

B(R-) is the usual topological Borel field of the n-dimensional euclidean space R.

3c. g(t, a, b) f g(t s, a, c)g(s, c, b) dc (t > s),
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the operator @ D/2 acting on C(R1) is said to generate the standard
Brownian motion, and it is natural to seek other differential operators @"
giving rise via the fundamental solution of Ou/Ot @’u and the rule 4 to
similar (stochastic) motions.

Consider, for example, the operator4

8. @+ @ C[0, + ) (u’u+(O) o).

the fundamental solution of Ou/Ot @+u is

9. g+(t, a, b) e-(b-a)2/2t/(2rt)I/22t e-(b+a)/2t/(27rt) /2, > 0 --< a, b,

which satisfies 3a, 3b, and 3c, and the corresponding (reflecting Brownian)
motion is identical in law to

10. +=
where is a standard Brownian motion.

Consider next the operator

11. @- @ICe[0, + oo) n (u’u(O) 0)"

the fundamental solution of Ou/Ot @-u is

12. g-(t, a, b) e-(b-a)/t/(2rt)/-- e-(b+a)’/t/(2rt)/, t > 0 <-- a, b,

which satisfies 3 with

3b(bis). f g-(t, a, b) db 1

in place of 3b, and the corresponding (absorbing Brownian) motion is identi-
cal in law to

13. -(t) +(t) if <: m0,

if t>m0,=

where + is the reflecting Brownisn motion described bove, mo is is pssge
time mo min (t’+(t) 0), and is 8n exam s8e djoined o R.
Given 0 < " < + , the operator

14. @ @ C[0, + oo) n (u’Tu(O) u+(0))
is also possible: the fundamental solution of Ou/Ot @u is

15a. g(t, a, b) g(t, b, a)

a e-a /g-(t, a, b) -q-
(2rs3)]

g(t s, O, b) ds, > 0 <-_ a, b,

7(R) is the space of bounded continuous functions f:R R with d bounded
continuous derivatives.

C.[0, + is the spce of functions u C[0, + oo with Du C(0, + oo 8nd (Du) (0)
(D2u)(0+) existing, u+(0) lim e-t[u(e) u(0)].
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-’ C15b. g(t, O, O) 2 e-c
(2t3)1/2

e dc, > O,

which satisfies 3 with 3b(bis) in place of 3b, and the corresponding (elastic
Brownian) motion is identical in lw to

16a. (t) +(t) if < m,
if m,

ab. t-’(/),

where e is an exponential holding time independent of the reflecting Brownian
motion + with law P.(e > t) e- and t- is the inverse function of the
reflecting Brownian local time"

17. t+(t) lim, (2e)- measure (s" +(s) < e, s N t)

(see Sections 3, 4, 14 for additional information about local times).

2. eller’s grownian motions

W. Feller [1] discovered that the classical Brownian generators and
@ (0 < < + of Section 1 are the simplest members of a wide class of
restrictions " of C[0, + which generate what could be called Brown-
ian motions on [0, + ). Feller found that the domain D(@’) C[0, +
of such a generator could be described in terms of three nonnegative numbers
p, p, p, and a nonnegative mass distribution p,(dl) (1 > 0) subject to

p+p,+p+[ (1A1)p(d)1. 1
+

as follows"

c’[0, + n (u:p u(O) p u+(0) + p(u)(O)2. D(@’)

M. Kae [1] cited he problem of describing ghe sample paths of he elastic
Brownian moion (p p 0 < p p), and ig was W. eller’s (private)
suggestion gha hese should be he refleeging Brownian sample paghs, killed
ag ghe insgang some increasing funegion t+(+n [0, ]) of ghe visiging seg

+ "(" +() 0) higs a eergain level, hag was ghe saring poin of his
paper.

P. Lvy’s profound sgudies [a] had clarified ghe fine sgruegure of ghe sgand-

ard and refleeging Brownian motions and heir local imes, he papers of
E. B. Dynkin [1] and G. Hung [1] on Markov gimes provided an indispensable

A b is he smaller of and b. + means fo<<+
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tool, H. Trotter [1] proved a deep result about local times, and W. Feller
[2] had presented a (partial) description of the sample paths of the Brownian
motion associated with (R)" in the special case p4(0, + oo < + oo (the case
p4(0, + oo + oo was not discovered in Feller’s original proof of 2, but this
error was corrected by W. Feller [3] and A. D. Ventsell [1]).

It was left to use these ideas (and some new ones) to build up the sample
paths of Feller’s Brownian motions from the reflecting Brownian motion
and its local time and (independent) exponential holding times and differ-
ential processes; that is the aim of the present paper.

3. Outline

Brownian motions on [0, o are defined from a probabilistic point of
view in Section 5, and a special case is disposed of ia Section 6. Green opera-
tors

G’,’f-+E,(jo’e-"f(’)dt)
and the generator gO" G-) are introduced in Section 7 and computed
in Section 8 using a method of E. B. Dynkin [1]. @" turns out to be the
restriction of @ C:[0, + ) to a domain D(@’) as described in 2.2; it is
the simplest complete invariant of the motion, i.e., the associated sample paths
can be built up from

a a reflecting Brownian motion +,
(b) a differential process with increasing sample paths based on p and p
(c) a stochastic clocl - based on +, , and p
(d) a killing time based on +, , -, and p

(see Sections 9-15)
Consider, for the sake of conversation, the case"

1. p4(0, --0o) +00 if p 0,

introduce the reflecting Brownian motion + as described in Section
(u+(0) 0), and let t+ be P. L6vy’s mesure du voisinage (local time)

2. t+(t) lim0 (2e)-lmeasure (s:+(s) < e, s =< t)

as described in Section 4.
Given pl p3 0, if o(dt X dl) is a Poisson measure as described in

Section 11 with mean dt >( p (dl) indepedent of +, if is the (increasing)
differential process

3. O(t) p + f /([0, t] X dl), >= O,
0+

and if -1 is its inverse function, then the desired motion is identical in law
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" -:t+ t+ q- +,
which could be described as a reflecting Brownian motion jumping out from

0 like the germ of the differential process run with the cloc O-it+ (see
Section 12 for pictures).

0-it+ can be interpreted as a local time for the new sample path " (see Section
14), and, with its help, the description of the sample paths can be completed
as follows: in case pl 0, the desired motion is identical in law to

where the stochastic clock [-1 is the inverse function of

5b. q- p3 O-l(t+(t)),
while, in case pl > 0, it is identical in law to ’([-) killed (i.e., sent off to
an extra state at a time m: < q- with conditional distribution

6. P.(m > ’(f-)) e-"-’+’-’.
Here are two simple cases to be treated in Section 10.
Given p- p4 0 < p2p3 (i.e., u+(0) (pa/p2)(@u)(O)), the desired

motion is identical in law to

7a. " +(V),
7b. q- (pa/p.)t+.
f-x counts standard time while ’( t) > 0 but runs slow on the barrier, and hence,
compared to the reflecting Brownian motion, * lingers at 0 a little longer
than it should; as a matter of fact,

measure (s’’(s) 0, s -< t) pt+(f-l(t)) > 0

if > min (s’’(s) 0).
Given pa- p4 < p p. (i.e., (pl/p.)u(O) u+(0)), the desired (elastic

Brownian) motion is identical in law to a reflecting Brownian motion, killed
at time m: with conditional distribution

9. P.(m > +) e-’l/’)’+(t),
i.e., killed on the barrier 0 at a rate (px/p2)t+(dt)’dt proportional to the
local time.
Brownian motions with similar barriers at both ends of [-1, -t-1] or with

a two-sided barrier on the line or the unit circle are studied in Sections 16
and 17, Section 18 treats a wider class of Brownian motions on [0, q- ),
substantiating a conjecture of N. Ikeda, Section 19 describes the sample
paths in case a diffusion operator @u u+(dl)/e(dl) is used in place of

OO-lt+ means O(-(t+)).
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the reflecting Brownian generator @+, and Section 20 indicates how to adapt
the method to birth and death processes.

4. Standard Brownian motion: stopping times and local times

Before coming to Brownish motions on a half line, it is convenient to
collect in one place some facts about the standard Brownish motion on the
line (see K. It5 and H. P. McKean, Jr. [1] for the proofs and additional in-
formation).

Consider a standard Brownish motion with sample paths w’t (t),
universal field , and probabilities Pa(B) as described in Section 1, define
Bt B[(s)"s =< t], and, if m re(w) is a stopping time, i.e., if

la. O<m<q-

lb. (m < t) e t, >= O,

then introduce the associated field

2. B+ Bn (B’(m < t) nB eBt,t >- 0).

B+ fl,>t B, in case m t; in general, (m < t) e B,,+ (t >= 0), and, with
the aid of

3a. B+ B+, a =<
3b. B,+ fl,>0 B+, 5 a -t- ,
it is not hard to see that Bin+ measures the pas x(t)" <= m-t-, i.e.,

4. Bin+ f’l>o B[(t/ (m + e))’t >- 0].

E. B. Dynkin [1] and G. Hunt [1] discovered that the Brownian traveller
starts afresh at a stopping time; this means that for each stopping time m,
each a R, and each B B,

5. Pa(w+eBIBm+) Pb(B), b (m)

where w+ denotes the shifted path w+’t -- {(t -4- m), {(-4- , and
P({(t) , >_- 0) 1. Because m -= is a stopping time, 5 includes the
simple Markovian evolution noted in 1.6; an alternative statement is that
conditional on m < -4-o0 and on the present state b :(m), the future
{(t -+- m)’t >= 0 is a standard Brownian motion, independent of m and of the
past 5(t) "t <= m+.
Given > O,,the passage time m -’ rain (t:(t) l) is a stopping time,

and the motion [m’/ >= O, P0] is a differential process, homogeneous in the
parameter l; it is, in fact, the one-sided stable process with exponent 1/2, rate

B[q(t)’a _-< < b] means the smallest Borel subfield of B measuring the motion
indicated inside the brackets.

(m < t) is short for (w’m < t).
is n extr state R.
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t

0

DIARAI 1 DIAGRAM

%/2, nd lw

Po( mz dr) _/e d
(2rta)11

as P. L6vy [2] discovered.
m., itself, is a sum of positive jumps (see Section 11 for information on

this point), and its inverse function t-(t) max,_t (s) is continuous and
fiat outside a (Cantor-like) set of times of Hausdorff-Besicovitch dimension
number 1/2;the joint law

2b a _(2b_a)212t7. Po[:(t) e da, t-(t) e db] 2
(2.t)2

e dadb, b >-- O, a <- b

is cited for future use.
Consider, next, the reflecting Brownian motion + I.
Given a reflecting Brownian stopping time m, i.e., a time 0 =< m =<

with (m < t) e B[+(s)’s _-< t] (t __> 0), m is likewise a standard Brownian
stopping time, and it follows-that, conditional on m < + and b +(m),
the shifted path +(t + m)"t >- 0 is a reflecting Brownian motion, inde-
pendent of m and of the past +(t)’t <= m; in brief, the reflecting Brownian
motion starts afresh at its stopping times.

P. Lvy [3] observed thut if is a standard Brownian motion starting at 0,
then - - (t- max,

_
(s) is identical in law to the reflecting

Brownian motion + starting at 0. Diagram 2 is a mere caricature of the
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path, the actual visiting set (t: O) being a closed Cantor-like set of
Lebesgue measure O.

P. Lvy also indicated a proof of

8. P0[lim0(2)-measure (s’-(s) < ,s <- t) t-(t), >= 0] 1,

which implies that t- is a function of - alone, and deduced the existence of
the reflecting Brownian local time (mesure du voisinage)"

9. t+(t) lim0(2t)- measure (s:ff(s) < , s =< t)

(see H. Trotter [1] for a complete proof). + grows on the visiting set
+ (t" +(t) 0) it is identical in law to t-, and its inverse function t- is
identical in law to the standard Brownian passage times; especially, the joint
law

10. P0[ff(t) e da, t+(t) e db] 2
b - a --(+a)’/e da db, a,b >= O,(2rt)l

is deduced from the joint law of and - above.
Skorokhod [1] has made the point that if is a standard Brownian motion,

if 0 =< " is continuous, if 0 =< " is continuous, increasing, and fiat outside

" (t’* 0),andif" ’- ,then" -and" i-.

5. Brownian motions on [0, + )
Given probabilities P;(B) (a [0, + u oo defined on the natural

universal field B" of the path space comprising all sample paths

la. w"t -- ’(t) ’(t-4-) [0, -4- u ,
lb. ’(t) , >= m: inf (t’" )

and subject to

2a. P(B) is a Borel function of a,

2b. P][’(O) edb]istheunitmassatb a (a 0),

let us speak of the associated motion as
(a) simple Markov if it starts afresh at constant times:

3a. P:(w:+ "e BIB, P(B), s > O, B e B’, a (s),

where w;+ is the shifted path -o ’(t -t- s) and B; is the field of ’(t)"t -< s,
(b) strict Markov if it starts afresh at its stopping times"

3b.

for each stopping time

4b.

P’.(w+. B B.+ P;(B), B e B’, a ’(m’),

0 _-< m’_<_ +,
(m" < t) eS; (t => 0),
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where ’(-t- and B.+ is the field of events

5a. B

5b. Bn (m" < t) e8; (t >- 0),

(c) a Brownian motion if, in addition to (b), the stopped path

6a. ’(t):t < m0+ lim0 inf (t:" < ), ’(0) > 0,

is identical in law to the stopped standard Brownian motion

6b (t):t < m0 min (t: 0), (0) 1.

E." denotes the integral (expectation) based upon P’., and E’.(e, B)
E." (B, e) denotes the integral of e e(w’) extended over B; the subscript, as
in 3a and 3b stands for an unspecified point of [0, - ) u with the under-
standing that if several dots appear in a single formula then it is the same
point that is meant each time.

6. Special case: p+(0) < 1

Given a Brownian motion as described above and a sample path " starting
at " (0) > 0, the crossing time

I. m" m; inf (t:’(t) < ), 0 < < l,

is a stopping time, P;[’(m) ] 1, m+ lim0 m m + m+(w,+.),
and, since the stopped path ’(t)"t <: m+ is standard Brownian,

2. E’[e-m+ ’(m+) e B]

E(e-" E[exp(-am;+(w’+.))," ’(m;+(w+.), w.)’+ eB B.+])"

E" -’ " B]E’(e-’) te +, (m;+) e

----> E’(e-’o+)P:[’(m;+) B] ( O)

e-()p;[’(m;+ eB],

i.e., ’(m;+) is independent of m;+, and its law p+(B) P;[’(m;+) eB] does
not depend on O.

Consider the lw p(dl) :- P;[’(0) e dl], nd, in cse p(0) 1, let be the
exit time inf (t: " (t) 0).

Because

3a. T+(0) P;[’(m+) 0, ’(0, w+.0+) 0] p+(0)p(0), > 0,

3b. p(0) P[’(0) 0,’(0, w+) 0] p(0),
0 m0+ is identical in lw to the standard Brownin passage time m0 min(t:(t) 0),

and hence E(exp(-am+)) exp(- (2a)/) (see 4.6).
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the possibilities are

4a.

4b.

4c.

4a is the simplest case.

p(0) p+(0) 0,
p(0) 1 > p+(0),
p(O) p+(O)

Diagram 1 shows the motion [’, P;]" the jumps
l,/2, etc. are independent with common law p+(dl), the initial position l0 is
independent of 11,12, etc. with law p(dl), and the excursions leading back to

0W are standard Brownian.
4b is more interesting. is an exponential holding time independent of ’(

with law e-t/p3 (0 <= Pa <= -o) indeed, if s _>- 0, then ( > s) eB;+
[3 >8 B;, whence

5. P(e > t-I- s) P;(e > s, e(w;+) > t) P(e > s)P;(e > t)

and

6. P;[e > s, :’(e) e dl] P;[e > s, :’(e(w;+) -b s) e dl]

P(e > s)P[’(e)edl],
completing the proof.

e

e
-2

e
-i

0:0-

DIAGRAM 1 DIAGRAM 2
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P3 has to be positive; in the opposite case,

P( 0) p(0) P(lim0 m; 0) 1,

where now m: is the sum of the crossing time m" inf(t: " (t) > e) and
m] +(w+. ), and hence

7 1 p(0) P0(lim0 (m:) 0)

limo limo P(’(m) < )

lim p+[0, )

p+(O),

contradicting p+(0) < 1.
p_(dl) P[’() e dl, < attributes no mass to 0 as is clear from

e-/ 18a. P( > 0) lim

and

8b. p_(0) P;[’(e) 0, e < +, e(w;+) 0] P(e 0).

Diagram 2 is now evident;the jumps l, l, etc., l, l, etc., and the holding
times e, e, etc. are independent with common laws P(l e dl)
p_(dl), P(l e dl) p+(dl), P(e > t) e-/’, and the excursions leading
back to 0+ are standard Brownian.

4c occupies us in Sections 7-15; a further class of ramified simple Markov
motions is studied in Section 18.

7. Green operators and generators: p+(0) 1

Consider the case p+(0) 1 (6.4c), and introduce the Green operators

1. G’f eC[O, + )E e-"t f(’) dt a > O.

Because m" m+ lim0 i(t’’(t) < e) is a stopping time
and P(’(m’) 0) 1,

)2. (Gf)(l) E; e-" f(") dt

( ))+ E e-"+ E e-" f [’(t + m’)] dt B.+

(af)() + (e-..) . e-’(") a

() () + e-’’ () (o),

where is ghe Green operagor for ghe (absorbing) Brownian mogion wigh

insan killing a O"
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(/0 o )3. (G- f) (a) Ea e-" f() dt

(2)

especially, G: maps C[0, % into C[0, % ).
Given a, > 0 and f e C[0, % ),

4. (a ) G’. G$ f

f db, a >= 0;

(fo )(a ) E’. e-"* (G*f)(’) dt

))(a fl) E*. e-"* dt E’.(,) e-Sf(") ds

, e-’f(") d

Er e-’f(") ds (a ) e-("-) dt

G$f-Gf,

i.e.,

5. a G; + ( )GG; O, , > O,

proving that the range G C[0, + D(@’) and the null-space G-(0) are
both independent of a > 0; in fact, (0) ,>0 G7(0) 0 because if f
belongs to it, then

6. 0 lim,+a(Gf)(l) lim, T+.E; a e-"?(’)dt =f(l), lO,

thankstoP;(’(0+) l) 1 (1 0).
G is now seen to be invertible, and another application of 5 implies that

7. * GVI’D(") C[O, + )
is likewise independent of a > 0.

" is the generator cited in the secti title; it is a contraction of D/2
acting on C[0, + because

8a. D(@’) G C[0, + C:[0, +
and

8b. (a @)G 1, a > 0.

Given two Brownian motions with the same generator, their Green operators
and hence their transition probabilities and laws in function space are the
same, i.e., " is a complete invariant of the Brownian motion.
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8. Generator and Green operators computed: p+(0) 1

D(@’) can be described in terms of three nonnegative numbers p, p, p
and a nonnegative mass distribution p(dl) (l > 0) subject to

la. pWp.Wp+ f (1/l) p(dl) 1
+

lb. p4(0, +) -t- in case p. p3 0,

namely, D ((R)’) is the class of functions u e C[0, + subject to11

2a. pl u(O) + p3(@u)(O) p u+(0) + f iu( ) u(o)l p(dl),
z0+

as will now be proved.
lb is automatic from the rest because ff p pa 0 and p(0, + < ,

then an application of 2a to u aGf D(@’) implies, on letting a + ,
that

[p + p(0, +)]f(0) f for eachfe C[0,
0+

which is absurd in view of la. Besides, it is enough to prove that

n(’) C:[0, + ) n (u" p u(O) + pa(@u)2b. (0)

or some choice of p, p, p, p subieeg go la, because, g is a member of
ghe second line, ghen so is ghe bounded solugion " GI(1 ) of- it is found that@u" u, and, expressing u" as ce c2e

c c u" 0, i.e., u GI(1 @)u e D(@’).
Consider, for the proof of 2b, the exit time

3. i(t: ’(t) o)
and its law

4. P( > t) e-** (0 k +),

and bear in mind that ’(e) is independent of :

5. P[ > t, ’() e dl] e- p(dl).

Ilk ( W),then (@’u)(0) 0foreach ueD(@’),and2b
holds with p p2 p 0 and pa 1.

ii ( D/2.
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If0 < / < +,then

p(0) P[’(e) 0, e(w:+) 0] =< P(e 0) 0,

and choosing u G f e D(@’), it.appears that

)7a. u(O) f(O)E e-"t dt + E [e-"u(’()), < m:]

au(O) (@’u)(0) k [ up(dl) 1.

a+/o a+/c J0+
or, what is the same,

7b. u(0) +/c-l(@’u)(0) f0+ up(dl),

i.e., 2b holds with p" p2: p3" p4 1 "0" k-1" p.
But, if k 0 (e 0), the proof is less simple; the method used below is

due to E. B. Dynkin [1].
(@’u)(0) < -1 for some ueD(@’) (if not, then (@’u)(0) 0, f(0)

(1 @’)G f(O) (G f)(O) for each f e. C[O, + o ), and P(e + oo 1),
so, choosing e > 0 so small that (’u) (1) < 1 (l e) and introducing the
crossing time m; inf (t: " (t) > e), it is clear from

)8. u(O) E e-y(")tit f (a @’)u,

E; e-"t(a @’)u(’) d

+ E[e-"mu("(m;)), m < m]

that

(fo )9. E;(m A m) <- E; e-"t(a @’)u(’) dt < q-.

(*u)(O) < -1 has no special advantage for the derivation of 8 which
holds for each u e D(’) and > 0; thus, keeping > 0 so small
that E(m; mh) < + and letting a 0 in 8 implies

10. u(O) --E; (@’u)(*) dt + E[u(’(m;)), m; < +],

u e D(@’),

and letting e 0 in 10 establishes E. B. Dynkin’s formula for the generator:

(@’u)(0) lim f [u(/) u(O)]p(dl), u e D(@’), u() 0,

u (a @)G 1.
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llb. p,(dl) E;(m’ /k m, -P0[ (m;/% m) e dl],

or, what is better for the present purpose,

12m lim[p() u(0)q- (@’u)(0) f[ u’(1)(1 1)Pl)=O,D D ,+)

12b. D p() + 1 +f (l 1)p(dl),
+

12c. u’(l) u(1) u(O)
l> 0,

ll
u+(0) 0.

Because D(@’) C[0, +), u" eC[0, +) ndselecting s >
e > etc. $ 0 so s to hve

13. lim p( /D p

13b. lo lID p

13c. lim0 (1 1)p(dl)/D p.(dl)
existing, it is clear from 12 that

[u(/) u(O)]p(dl)14a. pu(O) + p(@’u)(O) p2u+(0) +
0,+

145. p2 p.(0), p(dl) p.(dl)/(l 1) (l > 0),

(1 1)p(dl) 114c. PWPWP +
0.+1

for each u e D(’) having a limit u(+ at + .
But p(+ 0 because, iff e-/, then u Glf e D(’), u(+ 1,

and at the same time u(0), u+(0), ’u(0), and f<. [u(/) u(O)]p(dl) are
all small for large n, and this permits us to derive 14a anew for each
u e D(@’), completing the proof of 2b.
Given u e D(@’) and inserting 7.2 into 2a, a little algebra justifies

pl
015. (G%f)(0)

[1 e-(2a) l]pa (dl
+

which finishes the computation of the Green operators.

9. Special case: p 0 < pa and p < -Consider the special case

la. p 0 p,

fof(l/ 1)D-p(dl) converges as $ 0 to ffp,(dl) extended over [0, q-oo] for each
.f c’[o, +o].
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lb. p-- p(0,-t-)

nd introduce motion " bsed on reflecting Brownish motion with smple
pths --+ +(t) nd probabilities P(B) (a -> 0) s follows.
Given smple pth + starting t point of [0, -t- ), let " + up to

the passage time m0
exponential holding time with conditional lw

1. P.(e >
at the end of that time let it jump to a point l e (0, + u with con-
ditional law

2. P.(l edl e, +) p(dl)/(p + p) if > O,

p/(p+p) if 0,

and, if + * > l > 0, let it start afresh, while, if lx , let " at all
later times (see Diagram 1).

Because " starts afresh at the passage time mo,

(G f)(1) E (f e-f(") dt (m= min (t: ’(t) ))3.
--0 /

E(e-"tf(+) dt)+ E(e-"m)Eo(mUe-"f(") dt)
(G7 f)(z) + e-(")"(a f)(0)

as in 7.2, whence

4. (G f)(0) f(O)Eo e-t dt + Eo(e-)Eo[(G f)(l), e < m]

(o)

+ p + apa + p + +

P+ P,

--!

P4 (d)

Pl+P4

DIAGRAM 1
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and, solving for (G f) (0), one finds

p3f(O) - f (G-f)(1)p,(dl)
5. G’, f) (O) Jo+

+ ap3 + f [1 e-(")l’]p(dl)pl
,0 -b

Granting that the dot motion starts afresh at constant times (the reader
will fill this gap), a comparison of 5 and 8.15 permits its identification as the
Brownian motion associated with the operator @* with domain

C2[0, + n (u" pl u(O) - pa(@u)(O)6. D(@’)

ghe proof hag " is a Brownian mogion can be based on he faeg, used several
times below, that if a motion is simple Markov and if its Green operators map
C[0, into itself, then it is also strict Markov (see, for example K. It5
and H. P. McKean, Jr. [1]).

10. Special case: p2 > 0 p

Given a reflecting Brownian motion with sample paths -- +(t), proba-
bilities Pa(B), and local time

1. t+(t) lim0 (2e)- measure (s’+(s) < e, s <- t),

it is possible to build up all the Brownian motions attached to the generators

2. @" @lC2[0,+ )n(u’pu(0)-pu+(0)Wpa(@u)(0) =0), p>O

with the aid of an extra exponential holding time with conditional law

3. P.( > +) e-t.
Beginning with the elastic Brownian case (p > 0 pa), the desired

motion is

4a. ’(t) +(t) if < m,
if -> m,

4b. m t-((p/p)) min(t’t+(t) (p/p))

as stated in Sections 1 and 3.
With the aid of the conditional law

5. P.(m > +) P.( > (pl/p.)t+(t)l+) e

and the addition rule

6. t+(t2) t+(tl) + t+(t- tl, wt+), t >- t,
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it is clear that, if db c [0, -+- and if m > tl <= t., then

7a. P.[’(t.) e dblff(s)’s <- tl, m / tl, mh > tl]

P.[ff(t) e db, m: > t: ff( s s hi
P.(m > t)

E.[ff(t:) e db, e-(P/P)+(t)+(8)’8 t]e+(/)+(t)

E.[+(t) e db, e-(P/P)’+(t:-t’w)+(8)’8 t]

Ea[+(t- t) e db, e-(/)’+(t-t)], a +(t),
P[’(t- t) e db], a ’(fi),

while, if m ta, then ’(t) , and

7b. P.[’(t) db +(s)’s t, m h, m t]

0 P[’(t- t) e db].

Since ’(s)’s t is a Borel function of ff(s)’s t, m t, and of
the indicator of (m t), it follows that

8. P.[’(t) e db ’(s)’s ta] P[’(t t) e db], a ’(tx)
establishing the simple Markovian nature of the dot motion.

Consider for the next step, its Green operators

)G f E. e-"tf( " dt

and use the conditional lw of m to check

9. G f E. e-()+() P +(ds) e-"f( ff) dt
p

E.(+e-"’f(+)
E.(+e-"te-(,/,,)V(ff)d0

Because mo= min(t: +(t) 0) is a stopping time and t+(t) 0 (t too),

o. (a )() e-/(+) dt

+ E (e-" +*e-"t exp {-(p/p,)t+(t,wo)}f[ff(t + too)] dt)
)(Gf)(1) + E(e-"O)Eo e-"e-(t’)+f(+) dt

(G /)(t) + e-("’’ G"(.f)(0) t 0,
a P=[" ] 1 as usual.
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and now the identification of the dot motion as the elastic Brownian motion
will be complete as soon as it is verified that

2 f e-(2a)l’f(1) dlp211. (G’,f)(O)
Pl +

in fact, this will prove that the dot motion is simple Markov with the correct
(elastic Brownian) Green operators, and the proof can be completed as at
the end of Section 9.
But 11 is trivial; in fact, using the ioint law 4.10,

)12. (G, f)(0) Eo e-"e-’’)*+f(+) dt

e-"’ dt db da 2 f(a)

2 -of+ e-(")’zf(1) dlP

pl + (2a)
as stated.

Consider next, the case p3 > 0 p, and let us prove the desired motion
to be5

13. ’= +([-), [= t+ (p/p)t+.
Beginning, as before, with the proof that the dot motion is simple Markov,

if t tx and if m [-(t), then
(a) (m < t) (t < [(t)) e B[+(s)"s t], i.e., m is a stopping time;
(b) [(m + s)) [(m) + [(s, w) t + (t-t) ifs U(t t, w)

andso (t) m + s m+ [-(t t, w);
(e) ’(t) +[V(t- t, w) +
(d) " (s)" s t is a Borel function of the stopped path +(t m) and

(e) -(s) is the solution r of f(r) s t f(m)) and, as such, it is
likewise a Borel function of the stopped path;

and now, using the strict Markovian nature of +, the law of ’(t) conditional
on B+ D B[’(s)"s t] is found to be

14a. P.(+[[-(t t, w) + m] e db B+)

P(+[(t tx)]e db),

Pa(’(t- t)edb),

a +(m),
a ’(tl),

15 I-1 is the inverse function of .
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whence, taking the expectation of both sides conditional on B[’(s)’s =< tl],

db), a14b. P.(’(t.) e dbl’(s s <= tl) Pa( h) e (tl),

i.e., " +([-) starts afresh at time t, as was to be proved.
Coming to the Green operators

)e’, f E. e-f(") dt

since mo min(t’+(t) 0) isa stopping time and [-1 (t =< m0),

15. (G f) (l) E e-"f(ff) dt- E (e-"" fo
+

e-"’f[ff ,-l(t, w+o) + mo)]

(G f)() + e-(")’’(G’.f)(o)
as in the elastic Brownian case, and to complete the identification of * it is
sufficient to check that

)16. (e f)(0) Eo e-"f[ff([-)] dt

Eo(+:"+("/’)+f(+)
+ f(O)Eo e-"*+(’/)+ P

p

p

+ f(0)__ 1 Eo e-"l+(’)+ dt

P

as it should be.
Consider now the case 0 < p p p this time the motion is

t+(dt) 0 off + (t’,+(t) 0).
Use 12 with ap in place of pl

Do a partial integration under the expectation sign.
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17a. ’(t) +([-1) if <
if =>

17b. mo [[-l((p./p)e)] [t+([-)]-l((p2/pl)e),
as will still be proved.

+([-) is a Brownian motion, its local time

18. t" (t) measure (s" +(-) 0, s =< t)

measure (s" [-1 (s) e +, s =< t)

measure [(+) n [0, t]

f f(ds)
+fl[O,f-(t)]

(pa/p2)t+[[-(t)]
satisfies the addition rule 6, and, substituting them in place of + and + in
the derivation of the simple Markovian nature of the elastic Brownian motion,
it is found that the present motion is likewise simple Markov.

G’, f G- f e-(")(G f)(0) is derived as before, that the dot motionis
Brownian follows, and now, using the evaluation 12 with p + a pa in place
of pl in conjunction with the conditional law

19. P.(mh > +(-)) P.( > (P,/P.)t+([-I) +(-))
e-(pl/p2) t+(i -1) e-(pl/pa) t.(t)

it develops that

20.

completing the proof.
A second description of the present motion is available’ it is the elastic

measure (+) 0. t+(dt) 0 outside ,8+.
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Brownian motion " described in 4 run with the new stochastic clock -1 which is
the inverse function of
21a. q- (p3/p.) X the elastic Brownian local time t’,

21b. if(t) limit0 (2e)-1 measure (s’’(s) < , s <-_ t)

t+(t/ m), m min(t’" ).

11. Increasing differential processes
Before describing the sample paths in the case p4 p4(0, A- q- , it

will be helpful to list some properties of differential processes with increasing
sample paths.
Given a stochastic process with universal field 13, probabilities P, and

sample paths -- (t)"

la. (0) 0,

lb. (s) -<_ (t), s _-< t,

lc. (t-f-) (t) < -4- oo, t.-> O,

which is differential in the sense that the shifted path +(t) =- O(t q- s) O(s)
is independent of its past t) <= s and identical in law to 9, P. Lvy [112 proved
that

2a. E(e-"(t)) exp{--t [p2 a -4- fo+ (i e-")p(dl)l}
2b. pg. >- O, p(dl) >= o, f (1/ 1)p(dl) <

,o+

and expressed as

a>O,

3. (t) p2 A- / /1([0, t] )< dl), >= O,
J0+

in which (dt dl) the number ofjumps of of magnitude e dl occurring in
time dt is differential in the pair (t, l) e [0, A- X (0, -t-o and Poisson
distributed with mean dt p(dl), i.e., if Q1, Q2, etc. are disjoint figures of
[0, -f- X (0, q- ), then (Q1), (Q2), etc., are independent, and

n) (IQl/n!) e-IQI, n >= o, IQI fo4. P(o(Q) dt p(dl);

in short, O(t) is the (direct) integral fo+/([0, t] X dl) of the differential Poisson
processes ([0, t] )< dl) with rates p(dl) plus a linear part p.t.

Given nonnegative p2 and p(dl) with fo+ (1/k 1)p(dl) < + as in 2b, it
is possible to make a Poisson measure o(dt )< dl) with mean dt p(dl) as de-

See also K. It5 [1].
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scribed above; the associated O(t) p. - f0+/([0, t] dl) isa differential
process having 2a as its Lvy formula.

G. Hunt [1] discovered that if m is a stopping time, i.e., if

5. (m < t) B[o(s)’s __< t] B’, _>- 0,

for some field B" independent of , then starts afresh at time m, i.e., the
shifted path O+(t) (t -- m) (m) is independent of the past (t)" <= m
and identical in law to itself.
Given a _-> 0, if P is the law that P induces on the space of sample paths

q -t- a, then

6. g.(q(t) edb q(s)" s <= t) P(q(t- h) edb), t >- t, a q(h),

the associated Green operators f E(f+o e-"tf(q)dt) map C[0, + into
itself, and the associated generator is

7. (f)(a) pf+(a) -{- f [f(b -at- a) f(a)]p(db), f e C[0, -}-o).
/

Given >- 0, ([0, t] [e, -t-o )) is Poisson distributed and differential in
v with mean tp[, --oo ); as such, it is identical in law to a standard Poisson
process q with unit jumps and unit rate run with the clock tp[, -t-o ), and,
using the strong law of large numbers, it follows that

8. lim ([0, t] X [e, + ) lim
q(tp[, + ) t,

o p[s, -) o pie,

which will be helpful to us in Section 14.
Consider the special case p(0, -F < -t- pictured in Diagram 1" the

exponential holding times 1, 2, etc. between jumps are independent with
common law P(1 > t) e-(’+)t, the jumps 11, l., etc. are likewise inde-
pendent with common law P(l e dl) p(O, - )-p(dl), and the slope of
the slanting lines is lips..

Consider, as a second example, the standard Brownian passage times ma

I t

P2e
p

DI&GRAM 1
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rain(t: a) (a _>_ 0) under thelaw P P0. Because the Brownian traveller
starts afresh at its passage times, the shifted path rob+, ma mb-l-a(qVma)+ is
independent of mb b =< a and identical in law to m., i.e., m. is differential
(it is the one-sided stable process with exponent 1/2 and rate w/2 as noted in
Section 4)

9b.

can be read off

p(dl) dl/(2r/3) 1/.

10. Eo(e-""a) =e-(2a)l’a -expf--a f0 (1--e-") dl21+ (27)
ma iS left-continuous, so in the direct integral [0, a) must be used in place of
[o, a]-

f /O([0, a) X dl).ma
a0+

12. Sample paths: pl p3 0 < p4 (p. > O/p4 %" ov

Given a reflecting Brownian motion with local time t+, a nonnegative
number p., and a nonnegative mass distribution p(dl) (1 > 0) with p
p(0, + o -+- in case p. 0, introduce the Poisson measure O(dt X dl)
with mean dt p(dl), make up the associated differential process

1. ) p. -- f , [o, t] x dl
ao+

and consider the sample path:

2a. ’(t) )-at+(t) t+(t) + if(t), >- O,

2b. -1(1) inf(t’O(t) > l)

and its alternative description

3. ’(t) oo-it-(t) 2r- :-(t), >= O,

in terms of the standard Brownian motion - --t+ + + and its minimum

function t- (t) t+ (t) (rain.__< -(s) / O) it is to be proved that " is
the Brownian motion associated with

4. p. u+(o) + f u(O)]p4(dl) o,
ao +

but before doing that let us look at some pictures of the sample path.
Consider the case p < -k- " the lumps 11, l., etc. of are finite in number

per unit time and can be labelled in their correct temporal order. and

21 33-1;+(t) is short for (-(t+(t))).
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j2
-2/P2 e-3

DIAGRAM 1

45

Yz-t+(t-m-_m2 w +_mz) +x+(t) m
2

-]

m2

rn x+(t)" t<m

((0) =0

+rnz-<t<ml+_.m2+rn:B,

w+ x+ _< t<m +mJ-t+(t-m, ml)+_ (t)" m --I --
ml t-t(p2 el)
m2 t-(p2 e2 + lt, W+ml)
m t-l(p2 e + 12 wm+m2)
etc.

DIAGRAM

-1 are seen in Diagram 11.1, b-i in Diagram 1 of the present section, and
the " - -lt+ t+ + + path in Diagram 2, in which t-1 is left-continuous
as usual and el, e2, etc. are the exponential holding times between jumps
of .
Coming to the case p4 + 00, ($) experiences an infinite number of

jumps during each time interval [tl, &) (t < t), but

#([tt, t) X [, 4-00)) < +00 (t2 < +00, > 0),
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and so it is legitimate to label the iumps as follows"
(a) arrange in separate rows the iumps occurring in (0, 1], (1, 2], etc.;
(b) in each row, arrange the iumps in order of magnitude beginning

with the largest one;
(c) if several lumps of the same magnitude occur in a single row, arrange

them in correct temporal order;
(d) number the rows as indicated below:

11 > 13 > 16 > ll0

12 l >= l,

14 ls,

17 etc.

Diagram 2 gives an approximate idea of the sample path in the case p. 0.
Diagram 3 (p 0, (0) 0) is based on the alternative description 3:
the standard Brownian path - has been slanted off to the left for the purposes
of the picture, and the rule is to translate the excursions of - between the
endpoints of the flat stretches of - until the left legs of the hatched curvilinear
triangles abut on the time axis and then to fill up the gaps with " 0. The
picture is not so simple in case p. > 0: then (/:-(/) l) has positive
measure, and, on :5- (t:-(t) e ::), " )-t- - reduces to the re-
flecting Brownian motion t- - +.

DIAGttAM 3
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]3. Smpe Mrkov]n chrcter p p 0 (p > O/p )
Consider the smple pth

described in Section 12.
Given t t O, if m -’t-(tl), if +(t) p( + m) (m), and

t() mina[-(s + ) (t) ], then, as the reader will check,

2. -t-(t) -t-(t)

i(s’(s) > ((t=)) -t-(t))
i(s-(s + m) > t-(t))

i(s’+(s) + (m) > [g(t=- t) (t)] V t-(t)) =’

inf(s’O+(s) > [C(t. tl) ’(tl)] V [t-(t1) (m)l)

inf(s’O+(s) > [ff(t.- tl) ’(tl)] V 0),

where the last step is justified as follows" a t-(t1) (m) _-< 0 since either
p2 > 0 or p(O, +) +, -1(0) O, and it follows that either
l t(t.- t) ’(tl) < 0 and inf(s’+(s) > a V b) inf(s’+ > 0) 0
orb >= 0ndaV b b.
Coming to the sample path, itself, an application of 2 implies

3. ’(t2) OO-lt-(t2) + -(t.)

)(Vl([t(t- tl) ’(tl)] V O) + m) + -(t)

+l([t(t= t) ’(t)] V 0) + -t-(t) + -(t)

v+([t(t=- t) x’(t)] V 0) + [U(t=) -(t)l + ’(t,)

+ (t t) + (t t).

Consider this conditionM on ’(t) a => 0.
Because of the differential chmeter of the standard Brownin motion -,

4. t--> (t) [-(t + t) -(t)] + ’(tl)

is likewise standard Brownish motion starting t (0) ’(tl) a, in-
dependen of U(s)" s -< t nd of (nd hence independn of "(s)" s -< t,
nd of + Mso) with minimum function

4b. -(min=<t (s) / 0) -(min,=<, [-(s + tl) -(tl)] + ’(t) A 0)

[-min,=<t [-(s + t) -(tl)] ’(t)] V 0

[t:(t) ’(t)] V 0

(t).
2 a V b is the larger of a and b.
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Given >- 0, the indicator of the event

5. (m > t) (-t-() > t) (t-() > ())

is Borel function of (s)’s <= and -(s)’s <= , nd, since - nd re
independent, m is stopping time for p, i.e., + is identical in lw to nd
independent of - nd of 0 (s)" s -_< m nd hence independent of " (s)" s -< t
and of .
But now it is clear that, conditionM on ’(t) a, ’(t.) is independent of

the past "(s)" s -< tl with law

6. P,,[’(t) e db], a ’(t), t= t.- t
as was to be proved.

14. Local times: p, p 0 (ps > O/p +o)
Because the reflecting Brownian local time t+ was central to the construc-

tion of the Brownian motions in the case pc 0 treated in Section 10, one
expects that a similar local time t" based upon the path " p-t+ t+ + +
should figure in the general case; the purpose of this section is to prove its
existence.
Given ps > 0, the contention is that the local time

la. if(t) lim,$0(2ep.)- measure (s’’(s) < e, s <= ), >-_ 0

exists and can be expressed as

lb. t’(t) pt+(+ n [0, ])
--1

-t+(t),
in which

2b.

(t’OO-(t) t),
2+ (t.t+(t) ).

p p-I 45

DIAGRAM 1
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Consider, for the proof, the intervals [l-, l+), [E, ), etc. of the comple-
ment of 3, and note that the complement of 3+ is the union of the in-
tervals [t-l(/-), Ul(l+) ), [t-l(/-), -1()), etc., whence23 0+ is countable.

Because t+ is continuous and " + on 3+,
3. limo(2)-1 measure (s’’(s) < , s + n [0, t])

1im$o(2e)- measure (s’ff(s) < e, s e + n [0, t])

t+(3+ n [0, t]).
Consider, next,

4. 7 (t:t +, " < e)

U.=>l [t-l(/), t-l(/+n)) n (t’l+ t+ < e)

u._ [t-(;), t-(.+)) n [t-(.+ ), +
U nl [t-l(/ V (l+n s)), t-l(/+n)).

Because - is left-continuous, [3 >o - 0, and, seeing as0 is countable
and t+ is continuous, it develops, much as in 3, that

5. li-o(2)- measure (s’’(s) < , s [0, t] 3+)

=< li- (2)-1 .measure (s" +(s) < , s e - n [0, t])

t+(i n [o, t])

$ o ( o),

which justifies he definition la and he firs line of lb; he second line of
lb is immediate from he definition of 2+, and, as o he hird line,

6. #p-i t, e ,
l+, t[l,l+) (n => 1),

p2-1 A- [ /([0, -1] X dl),
ao+

and, picking out the continuous part on both sides, it is clear that

7. o-i(dt) p-l dt on ,
=0 off ,

completing the proof.
-+ can still be interpreted as a local time in case p 0 (p, + )"

8. O-t+(t) lira t> measure (s:’(s) < , s e [t-(/7), V(l+) n [0, t])

.a 0+ denotes the boundary of :+.
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Consider, for the proof, the scaled visiting times:

b, e- measure (s" " (s) < e, s e [if1(l), -1(l,+) ).

Conditional on (i.e., conditional on l, l, etc.), the visiting times
b, are independent because + starts from scratch at the place +(m) 0 at
time m -1(1) (n >__ 1); in addition, if In > e, then b, is identical in law
to measure (s:(s) > 0, s < ml), where is a standard Brownian motion
starting at 0 and m is its passage time to 1, as will now be verified.
Given a > 0, the scaling

10. (t) (r(t/z)
preserves the Wiener measure for standard Brownian paths starting at 0 and
sends

lla. +(t) - a+(t/z2),
11b. t+(t) --->

11c. t-(t) --> 2-1(t/),
2. -(t) -, -(t/J)
12b. t-(t) - o-(t/(r2),
12c. m --where - is the standard Brownian motion i+ +, - + maxs_<t -(s),
and ms min(t’- 1), and, using a b to indicate that a and are iden-
tical in law, it follows from the rules 11 and 12 that in case l > e,

13. b e-2measure (s’l, i+(s) + +(s) < , s < -1(/)), +(0) 0,
-2 f+measure (s 1 (s/(r2) -f- +(s/(r) < /(r, s/a < -(1) ),

-2 t+ :+1,measure( 1- () + () <e/l.,s<t-(1))
e 1,measure(’-() > 1 eft., < m)

e 1. measure (’:-() > 1 eft., m_./. -< < m)

-= e 1, measure (’() > O, < mz), (o) o,
measure (s" (s) > O, s < m),

where the scaling 10 was used in step 2 ( 1,) and in step 7 ( eft,).
Coming back to 8, the strong law of large numbers combined with the rule

14. lim,op[e,-1-)-1([0, t] )< [e,-3t-)) (t -> O)

(see Section 11) and the simple evaluation
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DIAGRAM

15.

justifies

16.

+
Eo() dt P[(t) < 1, mo > t]

=fo+dtfoe-(-)t e-(a/1)12$ da
(2rt)/

fo 2ada 1,

lim
e$o

/(z z > e, z+ < t+(t))
p,[e, +

lim ([0, -t+(t)] X Is, q- ))

-lt+(t),
where the use of l+ < t+(t) in place of t-x(/+) -< in step 3 is justified because
both describe the same class of jumps plus or minus a single iump and
p4[t, -’ " --ov as e $ 0; a picture helps to see that l+ < t+

and -(l+) < V-(t+) are identical as needed in step 4.

-+ "cannot be computed from the sample path if p2 0 and pt < q- , as
is clear from Diagram 2 in which

17. O-lt+(t) ex + + e, t-(/t + + 1._t) -< < t-(lt + + l),

and " is independent of the holding times e, e, etc. But it still has some
features of a local time" it is the sum of n independent holding times e with- #(/,:ete.) denotes the number of jumps l,, with the properties described inside.
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1(92’W:-l(Jl))

t

L "2

=_x (o)

DIAGRAM 3

e

common conditional law P.(el > l’) e-4, where n is the number of
times that the sample path approaches 0 before time (see Diagram 3).

15. Sample paths and Green operators: p. u(O) + p(@u) (0) p. u+(0)
+ f0+ [u(/) u(O)]p4(dl) (p > O/p4 +)

Consider the motion * -+ t+ + + and its local time r -+
and let us use them to build up the sample paths in the general case
(p > O/p + imitating the prescription of Section 10"

la. ’(t) ;’[r(t)] ff <
if > m

lb. [(t) + p r(t),
lc. P.(m > ’) e-’t’[-(t)].
Given O,

2. (G f)(l) E( e-"’f(’) dr)
E e-"’e-"*(-’)f[’(f-) ]d

E[+e-"’e-,t’f(’)f(dt)
E[e-"’f(+)

(Gf)(1) + e-(")(Gf)(O),
= * + and t* 0 up to time mo= min(t:+ 0), and * starts afresh a that

moment.



214 K. IT6 AND H. P. MCKEAN,

especially, the Green operators map C[O, + into itself in the special case
pl p3 0 (t" ’), and, since " starts afresh at constant times, it follows
that it must be a Brownian motion. )" is likewise a Brownian motion as is
clear on arguing as in Section 10 with " and t" in place of + and t+, and now,
for the identification of its generator as the contraction of (R) D/2 to

3. D(@’) C:[0, -F (u" pl u(0) + p3(@u) (0)

it suffices to make the evaluation

e (G’.f)(O) Eo e-"e-Pl’f(’)[ (dr)

+
e is decomposed into simpler ingegrals in several steps (see the explanation

below)"

5. e Eo e-e-(,+.,,)t.f(.) dt

+ paf(O)Eo e-"te-(+’)’t’(dt)

LJ[-(),t- ())

+ E,[+e-"e-(’+"’)’-+f(+) dt
t-(),-())

n_V E[
Eo "f [l- t+ + X+] dtll

+ Eo e-"e-(’+’-+ f(+) dt

p/(p + ap) 0 if p O.
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where t’(dt) 0 outside " (t’" 0) was used in step 1, [0, q- was
split into ;!:5+ -t- U na_l [t-l(/), ;-i(/n+)) iIl step 2, and OO-lt+ was evaluated
ast+ or according as e+ ort-l(/) =< < t-l(l+), and, in step 3, itwas
noted that, conditional on , the standard Brownian traveller starts afresh
at time m -l(l) at the place 0; the addition rule

was also used in step 3, and a partial (time) integration was performed under
the expectation sign in e.
To compute el, substitute the standard Brownian motion :- t+ :+

and its passage times m t-(1) ingo the conditional expectation and integrate
them out, next integrate out t-(/) conditional on I, express the integral in
terms of the Poisson measure l(d N dl), and use the differential character
of the latter to integrate it out also"

6. e ,> Eo e-"-l(G)e-(l+"3)-l(+)Eo ’e-"tf(l -) dt l,

E0[f[0,+)x(0,+) o(dt dl)e-(2")l/2(t-)e-(Pl+a’3)t(G-df)(1) 1
lim E0[f[,,+)x(0,+)

o(dt dl)e-(2a)/’(-e)e-("+aPa)’(G:f)(1)1
0,+) X (0,+)

dt p4 (dl) exp {-t lp2(2a)l/" -Ffo+(1- e-(2a)l’l)p4(dl)ll
e-(’+")’(Gf) (l)

(G-df)(l)p(dl)

p q- (2a)’p. q- apa -F fo (1 e-(")’)p(dl)
+

To compute e use the joint law 2(b + a) (+)/t + t+
(2.V)

e- da db of and

e. Eo e-" dt db da 2 b+a e--(b+a)12t
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Eo e-<>*e-<+>’-<> db 2 e-(2a)/af(a> da
+

Eo e-(")e-(+")o(dt) 2 e-m")f(l) dl

p + ap Eo e-(+")’(1 e-(")) dt 2 e-(:")f(1) dl
(2a) +

(2a)p + (1 e-(")i)p(dl)
-+

c (2a)2 + e-(")’f(1) dl.
p + + ,p + ] (

0+

To compute e, use the same manipulations as for e together with the
lemma

8. Eo e-"?(+) dt (Vf)(0)[1 e-(")’],

obtaining

9. e Eo[e-(")Ge-(+")-’()(1 e-(:")’")](Gf)(O)
nl

o,+) X (o,+)

.(y)(o)

+

-())()

To compute e, use 6 with f 1"

(2)zp + (110.
e

pal(O)
.1-- +

Pl + + + + f (1-
0+

p/(0)

p + (2,)’’p + apa + (1 p(dl)
+

Combining 5, 6, 7, 9, and 10 verifies 4, and that finishes the proof.

]6. 8ou.ded i.terw]: [- 1, + 1]

A Brownian motion on [-1, + 1] is defined as in Section 5 except that

1. ’l , t< m,
G2 is the reflecting Brownian Green operator.
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and the stopped path

2a. ’(t):t < " lim0inf(t:i" > 1 ),

--1 < ’(0) < +1

is now identical in lw to the stopped standard Brownish pth

2b. (t):t < min(t:l 1), (0) l.

Except ia the case P.*[I’(’)I 1] < 1 which can be treated as in Section
6, C[-1, 1] is mapped into itself under the Green operators, @: can be
defined as before, and D(@’) can be described in terms of six nonnegative
numbers p+/-l, p-2, p+/-a and two nonnegative mass distributions p+/-4(dl)
subject to

3a. p-1 -t- p-2 - p- - (1 - 1)p-4(dl) 1, p-4(- 1) 0,

3b. p+l + p+. + p+ + (1 l)p+4(dl) 1, p+4(-{-1) 0,

4a. p_4(--1, -1] + in case p_ p_a 0,

4b. p+4[--1, +1) -t- in case p+3 p+3 0

as follows. D(@*) is the class of functions u e C[ 1, +1] subject to

5. p_ u(-) p- u+(-) + p_(u)(-)

[u(/) u( 1)] p-(dl),

5b. p+l u(-t-1) -t- p+ u-(+l) + p+3(@u)(+l)

[(/) (-I- 1)]p+(dl).

@" is the contraction of @ D/2 to D(@),

6. (G’ f)(l) (G-g f)(1) -t- e_(1)(G’ f)(-1) -t-

in which

7a. (G-f)(a) Ea e-"f() dt 2 G(a, b)f(b) db, :9

7b. G(a, b) G(b,a) sinh(2a)/(1 + a) sinh (2a)(1 b)
(2a) a b,

s u-(+l) lime e-[u(1) u(1 e)].
P., E., , m are the standard Brownian probabilities, expectations, sample paths,

and passage times.
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is the Green operator for the Brownian motion with instant killing at 4-1 and

8a. e_(1) sinh (2a)1/2(1- l) E (e--l,m-1 < m+),
sinh 2(2a)/2

8b. e+(1) sinh (2a)1/(1 + l) E( -+1e m+i m-i),
sinh 2(2a)

nd, substituting 6 into 5 nd solving for (G f)(1), one obtains

[(Gf)(--l) ell el2

(G I) (+ 1) [_e ej

p_(af)+(-1) + _(-1) +

where ghe exponeng -1 indieages ghe inverse of and

t0a. el p- e2(-1)p_ + p_ + (1 e_)p_(dl),

10b. e --p_e( 1) e+ p_(dl),

lOe. e p+e + 1 e_ p+ dl

10d. e p+ + e;(+l)p+ + p+ + (1 e+)p+(dl)

all of which is due go W. eller [1], [a]; ghe proofs can be carried oug as in
Seegion 8.
Coming o he sample paths, le us confine our aenion o ghe ease

p_( 1, + 1] p+[- 1, + 1) + , leaving ghe opposige ease go ghe reader.
Given a sgandard Brownian mogion wigh sample paghs () and proba-

biligies P,(B), if f is ghe map" R [-1, + 1] defined by folding ghe line ag
1, g, 5, ege. as in Diagram 1, ghen + f() is ghe (refleeging) Brownian
mogiop on [--1, 1] assoeiaged wigh 5 in ghe special ease p pe p 0
(+(-1) -(+1) 0); ghe dog sample path will be made up using +
and igs local gimes

lla. t-(t) lim10(2s)- measure (s’ff(s) < --1 + , s <= t),

llb. t+(t) lim10(2)- measure (s’I+(s) > 1 , s -< t),

pair of independent Poisson measures )+/-(dt X dl) with means dt p+4(dl),
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DIAGRAM 1 DIAGRAM 2

and the associated differential processes

12b.

( + )_([o, t] d),

(1 /)+([0, t] X dl).

Diagram 2 depicts the sample paths associated with 5 if pl p+/-3 0"

" and + agree up to time ml min(t:l+l 1); if m_l < re+l, as in
the picture, then " changes over into

_
O-it- t- -t- + until it hits -t-1,

at which instant it changes over into --+ Ot+ -t- t+ + + until it hits -1
for the second time, etc.

If p_ p+l 0 and p_3 + p+a > 0, then the desired motion is as in
Diagram 2 but run with the new clock - which is the inverse function of

13a. -f- p_ if- p+

13b. ":= :t+/-,

while, if p_l + p+ > 0, then one has just to kill the above motion ’(-) at
time mL with conditional law

14. P.(m > l’) e--t’-(-)++lt’+(f-),
the proofs are left to the industrious reader.

17. Two-sided barriers

A Brownian motion on R with a two-sided barrier at 0 is defined as in
Section 5 except that

1. ’e R1, <
and the stopped path

2a. ’(t):t < " lim0inf(t:[’l < ), ’(0) eR .-0

is identical in law to the stopped standard Brownish motion

2b. (t):t < min(t: 0), (0) 1.



220 K. IT( AND It. 1o MCKEAN, JR.

Except in the case P:[’(’) 0] < 1, which is ignored as before, C(R1) is
mapped into itself under the Green operators, @" is the contraction of
@ D2/2to30

D(@’) C’2(R1) n (u’pl u(O) + p-2u-(O) p+2u+(O) + p3(@u)(O+/-)3.

for some nonnegative numbers pl, p+2, p3 and some nonnegative mass dis-
tribution p4(dl) subiect to

4a. p + p- + p+ -t- p3 + f (Ill/k 1)p4 (dl)= 1, p4(O) O,

4b. p(R) in case p+/- p3 0,

and the Green operators are

(G’.f)(l) (G-f)(1) A- e-(2")l’l*l(G’.f)(O),
where

e--(2a)lg[b--al
6. (G-f)(a) f(b) db

b>0 (2a)1/2

is the Green operator for the Brownian motion with instant killing at 0
and

(G’,f)(O)
-p-2(G-f)-(O) + p+2(G-f)+(O) "[- p3f(O) "4- fl>o G-f (1)p(dl)

-t- (2a)/2(p-2 + P+) -f- ap3 -t- [ (1Pl
1>0

7b. +/-(G-f)-(O) 2 [ e-2>’ltlf(1) dl.
/>0

Coming to the sample paths, P. Lvy [3] proved that if --. (t) is a standard
Brownian path starting at 0 and if x, 2, etc. are the (open) intervals of
the complement of (t’ 0), then the signs e, e2, etc. of the excursions
(t):te, etc., are independent Bernouilli trials with common law
P0(e +/- 1) 1/2 (standard coin-tossing game), independent of and of the
(unsigned) scaled excursions

s. 13 1-1  I (t / inf )], 0 =< -<_ 1,
etc.

which are independent, identical in law, and likewise independent of (see
Diagram 1).

Given p-2 + p+2 > 0, it is not difficult to see that if e, e, etc. is now a
skew coin-tossing game independent of the scaled excursions and of (i.e.,

0 c..(R) c(- , ol a c-[o, +) a (u’u"(o-) u"(0+)).
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Z

e2=+

e=+l

Z
2

DIAGRAM 1 DIAemAlVi 2

independent of I[ with lw

9. Po(e- -1)’Po(e +1) p_2 "p+.o:

then the skew Brownian motion

lO. ’(t)=el(t)l if t&, n_>_,
0 if

starts sfresh st ech constant time 0; in sddition, its Green operators
decompose s in 5, nd evaluating (G f)(0) ss

11. (G:f)(0) 1Eo (f, e-"*f(e [,)dt)
P-=+P+

P--2
p- + P+

+ P+
p- + P+

+ P+
p-: + P+

Eo[f e-’*f(-.k,l) dt])

2p_ f e-(")’**f(l) dl + 2p+ e-(:")’zf(1) dl
+

(2o0/(p_ + P+)
-p_(G-f)-(O) + p+.(G-f)+(O)

1/2(2() (p_: + p+)
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one identifies 10 as the Brownian motion associated with 3 in the special case

Pl Pa P4 0 (P-2 u-(0) P+2 u+(0)).
Coming to the case pl p+/-. Pa 0 (p4(R 0) A- ), if O(dt X dl)

is a Poisson measure with mean dtp4(dl) independent of the standard
Brownian motion , if [17, l+), [l, 12+), etc. are the fiat stretches of the inverse
function 0

-1 of p(t) f Ill O([0, t] X dl), and if t+ is the local time at 0 of
the (independent) reflecting Brownian motion + I1, then the desired
motion is

12. ’(t) (t) if < m0 min(t’ 0),

:t:[3-1t+ t+ -4- +] if e +,
0 if m0 _-< t

where :Y+ U n_i[t-i(/), t-l(/)), and the ambiguous sign in the second
line is positive during the interval [t-l(/), t-i(l+)) if l l+ l is a iump
of O(dt X dl n (0, A- ]) and negative otherwise (see Diagram 2).

Granting that 12 is simple Markov (the proof is left to the reader), it is
enough for its identification to evaluatea

ta. (e,f)(O) Eo e -)-( t+ + +)1 gt
n>__l

Eo[e-<")"(G-f)(-4-1,)]
nl

Eo (dt X
1--0

f (G-f)(1)p(dl) /Zl>O Zl>O

with the aid of the tricks developed in Section 15.
Coming to the case pl pa 0, it suffices to combine the special cases

pl pa p4 0 and pl p+/- pa 0 as follows.
Given O(dt X dl), , and t+ as above, if ; is the skew Brownian motion based

upon p and , if is the motion of 12 based upon O’(t) f Ill ([0, t] X dl)
and , if [17, l+), [l, 12+), etc. are the fiat stretches of the inverse function of

p -4- " (p. p- -4- p+), and if + U >__1 it-1 (l), -1 (l+)), then
the desired motion is

14. ’(t) (t) if < m0,

;(t’) if e+,t" I+n[0,t)],
;(t) if t[mo, q-m) 5+;

the reader will check that this sample path starts afresh at each constant

a [0, + ) + 0 because (t) has no linear part (p.t).
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time _>_ 0 and will complete its identification with the aid of

15.

(2a)l/2P2 -4- f (1

If P3 > 0 pl, it is clear that the desired motion is the sample path " of
14 run with the stochastic clock - inverse to d- p3 O-t+ (see Section
14 for the interpretation of O-l+ as a local time), while, if p > 0 also, the
motion ’(-1) has to be annihilated at time m: with conditional law

16. P.(mo > :’(f-1)) e-V’-"+f-’(’).

The reader is invited to furnish the proofs.
Brownian motions with the same kind of two-sided barrier can be defined on

the unit circle S [0, 1) as W. Feller [1], [3] pointed out.
Given a standard Brownian motion on R, its projection ontoss S R/Z

is the so-called standard circular Brownian motion; its generator is the contrac-
tion of @ Ds/2, to C*(S).

Consider now the general circular Brownian motion with a two-sided barrier
at 0 (i.e., the obvious circular analogue of a Brownian motion with two-
sided barrier on R1), and, as before, single out the case

17. P:[’(e’) O] 1, e" limo inf(t:[’[ < e).

33 Z is the integers.



224 K. IT( AND I-I. la. MCKEAN, JR.

@" is the contraction of @ D/2 to34

D(@’) C’2(S1) n (u :plu(0) + p_2u-(O)18. p+u+(O)

+ f
for some nonnegative numbers pl, p+/-, p3 and some nonnegative mass dis-
tribution p4(dl) subject to

19a. pl -t- p- p+ -[- p3 fj0
19b. p4( S1) +
and an application of 18 to

20a.

l(1 1)p4(dl) l, p4(O) p4(1) O,

in case p+/- pa-- 0,

(G’.f)(1) (Gf)(1)

+ sinh (2a)//-t- sinh (2a)1/(1 l)
sinh (2a)/

(G f) (0), 0 <= < 1,

20b. (G-f)(a) 2 fo a(a, b)f(b) db, 0 <- a < 1,

20C. G(a, b) G(b, a)

establishes the formula

21.

sinh (2a)2a sinh (2a)1/(1 b)
(2a)/ sinh (2a)/

O<-a<-b<l,

sinh (2a)1/ f(l) dl

+ 2p+
sinh (2a)

f(1) dl + pf(O) + (G: f)(l)p(dl)

cosh (2a) 1/2 1
sinh (2a)

(P- + p+)

( sh (2a)a/l + sinh (2a)1/(1 /))+ ap + 1 p(dl)
sinh (2a)/

Given a standard circular Brownian motion with local time

22. t (t) lim (2s)- measure (s: ](s) < e, s t)

and a (circular) differential process based on p and p., it is possible to
build up the circular Brownian sample paths as in the linear case, but a
second method suggests itself: the method of images.

Consider for this purpose a Brownian motion on R with two-sided barriers
at the integers having as its generator the contraction of @ D/2 to the
class of functions u e C(R) C(R Z1) such that

C’(S,) C(S) a c(s 0) a (u:u"(0-) u"(0+)).
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23a. (@u)(n--) (@u)(n-),
23b. plu(n) + p_2u-(n) p+2u+(n) + p(@u)(n=i=)

Jo [u(1 - n) u(n)]p4(dl)

at each integer n 0, 1, =t=2, etc. (the reader is invited to build up the
sample paths for himself). Because the barriers are periodic, the proiection
of this motion, onto S R1/Z is (simple) Markov, and its identification
the desired circular Brownian motion is immediate.

18. Simple Brownian motions

Given a simple Brownian motion on [0, W ), described as in Section 5 except
that it need not start afresh at nonconstant stopping times,

1. (G*,f)(1) (G-f)(1) + e-()"(Gf)(O-), > O,
as will now be proved with a view to the classification of all such Brownian
motions.

Given a > 0, a nonnegative Bore1 function f, and t h 0,
2. E[e-"t2(Gf)(’(t2)) S;]

-"t’r(Gf)(’(t))], ’(t) t2- h,

e ds E;(E.()[f(’(s))])

e-"’ e ds E;[f(* (t + s)

e-’ e a [(’())l

i.e., e-(G; f) (’) is a (nonnegagive) permarieale; as such, ig ossesses
one-sided limigs as k2 ( 0), and ig follows gha if > e > 0
and if m" is ghe crossing gime i(" " < e), ghen

3. (G: f.)(1) E; e-"’f(’) dt

+ lim+0E;(k- 1)2- m" 2-,

e e-"?(’(t + k2-)) dt
0

+ lim + o E;[(k 1)2 m" < k2-,
e-"-’(G f) (’(k2-))]

See J. L. Doob [1].
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E e-"tf() dt + E[e-"mlim2-.,(G*,f)((k2-))],

where is a standard Brownian motion, E. its expectation, and m its passage
time min(t" e).

But, in the standard Brownian case, lim2- m(G f)((/2-) is measur-
able over Bin+ and also independent of B+ (i.e., it is measurable
over B[(t m):t __> 0] which is independent of B+ conditional on the
constant (m) e); as such, it is constant, and inserting this information
back into 3 and letting v 0 establishes

4. (G’,f)(1) (G-,f)(1) + e-(")1/2 X constant,

which implies the existence of (G f)(0+) and leads at once to 1.
Given a bounded function f on [0, + ), continuous apart from a possible

jump at/ 0, define a new function ] on (- 1) u [0, + as

5. (1) =f(0) if -1,

-f(0+) if /-0,

=f(l) if > 0,

and introduce the new Green operators

(of)G

mapping C( 1) u [0, + into itself., is the Green operator of a strict Markov motion on 1 u [0, + with
sample paths - (t) (t+) e (-1) u [0, + u o, and 5" is identical
in law to the projection of under the identification -1 -- 0, as the reader
can check for himself or deduce from the general embedding of D. Ray [1].
One now computes the domain D(() of the generator ( of this covering

motion and finds that it is the class of functions

u eC((-1) n [0, +)) u C[O, +)
subject to

--p+ u+(0) + p+a(@u)(0) f(-)u(0.+)u [u(1) -u(O ]p+,(dl),

p+(O) 0 <= p+: p+a p+(dl)

7b.

p+ + p+ + 1 .-}- (l/k 1 p+(dl) -t- p+p+ 1,. +

p-(u)(--1) f[0.+) [u(/) u(-1)]p-(dl),

p_ 1) 0 <= p-a, p- dl

p_a+p_[0, +) +p_() 1,

where u( O.
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0

DIAGRAM 1 DIAGRAM 2

If p_, 0, the motion starting t --1 begins with jump e [0, + o
with lw p_,(dl) s in Diagram 1, u(- 1) f0,+.) u(l)p_,(dl), nd 7 goes
over into

8. p u(0) p u+(0) + p;(u)(O) f [u(/) u(O)]p(dl),
0+

8b. p p+( + p+(- 1)p_( ),

p p+ P p+

p(dl) p+(dl) + p+(--1)p_(dl), > O,

i.e., the covering motion does not land at -1 which is superfluous state, nd

" is a strict Brownian motion on [0, + s in Sections 5-16.
If p_ > 0, then is the contraction of @ D/2 to D() with the added

specification

p-(dl)
9. (@u)(-1) 0.+)[u(/) u(-1)]

p_
U(

t --1, nd the prticle starting t -1 wits there for n exponential holding
time with law e--t/’- (p_ p_t([0, + u )), nd then jumps to

e [0, + u with lw p_(dl)/p_ s in Diagram 2.
If, in ddition to p_ > 0, one has p 0 and p(0, + < + , then the

motion starting at 0 is of the sme kind, nd it is clear that the projection of
this motion down to [0, + (-1 0) cnnot even be simple Mrkov
unless p_ p+ nd p_(dl) p+(dl) (1 0) up to common multiplicative
constant, in which cse the projection is the Brownin motion ssocited with

%. p u(0) + p+(@u)(0) f [u(/) u(O)]p+(dl),
0+

9b. p p+(

studied in Section 9.
If p_ > 0 nd either p+ > 0 or p+t(0, + + , the prticle starting

t --1 waits for n exponential holding time nd then jumps s in Diagram
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e
-2

DIAGRAM 3

3 to 11 e [0, + oo u and starts afresh; if 0 =< ll < + o, the particle performs
the Brownian motion on [0, + oo associated with

10a. pu(O) p+2u+(O) + p+3(@u)(0) f [u(/) u(O)]p+(dl),
J0+

10b. p p+(-1 u oo)

up to the killing time of that motion, at which instant it jumps to 12 o or 1
with probabilities p+4( ): p+(-1), and, if l. -1, it starts afresh as in
Diagram 3, while if 12 o, then the motion rests at that place at all later
times.
Now the projection " of this motion onto [0, + oo (- 1 --* 0) is simple

Markov if the Brownian motion attached to 10 does not spend positive
(Lebesgue) time at 0; otherwise the knowledge that ’(s) 0 is not
sufficient to discriminate between the two possible coverings, and the law of
’(t): -> s is moot. But if e is the indicator of 0, and if

11. ’(f-) ( < m), (->

12a. + P3 -lt+,
12b. " p-lt+ t+ + +
is the motion attached to 10, then, in the notation of Section 14,
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13. measure (s: ’([-i) O, s <_- t) e[’( )] ds

-(t)

fo e(’)f (ds)

p+3 f -+ (dt)
+fl+ [o,-l(t))

p+-t+[+ n [0, f-(t))], -< m
and this cannot be positive unless p+3 > 0 and 0 < +(:5+) [[, i.e.,
unlessp+ > 0 also; in short, the projection is simple Markov unless p+ p+ > O,
and now the classification is complete.
N. Ikeda had conjectured part of our classification (private communi-

cation); the cse of two-sided brrier on R is similar except thnt three
covering points lie over 0.

19. Feller’s differential operators
Given a nonnegative mass distribution e on the open half line (0, + )

with 0 < e(a, b] (a < b), let D(@) be the class of functions u e C[0. -such that

Jl f de, a < b,1. u+(b) u+(a)

for some f e C[0, - ), and introduce the differential operator (u .
2. (@u)(a) lim

u+(b) u+(a)
e(a, b]

W. Feller [3] proved that if e(0, 1] < -t-, and if p, p, pa, p(dl) are
nonnegative with p(0) 0 and p p - pa - fo+ (l/k 1)p(dl) 1. then
the contraction @" of @ to

3. D(@’) D(@) n (u’pu(O) pu+(O) - pa(@u)(O)

is the generator of a strict Markov motion (diffusion) on [0, + oo ).
Given a reflecting Brownian motion + on [0, + ), the local time

4. .+(t, l) (measure (s:+(s) e dl, s < t))/2 dl

is continuous in the pair (t, l) e [0, ) (see H. Trotter [1]), and the motion
associated with @" in the special case p p3 p 0 (u+(0) 0 is identical
in law to " +(-) where fo+ t+(t, l)e(dl) (see V. A. Volkonskii [1]
and K. It5 and H. P. McKean, Jr. [1]).



230 K. IT AND H. P. MCKEAN fiR.

Because t+(dr, l) 0 outside (t" + =/),

5. f() ds f(+) + (ds, l)e(dl)

hence the local time

f0(/0 )t+ (ds, l) f(1)e(dl)
4-

fo+ +[[--l(t)’ 1]f(1)e(dl);

6. t’(t) lim0e(0, e]-1 measure (s’’(s) < e, s <= t)

t+(F, o)

exists, and now it is clear that the discussion of the Brownian case can be
adapted with little change.

20. Birth and death processes
Quite a general birth and death process on the nonnegative integers can be

changed via a scale substitution into a motion on a discrete series
Q’0 lo < 11 < l < < 1 having as its generator

1. @’u (u+- u-)/e,

2a. u+(l,,) u-(l+) (1,+- 1,,) -1 [u(/+l) -u(/)],

2b. e e(1,) > O,

e(lo) + e(l) + <
subject to

u+(O) o,

3b. plu(1) + p3(@’u)(1) -pu-(1) + fo [u(/) u(1)]p4(dl),

+ p + p3 + f (1 1)p4(dl) 1pl

(see W. Feller [4]). In the special case pl P3 P 0 the corresponding
motion is iust the reflecting Brownian motion on [0, 1] run with the inverse
function of f t+(t, l)e(dl), + being the reflecting Brownian local time.
Once this motion has been obtained, the general path can be built up using
local times and differential processes as before.
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