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1 of Section 2, etc.; the numbering of the diagrams is similar.

1. The classical Brownian motions

Consider the space of all (continuous) sample paths w:[0, + ) — R!
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with coordinates r(¢, w) = t(¢) (¢ = 0), the field A of events
L. B = walt2"'tn(A) = (W1(?§(t1), I(t2)7 Tty x(tn)) €A>
0<t <t <+ -<t,, AeB(R"), nz=1]

and the Gauss kernel

2. g(4, a, b) = @/ () (¢, a,b) € (0, + ) X R
Because of

3a. g(t,a,b) > 0,

3b. fg(t, a,b) db = 1,

3c. g(t,a,b) = fg(t — s,a,c¢)g(s, ¢, b) de (t > s),

the function
4=~ Pa(B) = L g(tl y Ay b1)g(t2 - tl ) bl ) b2) e g(tn - tn—l-, bn—l ) bn)

+dby dby « -+ dby

of B = wis,....,(A) €A is well-defined, nonnegative, additive, and of total
mass +1 for each a ¢ R, and, as N. Wiener [1] discovered, the estimate

5. fl . g(t,a,b) db < constant X e~'t"/% "/, t]o0,
a—b|>e

permits us to extend it to a nonnegative Borel measure P,(B) of total mass
-+1 on the Borel extension B of A (see P. Lévy [3] for an alternative proof).

Granting this, it is apparent that P,(£(0) ¢ db) is the unit mass at b = a.
P,(B) is now interpreted as the chance of the event B for paths starting at the
point a and the sample path w:¢t — ¢(¢) with these probabilities imposed is
called standard Brownian motion starting at a.

Givent = 0, if B ¢ B and if wi denotes the shifted path wi:s — ¢(t + s, w),
then 4 implies

6. P,(wi € B|1(s):s = t) = Py(B), b= 1(t),

i.e., the law of the future t(s):s > t conditional on the past r(s):s = t de-
pends upon the present b = g(s) alone (in short, the Brownian traveller starts
afresh at each constant time t = 0).

Because the Gauss kernel ¢(¢, a, b) is the fundamental solution of the heat
flow problem

7 ou _ 10
) at 2 da’

2 B(R") is the usual topological Borel field of the n-dimensional euclidean space R,

(t,a) € (0, + ) X R,
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the operator ® = D?/2 acting on’ C’(R') is said to generate the standard
Brownian motion, and it is natural to seek other differential operators &*
giving rise via the fundamental solution of du/dt = &*u and the rule 4 to
similar (stochastic) motions.

Consider, for example, the operator*

8. ®" = ®|CY0, +») n (u:ut(0) = 0):
the fundamental solution of du/ot = ®*u is
9. g7t a,b) = e C)(2mt) 4 O (2e) ) £ >0 Z a, b,

which satisfies 3a, 3b, and 3¢, and the correspondmg (reflecting Brownian)
motion is identical in law to

10. tt =zl

where ¢ is a standard Brownian motion.
Consider next the operator

11. ©& = ©|CH0, +») n (u:u(0) = 0):
the fundamental solution of du/dt = @ wu is
12, g (4 a,b) = ¢ TN/ (2mt)E — OT2(2e) 2§ > 0 Z a, b,
which satisfies 3 with
3b(bis). f g (t,a,b) db < 1
in place of 3b, and the corresponding (absorbing Brownian) motion is identi-
cal in law to
13. @) =) it < m,
= o i ¢tz m,

where ¢ is the reflecting Brownian motion described above, 1, is its passage
time m, = min (¢:x7(¢) = 0), and « is an extra state adjoined to R.
Given 0 < vy < 4 =, the operator

14. ©®" = ®|C0, +») n (uyu(0) = u*(0))
is also possible: the fundamental solution of du/dt = &"w is
15a. ¢"(t, a,b) = ¢g"(t, b, a)

t
=g (t,a,b) + l @983—)1/—2 e gt —5,0,b)ds, t>0 < a,b,

3 C4(RY) is the space of bounded continuous functions f:R! — R! with d bounded
continuous derivatives.

4 C2[0, + =) is the space of functions u e C[0, + «) with D?u ¢ C(0, 4 «) and (D) (0) =
(D) (0+) existing. w*(0) = lime o e u(e) — u(0)].
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15b 'r(t 0 0) _ 2f+°° —yc c -—-02/2td ¢ 0
BEAUR = b € ‘(‘We C, > 0,

which satisfies 3 with 3b(bis) in place of 3b, and the corresponding (elastic
Brownian) motion is identical in law to

16a. @) =t if ¢t < me,
= if ¢=Z me,
16b. me = £ '(e/7),

where e is an exponential holding time independent of the reflecting Brownian
motion ¢* with law P.(e > t) = ¢ ‘and t " is the inverse function of the
reflecting Brownzan local time:

17. tH(¢) = lim. o (2¢)™" measure (s:z7(s) < & s < t)
(see Sections 3, 4, 14 for additional information about local times).

2. Feller's Brownian motions

W. Feller [1] discovered that the classical Brownian generators & and
®" (0 < v < + =) of Section 1 are the simplest members of a wide class of
restrictions ®° of ® | C*[0, + ) which generate what could be called Brown-
ian motions on [0, 4+ ). Feller found that the domain D(®*) < C*[0, + =)
of such a generator could be described in terms of three nonnegative numbers
P1, D2, Ps, and a nonnegative mass distribution ps(dl) (I > 0) subject to®

L. pr+ o+ o+ [0+ (UA Dpuldl) =1

as follows:

2. D(S") = €U0, +) n (u:plu(m — 224" (0) + pa(Gu)(0)

= £+ [u(l) — u(O)]p4(dl)> .

M. Kage [1] cited the problem of describing the sample paths of the elastic
Brownian motion (p; = ps = 0 < p; p2), and it was W. Feller’s (private)
suggestion that these should be the reflecting Brownian sample paths, killed
at the instant some increasing function t*(8% n [0, ¢]) of the visiting set
8" ='(t:2%(t) = 0) hits a certain level, that was the starting point of this
paper.

P. Lévy’s profound studies [3] had clarified the fine structure of the stand-
ard and reflecting Brownian motions and their local times, the papers of
E. B. Dynkin [1] and G. Hunt [1] on Markov times provided an indispensable

5a A b is the smaller of @ and b. [0, means [o<i<teo .
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tool, H. Trotter [1] proved a deep result about local times, and W. Feller
[2] had presented a (partial) description of the sample paths of the Brownian
motion associated with @° in the special case ps(0, + ) < + o (the case
pa(0, +©) = + » was not discovered in Feller’s original proof of 2, but this
error was corrected by W. Feller [3] and A. D. Ventsell [1]).

It was left to use these ideas (and some new ones) to build up the sample
paths of Feller’s Brownian motions from the reflecting Brownian motion
and its local time and (independent) exponential holding times and differ-
ential processes; that is the aim of the present paper.

3. Outline

Brownian motions on [0, 4 « ) are defined from a probabilistic point of
view in Section 5, and a special case is disposed of in Section 6. Green opera-
tors

Gu: f— B (fo e‘“tf(f)dt)

and the generator ® (= a — G%™") are introduced in Section 7 and computed
in Section 8 using a method of E. B. Dynkin [1]. &° turns out to be the
restriction of ® | C*[0, +») to a domain D(®") as described in 2.2; it is
the simplest complete invariant of the motion, i.e., the associated sample paths
can be built up from

() a reflecting Brownian motion ¢,

(b) a differential process p with increasing sample paths based on ps and p; ,

(¢) a stochastic clock §~* based on t, v, and ps,

(d) a killing time based on ttp, 7 and py
(see Sections 9-15)

Consider, for the sake of conversation, the case:

L. p4(0’+°°)=+°° if P2=0:

introduce the reflecting Brownian motion r' as described in Section 1
(u*(0) = 0), and let t* be P. Lévy’s mesure du voisinage (local time)

2. t7(t) = limsyo (2¢) " measure (s:z¥(s) <&, s < t)

as described in Section 4.

Given p; = ps = 0, if p(dt X dl) is a Poisson measure as described in
Section 11 with mean dt X ps (dl) indepedent of r¥, if p is the (increasing)
differential process

3. 2(8) = pot + [0+ 1510, 1] X dl), £ 0,

and if p~" is its inverse function, then the desired motion is identical in law



186 K. IT0 AND H. P. MCKEAN, JR.

to’
4. =t =t 4

which could be described as a reflecting Brownian motion jumping out from
I = 0 like the germ of the differential process p run with the clock p T (see
Section 12 for pictures).

p't™ can be interpreted as a local time for the new sample path ¢* (see Section
14), and, with its help, the description of the sample paths can be completed
as follows: in case p; = 0, the desired motion is identical in law to

5a. i, o=ttt — ot 4o
where the stochastic clock f™ is the inverse function of
5b. f=t+py (t7(D),

while, in case p; > 0, it is identical in law to r*(f™') killed (i.e., sent off to
an extra state «) at a time ms, (< =+ ) with conditional distribution

6. P.(m; > t.go(f—l)) = e——plp"lt'l'f—l.

Here are two simple cases to be treated in Section 10.
Given py = ps = 0 < paps (ie,, uT(0) = (ps/p2) (Gu)(0)), the desired
motion is identical in law to

7a. o=,
7b. fo=t+ (ps/p)t™

! counts standard time while t*(t) > 0 but runs slow on the barrier, and hence,
compared to the reflecting Brownian motion, ¢° lingers at I = 0 a little longer
than it should; as a matter of fact,

8. measure (s:z°(s) = 0,5 < t) = pstT(F(2)) > 0

if £ > min (s:2°(s) = 0).

Given ps = ps < p1 p2 (ie., (p1/p2) u(0) = ut(0)), the desired (elastic
Brownian) motion is identical in law to a reflecting Brownian motion, killed
at time m,, with conditional distribution

o P.(m; > t] g"‘) = e—(P1/p2)t+(t)’

i.e., killed on the barrier | = 0 at a rate (py/p2)tt(dt):dt proportional to the
local time.

Brownian motions with similar barriers at both ends of [—1, 4+1] or with
a two-sided barrier on the line or the unit circle are studied in Sections 16
and 17, Section 18 treats a wider class of Brownian motions on [0, + « ),
substantiating a conjecture of N. Ikeda, Section 19 describes the sample
paths in case a diffusion operator ®u = wu*(dl)/e(dl) is used in place of

¢ pp~it* means p(p(tH)).
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the reflecting Brownian generator ®*, and Section 20 indicates how to adapt
the method to birth and death processes.

4. Standard Brownian motion: stopping times and local times

Before coming to Brownian motions on a half line, it is convenient to
collect in one place some facts about the standard Brownian motion on the
line (see K. It6 and H. P. McKean, Jr. [1] for the proofs and additional in-
formation).

Consider a standard Brownian motion with sample paths w:t — r(¢),
universal field B, and probabilities P,(B) as described in Section 1, define’
B: = Blr(s):s = {], and, if m = m(w) is a stopping time, i.e., if

la. O0=m= 4o,

1b. (m < t) By, t=0}
then introduce the associated field

2. But =Bn(B:(m<t)nBeB,,t =0).

Buny = N B, in case m = ¢; in general, (m < t) e Buy (¢ = 0), and, with
the aid of

3a. B.+ € By, a = b
3b. B.r = Neo By b=a+ ¢
it is not hard to see that B, measures the past z(t):t = m+, ie.,

4, Bur DN Bzt A\ (m 4 €)):t = 0].

E. B. Dynkin [1] and G. Hunt [1] discovered that the Brownian traveller
starts afresh at a stopping time; this means that for each stopping time m,
each a ¢ R, and each B ¢B,

5. P.(wh ¢ B|Buny) = Py(B), b = r(m)

where w}; denotes the shifted path’ wh:t — r(¢ + m), r(+o) = «, and
P.(x(t) = ,t =2 0) = 1. Because m = t is a stopping time, 5 includes the
stmple Markovian evolution noted in 1.6; an alternative statement is that
conditional on m < + oo and on the present state b = r(m), the future
t(t + m):t = 0 s a standard Brownian motion, independent of m and of the
past £(t):t £ m+.

Given [ > 0, the passage time m; = min ($:5(t) = 1) is a stopping time,
and the motion [m;:l = 0, Py is a differential process, homogeneous in the
parameter [; it is, in fact, the one-sided stable process with exponent %, rate

"Blg(f):a < ¢t < b] means the smallest Borel subfield of B measuring the motion
indicated inside the brackets.

8 (m < t) is short for (w:m < t).

9 « is an extra state ¢ R!.
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t
X X = tT-x
-
! -
x (0) O
DiaGgram 1 Diagram 2
42, and law
l —12/2¢

6. Po(ml€dt) = (273)1/26 dt

as P. Lévy [2] discovered.

m. , itself, is a sum of positive jumps (see Section 11 for information on
this point), and its inverse function t (¢{) = max,<. £(s) is continuous and
flat outside a (Cantor-like) set of times of Hausdorff-Besicovitch dimension
number %; the joint law
7. Polx(t) eda,t(t) edb] = 2 =0 e-rmgeag b20,0<b

(2wt?)L2 ’ =00 =
is cited for future use.

Consider, next, the reflecting Brownian motion ¥ = | ¢ |.

Given a reflecting Brownian stopping time m, ie.,, a time 0 £ m £ 4+
with (m < t) eBlz*(s):s < #] (¢ = 0), m is likewise a standard Brownian
stopping time, and it follows that, conditional on m < 4+ and b = " (m),
the shifted path r7(¢t + m):t = 0 is a reflecting Brownian motion, inde-
pendent of m and of the past £7(t):t < m; in brief, the reflecting Brownian
motion starts afresh at its stopping times.

P. Lévy [3] observed that if ¢ is a standard Brownian motion starting at 0,
then 17 =t — ¢ ({ = max,<; £(s)) is identical in law to the reflecting
Brownian motion r* starting at 0. Diagram 2 is a mere caricature of the
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path, the actual visiting set (¢:x = 0) being a closed Cantor-like set of
Lebesgue measure 0.

P. Lévy also indicated a proof of
8. Py[lim, ; (2¢) " measure (s:x (s) <& s=t) =t (4),t=20] =1,
which implies that £~ is a function of ¢~ alone, and deduced the existence of
the reflecting Brownian local time (mesure du votsinage):
9. t*(t) = lim,}o(2¢) " measure (s:z7(s) < ¢, s < ©)

(see H. Trotter [1] for a complete proof). t* grows on the visiting set
8% = (t:x7(t) = 0); it is identical in law to t~, and its inverse function t* is
identical in law to the standard Brownian passage times; especially, the joint
law

10, PAE"(1) eda, (1) edb] = 2 G0 T M da s, ad 20,

is deduced from the joint law of r and £~ above.

Skorokhod [1] has made the point that if ¢ is a standard Brownian motion,
if 0 £ ¢° is continuous, if 0 = t* is continuous, increasing, and flat outside
B = (t:z"=0),andif * =1t — r,then ' = ¢ andt’' = t".

5. Brownian motions on [0, + )

Given probabilities Pa(B) (a€e[0, +) u ) defined on the natural
universal field B* of the path space comprising all sample paths

la. wit— ' (4) = '(t+) [0, + =) U »,
1b. ©°(t) = o, t = my, = inf (£:1° = )
and subject to

2a. Pz(B) is a Borel function of a,

2b.  Pglt*(0) e db] is the unit mass at b = a (a # 0),

let us speak of the associated motion as
(a) stmple Markov if it starts afresh at constant times:

3a. P:(w;" ¢B|B;) = Py(B), s=0,BeB*a=1(s),

where wi" is the shifted path ¢ — ¢*(¢ + s) and B} is the field of £*(¢):¢ < s,
(b) strict Markov if it starts afresh at its stopping times:

3b. P:(wys € B|Bhey) = Pi(B), BeB*a = *(m*),
for each stopping time
4a,. 0=m" £ o,

4b. (m* <t)eB: (¢t=0),
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where °(+ ©) = o and B;.+ is the field of events

5a. B ¢B°,
5b. Bn(m® <t)eBi (t=0),
(e) a Brownian motion if, in addition to (b), the stopped path
6a. (8t < moy = lim, o inf (¢:2° < &), ©(0) =1>0,

is identical in law to the stopped standard Brownian motion
6b t(t):t < mp = min (¢:z = 0), r(0) =1L

E? denotes the integral (expectation) based upon PP, and E:(e, B) =
F* (B, e) denotes the integral of e = e(w") extended over Bj; the subscript . as
in 3a and 3b stands for an unspecified point of [0, + %) U « with the under-
standing that if several dots appear in a single formula, then it is the same
point that is meant each time.

6. Special case: p+(0) < 1

Given a Brownian motion as described above and a sample path ¢* starting
at £*(0) = I > 0, the crossing time

1. m’ = m; = inf (¢:2°(¢) < ¢), 0<e<l

is a stopping time, Pi[r"(m?) = &] = 1, mi; = lims o m5 = m + miy(wht),
and, since the stopped path r*(¢):t < mg is standard Brownian,

2. Ejle ™+, t*(mi,) e B]
= Ei(e*™ Eilexp(—omb (wht)), t"(mby(wit), wis) € B |Bhet])
= Bi(¢ "Bl ™, 1 (miy) ¢ Bl
— Bi(e™ ") Pig" (mhy) e Bl (e 1 0)
= ¢ P (i) e B, "

i.e., £'(moy) is independent of mi,. , and its law p(B) = Pi[t"(mo+) e B] does
not depend on 1 > 0.

Consider the law p(dl) = Pi[t*(0) e dl], and, in case p(0) = 1, let e be the
extt time inf (£:¢°(¢) = 0).

Because
3a.  94(0) = Pii"(my) = 0, (0, wiky,) = 0] = p+(0)p(0), 1> 0,
and
3b.  p(0) = Pilt’(0) = 0, (0, wa") = 0] = p(0)’,

10 15, is identical in law to the standard Brownian passage time m, = min(¢:x(f) = 0),
and hence E}(exp(—am;,)) = exp(— (2a)12l) (see 4.6).
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the possibilities are

4a. p(0) = p+(0) =0,
4b. p(0) = 1> p4(0),
4c. p(0) = p+(0) = 1.

4a is the simplest case. Diagram 1 shows the motion [¢°, Pj]: the jumps
Iy, Iy, ete. are independent with common law p,(dl), the initial position [, is
independent of l; , I, , ete. with law p(dl), and the excursions leading back to

= 0+ are standard Brownian.

4b is more interesting. e s an exponential holding time independent of r*(e)
with law ¢ " (0 £ ps < +); indeed, if s = 0, then (e > s) eBi. =
N . Bi , whence

5. Pi(e >t 4+ s) = Pi(e > s, e(wst) > t) = Pi(e > s)Pi(e > t)
and
6. Pile > s, 1'(¢) edl] = Pi[e > s, r*(e(wi") + s) ed]
= Pi(e > s)Pi[r’(e) edl],
completing the proof.

!Zz s
'
4, L]
"z
e
-1
1 > 0=0- o%)
IO

Diagram 1 DiaGram 2
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Ds has to be positive; in the opposite case,
Pi(e = 0) = p(0) = Pi(lim, ;o m; = 0) = 1,

where now m, is the sum of the crossing time m* = inf(¢:1°(t) > ¢) and
mp(wit), and hence

7. 1 = p(0) = Pi(lim,}o r'(m:) = 0)
= lims o lim, o Po(z*(m:) < 8)
= lims o p4[0, &)
= p+(0),

contradicting p+(0) < 1.
p—(dl) = Pglz’(e) edl, e < -+ o] attributes no mass to I = 0 as is clear from

8a. Pi(e > 0) = lim,joe " =1
and
8b. p-(0) = Pi[r’(e) = 0,¢e < 4+, e(w;™) = 0] £ Pi(e = 0).

Diagram 2 is now evident; the jumps I7, Iz, etc., If, I3, etc., and the holding
times ¢, ¢, etc. are independent with common laws P(ly edl) =
p—(dl), P(If edl) = py(dl), P(es > t) = ¢ “**, and the excursions leading
back to [ = 0+ are standard Brownian.

4c¢ occupies us in Sections 7-15; a further class of ramified simple Markov
motions is studied in Section 18.

7. Green operators and generators: p.(0) = 1
Consider the case p4+(0) = 1 (6.4¢), and introduce the Green operators

1. Go:feCl0,+ ) = E: (l ’ e f(x") dt>, a> 0.
Because m* = mj; = lim, o inf(f:r°(¢) < &) is a stopping time
and P:(¢"(m*) =0) =1,

2 (GN() = Fi (f’"s* o 5(e) dt)

0

. m:o(w,’“'t)
+ B (e—“'"°+ E; ( [ et mnal B;.+)>

= @nO + B B ([ o) @)
= (62) () + =" (@) (0),

where G, is the Green operator for the (absorbing) Brownian motion with
instant killing at { = 0:
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3. (G2f) (a) = B, ( [ s dt>

/+oo e—(za)llzlb—ai _ e—(za)1/2[b+al
o (2

especially, Q% maps C[0, 4+ ») into C*[0, + ).
Given e, 8 > 0 and f e Cl0, + ),

4 (a—B)G.Gif

= (a — B) E: ([om&’ e (G5 ) (2") dt)

= (a—B)E: </omm e dt Ejeqsy (j;m:o e 1(1) ds))
= (a — B) E: (_[% Pl gy ftm:o e (1) ds)

= E° (‘[n:o e f(z*) ds (a — B) fos g P dt)
= Gﬁf - G:xf’

fdb, az0;

i.e.,
5. G;_Gé"‘"(a_ﬁ)G:xGE:Oy a,B>O)

proving that the range G% C[0, + ) = D(®") and the null-space G2 *(0) are
both independent of a > 0; in fact, G5'(0) = Naso G2 *(0) = 0 because if f
belongs to it, then

me

6. 0= lima'[q-w OL(G; f)(l) = 1i1’na1+°o E; <otj(; ” e’“tf(g.) dt) =f(l), lg 0’

thanks to Pi(z*(0+) =1) =1 (I = 0).
@G is now seen to be invertible, and another application of 5 implies that
7. G =0a— G:D(G") - C[0, +»)

is likewise independent of « > 0.
®° is the generator cited in the section title; it is a contraction of & = D*/2
acting on C*[0, + =) because

8a. D(®") = G C[0, +) < €0, + )
and
8b. (a — ®)Gx = 1, a> 0.

Given two Brownian motions with the same generator, their Green operators
and hence their transition probabilities and laws in function space are the
same, i.e., ®° is a complete invariant of the Brownian motion.
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8. Generator and Green operators computed: p.(0) =1

D(®"®) can be described in terms of three nonnegative numbers p; , P2, s
and a nonnegative mass distribution ps(dl) (I > 0) subject to

Ia. ptmtpt [ UAD ) =1
0+

and

1b. P4(0, ) = + o incase p, = p; =0,

namely, D(®*) is the class of functions u e C’[0, + ) subject to™
2. pu(0) + pO0O) = g (0) + [ u®) - u®)] i),

as will now be proved.

1b is automatic from the rest becauseif p: = p; = 0 and p«(0, + =) < + o,
then an application of 2a to u = aG%Lf e D(®") implies, on letting & T + o,
that

[pa+ 210, +2)15(0) = [ fpuldl)  for each e CI0, +0),

which is absurd in view of 1la. Besides, it is enough to prove that

%. D) C €0, +)n (utplu(O) + () (0)

=9 + [ ) — )] p4(dl))

or some choice of p1, P2, Ps, s subject to 1a, because, if u is a member of
the second line, then so is the bounded solution u* G1(1 — ®)u — u of
®u' = u', and, expressing u' as ad™ + o 6_2 "l it is found that
aa=c=u =01ie,u =Gl — &ueD(®").

Consider, for the proof of 2b, the exit time

3. e = inf(¢:2°(¢) # 0)
and its law
4, Pi(e>1t) = e 02k £ +»),
and bear in mind that ¢*(e) is independent of e:
5. Pile > t, r°(e) edl] = ¢ p(dl).

Itk =4 ( = 4 ), then (&"* u)(O) 0 for each u ¢ D(®*), and 2b
holds with P11 = = Ps = 0 and Ps =

1@ = D2/2.
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If0 <k < 4, then
6. p(0) = Pi[z"(e) = 0, e(w;™) = 0] < Pi(e = 0) = 0,
and choosing v = G5, f ¢« D(®*), it appears that

7a. u(0)

f(0)E; (fot e dt) + Eile*u(z*(e)), ¢ < mel

_ au(0) — (®"u)(0) k 12
= atk +a+kfo+“”(dl)’

or, what is the same,

7. w(0) + K(60)©) = [ up(a,

i.e., 2b holds with p;:pa:psips = 1:0:k 7 :p.

But, if £ = 0 (e = 0), the proof is less simple; the method used below is
due to E. B. Dynkin [1].

(®*u)(0) < —1 for some u ¢ D(®*) (if not, then (®'w)(0) = 0, f(0) =
(1 — &1)G1 f(0) = (Gi )(0) for each f ¢ C[0, + ), and Pi(e = + ) = 1),
80, choosing ¢ > 0 so small that (&°u)(l) < —1 (I = &) and introducing the
crossing time m; = inf(¢:2°(t) > &), it is clear from

5. u(0) = E; ( [ e dt), f= (o — &),

mgAmS,
= E3 (f e (a — &)ulr") dt)
0
+ Ejle*™u(r*(ms)), m: < ma)
that
mgAmS,
0. Eimi A\ mt) S lim B ( [ e = ute) dt> < too

(&) (0) < —1 has no special advantage for the derivation of 8 which
holds for each u eD(®°) and & > 0; thus, keeping ¢ > 0 so small
that Ej(m: A my) < + « and letting @ | 0 in 8 implies

mgAmS,
10. w(0) = —F; ( [ @ dt) + Bilu(r(m)), ms < + ],

u e D(®*),
and letting ¢ | 0 in 10 establishes E. B. Dynkin’s formula for the generator:

11la. (&'u)(0) = lifn [u(?) — u(0)lp:(dl), ueD(®"), u(x) =0,

0 Y[e,4w0)Uxw
2 (@ — 67)Gs = 1.
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11b. pe(dl) = Ej(m: A\ m&) ' Po[r"(m: A m) edl),

or, what is better for the present purpose,

12a. lim [&%.0_). u(0) + (@y‘u.# — f )u.(l)(l A1) Pegﬂ)] =0,

elo [&,400
12b, D=pw) +1+ [ UADpa,
0+
o u(l) —u(0) .
= +(0) if l == 0.

Because D(®*) < C*0, +®), u* € C[0, + ) and selecting ¢ = & >
g > ete. | 0 so as to have

13a. limelo pe( i )/D = D1,
13b. lim, o 1/D = ps,
13c. lim o (I A 1)ps(dl)/D = p,(dl) *

existing, it is clear from 12 that

14a. pu(0) + pa(®u)(0) = pu(0) + f(om [u(l) — w(0)]ps(dl),
14b. p2 = px(0), pa(dl) = p«(dl)/(L A1) (1> 0),
14c. ptmtp+ [ AA D) =1

(0,+00]

for each u e D(®"*) having a limit u(+«) atl = 4 .

But ps(+ =) = 0 because, if f = ¢ ™, thenu = Gif e D(®"), u(+») = 1,
and at the same time %(0), ©(0), *u(0), and fz<+w [u(l) — u(0)]ps(dl) are
all small for large n, and this permits us to derive 14a anew for each
u € D(®"), completing the proof of 2b.

Given u ¢ D(®") and inserting 7.2 into 2a, a little algebra justifies

p2 [ Q) dl+ paf(0) + [ (G2H)DpulaD)
15. (G £)(0) = ot ot ,
1+ (20)ps + aps + fo = O

which finishes the computation of the Green operators.

9. Special case: p, = 0 < p; and p, < + =
Consider the special case
la. P2 = 0 < ps,

13 fo SAN1)D 1p(dl) converges as € | 0 to f fox(dl) extended over [0, + ] for each
feclo, +l.
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1b. ps = ps(0, +0) < 40,

and introduce a motion r* based on a reflecting Brownian motion with sample
paths ¢t — r7(¢) and probabilities P,(B) (a = 0) as follows.

Given a sample path r* starting at a point of [0, + ), let r* = ¢+ up to
the passage time m, = min(¢:z*(¢) = 0); then make r* wait at 0 for an
exponential holding time ¢; with conditional law

L P.ey > t| 1) = ¢ (rteoirae,

at the end of that time let it jump to a point /; € (0, +®) U « with con-
ditional law

2. P.(lyedl| e, t%) = pu(dl)/(p1 + ps) i 1> 0,

= p1/(p1 + pa) it 1=0,

and, if + > I, > 0, let it start afresh, while, if {; = », let t* = « at all
later times (see Diagram 1),
Because r* starts afresh at the passage time iy,

3. (GuNH) =K, <_/o‘m:° e (1) dt) (ms = min (¢: £*(¢) = «))

- B ( [ " ) dt) + Ey(e™") By ( | " ) dt)
= (G2 ) + (@ 1)(0)

as in 7.2, whence

4 (G2)0) = f(0)Ey ( [e dt) + B EL(G (D), & < ma]

- paf(o)
P+ aps + P4
i [ @ e + [ e @ o |
P+ aps + pa Lo+ b o+ Pe * ’
P, p4(d9)
P+ P, Pi+P,
. 1,
e .)S+
b |
00 0 -

Diagram 1
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and, solving for (G% f)(0), one finds

2 10) + [ (G2 (Dpulal)
5. (@ ))(0) = =

o+ aps + / L= e pay

Granting that the dot motion starts afresh at constant times (the reader
will fill this gap), a comparison of 5 and 8.15 permits its identification as the
Brownian motion associated with the operator ®* with domain

6. D(®") = C0, +») n (u: p1u(0) + ps(Gu)(0)

= fo+ [u(l) — u(O)]p4(dl)>§

the proof that r° is a Brownian motion can be based on the fact, used several
times below, that if a motion is stmple Markov and if its Green operators map
C[0, + «) into itself, then it is also strict Markov (see, for example K. It
and H. P. McKean, Jr. [1]).

10. Special case: p. > 0 = p,

Given a reflecting Brownian motion with sample paths ¢ — ¢ (¢), proba-
bilities P,(B), and local time

1. tH(t) = lim. o (2¢) " measure (s:z'(s) < & s < 1),

it is possible to build up all the Brownian motions attached to the generators
2. @ =6|C0,+)n (u:p;u(0) — p2u*(0) + ps(Gu)(0) =0), p>0
with the aid of an extra exponential holding time e with conditional law

3. Pe>t]t") =¢".

Beginning with the elastic Brownian case (p1 > 0 = p;), the desired
motion is

4a. () =) i t<m,
= o if ¢tz ms,
4b. me = 1 ((po/pr)e) = min(t:t7(2) = (po/pr)e)

as stated in Sections 1 and 3.
With the aid of the conditional law

5. P.(m% > t] g+) = P.(e > (pl/p2)t+(t) |E+) = g /Pt
and the addition rule

6. tt(t) = t7(t) + tT(t — t, wi), s

v
=
-
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it is clear that, if db < [0, + =) and if me > & =< &, then
Ta. Pr’(t) edb |t (s)is S t, mos A by, ms > t]

_ Pl (8) edbmi > 6 | £¥(s):s < 1)
P.(m; > t)

— E'.[§+(t2) e db, e—(m/pz)t+(t2) , g+(s):s < t1]6+(p1/172)t+(t1)
= B[t (t) edb, e/ T | ¥ ()15 < 1]
= EJt*(t. — 1) edb, & P/ a=1"(t),
= P[t*(t2 — &) edb], a = 1"(k),
while, if ms =< ¢, then 2°(4) = o, and
Tb. P.r'() edb |t (s)is S ty, ms A tr, ms < ]
=0 = Put"(ty — &) edb). ™
Since ¢°(s):s = 4 is a Borel function of r¥(s):s < t;, m% A t, and of
the indicator of (ms < {;), it follows that
8. Plr*(t:) edb [ 2°(s):s = ti] = Polz’(t2 — &) edb], a = g'(tl),

establishing the simple Markovian nature of the dot motion.
Consider for the next step, its Green operators

G.f = B. (fom:" (") dt>,

and use the conditional law of ms, to check

+o0 8
L - —(p1/p2) tF(s) _Til + —atpf
9. Gaf = K. (.’; e pzt (ds) j‘; e f(g )dt)
~+c0 +o0
=n([ ey a [ ermia)
0 12

- K. f et (") dt) .
0

Because m, = min(¢:27(¢) = 0) is a stopping time and t*(t) = 0 (¢ £ my),

0. @ =5 ([ e dt)

+ (e fom e exp {— (py/pa)t* (4, why) JIEH(E + mo)]

N

+e0 .
— (G; f)(l) + El(e—amo)Eo (j; e—-ate—(mlpz)t f(§+) dt
= (G2 N + "G N(0), !

# P [r* = «] =1 as usual.

1%
L



200 K. IT0 AND H. P. MCKEAN, JR.

and now the identification of the dot motion as the elastic Brownian motion
will be complete as soon as it is verified that

ik 1/2
1 P22 f e e () dl
: @NO) = —0
? + (20) 7y

in fact, this will prove that the dot motion is simple Markov with the correct
(elastic Brownian) Green operators, and the proof can be completed as at
the end of Section 9.

But 11 is trivial; in fact, using the joint law 4.10,

12. (G%)(0) = Eo ( [o +°° ¢ e~ () dt)

o0 400
[ eta @ f da 2 (’; ;)32 g 2= ul £ g

It

+oo e 1)2
2 fo db fo R P L))

22 fo L al
T T ot (20)Ep

as stated.

Consider next, the case p; > 0 = p1, and let us prove the desired motion
to be®

13. = (), f=t+ (p/p)t".
Beginning, as before, with the proof that the dot motion is semple Markov,
ift, = t, and if m = f7(¢,), then
(a) (m < t) = (t < f(2)) eBlx¥(s):s < 1], i.e., m is a stopping time;
() f(m +8)) = f(m) + f(s,wh) = i+ (b—t) ifs = T (b — b, wi)
andso f (k) = m+s=m+ i (t—t,wh);
(¢) ©'(t) = [ (f — t, wh) + m];
(d) £°(s):s = U1 is a Borel function of the stopped path t — tt (¢ A m) and
of Fi(s)is <t
(e) F7(s) s the solution r of f(r) = s (£ t = f(m)) and, as such, it is
likewise a Borel function of the stopped path;
and now, using the strict Markovian nature of r*, the law of ¢*(#,) conditional
on B, D Bz'(s):s = #] is found to be

14a. P.(z'[f'(ts — &, wi) + m] edb | Buy)
= P.(t"[F (ks — t1)] edb), a = T(m),
= Pu(z'(t — 1) edb), a = r'(t),

15 {1 jg the inverse function of f.
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whence, taking the expectation of both sides conditional on B[g*(s):s = 4],
14b. P.(x.(tz) edb ’ x'(S):S = tl) = Pa(li.(tz - tl) edb), a = I.(tl)r

ie., £ = rT(f7) starts afresh at time # , as was to be proved.
Coming to the Green operators

¢.f=E ( | e dt) :

since m, = min(¢:z+(¢) = 0) is a stopping time and ™ = ¢ (¢t £ my),

B ([ e @)

+0
+ B <e-“‘° [ et (i i) + o) dt)
= (Gz ) + " (G5 )(0)

as in the elastic Brownian case, and to complete the identification of ¢* it is
sufficient to check that

B ([ e @)
m ([ i)
- E ( fo e e—a[t+(px/172)t+]f(z+) dt)

15. (G HD)

I

16. (G: H)(0)

I

It

m2 [ ) dl
T T (2a)"p; + aps

+f_(9_) I:l — & (fw el sl p) 1] dt):l e
o ’ 0

P22 [0 LYW dL+ paf(0)
- (2a)'2py + aps

as it should be.
Consider now the case 0 < p; P2 ps ; this time the motion is

184+ (dt) = 0 off 3+ = (t:¢+(@) = 0).
17 Use 12 with ap; in place of p; .
18 Do a partial integration under the expectation sign.
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17a. ©°(t) = §+(f_1) if ¢t<ms,
= o if ¢tz ms,
17b. = flt 7' ((po/pr)e)] = H(FO((pe/pr)e),

as will still be proved.
tF(f) is a Brownian motion, its local time
18. t°(t)

measure (s:z7(f) = 0,5 < 1)
measure (s:'(s) e 3%, s £ 1)

measure f(3) n [0, £

f o f(ds)
3+N[0,i~1(¢)]
= (po/P)'IT ()] "

satisfies the addition rule 6, and, substituting them in place of r™ and t*
the derivation of the simple Markovian nature of the elastic Brownian motion,
it is found that the present motion is likewise simple Markov.

Guf = Gaf + ¢ Ya f) (0) is derived as before, that the dot motionis
Brownian follows, and now, using the evaluation 12 with p; + « p; in place
of p; in conjunction with the conditional law

19. P.(ms > ¢["(F") = P.(e > (p/p)t"(F7) [£7(F7)

— tt(—1 — (¢t
= ¢ (p1/P) tT(H™H e (p1/p3) te(t)

bt

it develops that

20. (G: £)(0)

Ey (jo’mw et (FY)] dt)
+o0 B

= fo (fo ¢l (7] dt)
—+o0

= EO (‘/0\ e—ate—((P1+ap3)/p2) ¢+f(£+) dt)

e —at_—~((p1+aps)Ipa)t+ P3 +
+f(0)Eo<fo ettt B g

2

P22 fo @) dL+ paf(0)
- 1+ (20)2py + aps ’

completing the proof.
A second description of the present motion is available: ¢t 7s the elastic

¥ measure (3%) = 0. t*(dt) = 0 outside 3+.
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Brownian motion t* described in 4 run with the new stochastic clock T which s
the tnverse function of

21a. f=1t+ (ps/p2) X the elastic Brownian local time t°,
21b. t*(t) = lim.;o (2¢)" measure (s:z°(s) < & s < t)
=ttt A m3), me% = min(f:i® = o).

11. Increasing differential processes

Before describing the sample paths in the case ps = ps(0, + ) = 40, it
will be helpful to list some properties of differential processes with increasing
sample paths.

Given a stochastic process with universal field B, probabilities P, and
sample paths ¢t — p(¢):

la. »(0) =0,
1b. p(s) = »(d), s =,
le. p(t+) = p(t) < + o, t20,

which is differential in the sense that the shifted path p4(¢) = p(t + s) — p(s)
is independent of its past p(t): t £ s and identical tn law to p, P. Lévy [1]® proved
that

2a. E(e*®) = exp{——t P+ f+ (1 — e"“l)p(dl):l}, a >0,
0

%. p 20, pdl) =0, f0+ (I A Dpldl) < + o

and expressed p as
3. p(6) = gt [ (10,4 X db, t20,
o+

in which p(dt X dl) = the number of jumps of p of magnitude e dl occurring in
ttme dt is differential in the pair (¢, 1) €[0, + ) X (0, +») and Poisson
distributed with mean di p(dl), ie., if @i, Q., etc. are disjoint figures of
[0, + ) X (0, 4+ =), then p(@), p(Q2), etc., are independent, and

4 PG(@ = m) = (QP/n) ¢, nz 0,10l = [ datp(a);

in short, p(t) is the (direct) integral f0+ ([0, t] X dl) of the differential Poisson
processes ([0, t] X dl) with rates p(dl) plus a linear part p.t.

Given nonnegative p; and p(dl) with [o4 (I A 1)p(dl) < +  asin 2b, it
is possible to make a Poisson measure p(dt X dl) with mean dt p(dl) as de-

20 See also K. Itd [1].
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scribed above; the associated p(t) = pat + [foi ([0, £] X dl) is a differential
process having 2a as its Lévy formula.
G. Hunt [1] discovered that if m is a stopping time, i.e., if

5. (m < t) eB[p(s):s < ] X B, t =0,

for some field B* independent of p, then p starts afresh at time t = m, .e., the
shifted path 9 (t) = p(t + m) — p(m) 7s independent of the past p(t): ¢ = m
and identical in law to p itself.
Given a = 0, if P, is the law that P induces on the space of sample paths
= p + a, then

6. P.(q(t) edb|q(s): s S t) = Po(q(ts — 1) edb), & =t,a = q(t),

the associated Green operators f — E([3° ¢ * f(q)dt) map C[0, + ) into
itself, and the associated generator Q is

7. (9N(a) = pf(a) + f0+ [7( + a) — f(@)Ip(db),  feC'0, +).

Given t = 0, p([0, £] X [&, + )) is Poisson distributed and differential in
& with mean ¢p[e, + » ); as such, it is identical in law to a standard Poisson
process ¢ with unit jumps and unit rate run with the clock #ple, + « ), and,
using the strong law of large numbers, it follows that

(00,8 X [e, +0)) _ . aliple, +)) _
8 P Py el =y Sl

which will be helpful to us in Section 14.

Consider the special case p(0, +«) < -+ o pictured in Diagram 1: the
exponential holding times e¢;, ¢», etc. between jumps are independent with
common law P(e; > t) = ¢ ?“*! the jumps Iy, s, ete. are likewise inde-
pendent with common law P(l; edl) = p(0, 4+ ) "p(dl), and the slope of
the slanting lines is 1/p, .

Consider, as a second example, the standard Brownian passage times m, =

.

©
n

1©
o

Dragram 1
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min(¢: ¢ = a) (a = 0) under thelaw P = P,. Becausethe Brownian traveller
starts afresh at its passage times, the shifted path My, — M, = Mpya(wh,) is
independent of m; : b < a and identical in law to m., i.e., m. is differential
(it is the one-sided stable process with exponent % and rate +/2 as noted in
Section 4);

9a. P2 = 0’
9b. p(dl) = di/(2al*)"?

can be read off

—amgy _  —(2a)1/2g - _ _ —al dl
10. Ey(e®™) = e exp{ a fo+ (1 —¢e*) __—(21rl3)1/2}'
m, is left-continuous, so in the direct integral [0, a) must be used in place of
[0, a]:
m = [ (10, a) X db.
o+

12. Sample paths: p1 = ps = 0 < ps (P2 > 0/ps = + )

Given a reflecting Brownian motion with local time t', a nonnegative
number p., and a nonnegative mass distribution ps(dl) (I > 0) with p, =
P4(0, + ©) = 4+ in case p, = 0, introduce the Poisson measure p(dt X dl)
with mean dt ps(dl), make up the associated differential process

1. p() = pt+ [ (10, X D),

and consider the sample path™

2a. () =t — () + @), t20,
2b. (1) = inf(¢:p(t) > 1)

and its alternative description

3. @) =t @)+ @), t=0,
in terms of the standard Brownian motion = = —t* + ¢+ and its minimum
function t~(t) = tT(t) = —(min,<, £ (s) A 0); it is to be proved that t* is

the Brownian motion associated with

" p2ut(0) + f () = w(O)lpu(aD) = 0,

but before doing that let us look at some pictures of the sample path.
Consider the case ps < + «: the jumps Iy , I, ete. of p are finite in number
per unit time and can be labelled in their correct temporal order. p and

21 pp~i1t+(¢) is short for p(p1(t+(2))).
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-l
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2
]
! P&
gI
%,
Diagram 1
t
+ + +
) L=t (t-my-my W 4 ) +X (1)im +m, st<m +m,+my
2
m, fl-lf(f-ml,wél)q-i*(f):m151<m1+_rg_2
]

My~ x* (1) t<m,

Y
*e

%(0)=0

my t1(ps 1)

me t(pzes + Iy, wﬁl)
ms = t71(ps e + Ly, Winyims)
ete.

[

Diagram 2

p~"! are seen in Diagram 11.1, pp~" in Diagram 1 of the present section, and
the r* = ppt" — t* 4+ ¥ path in Diagram 2, in which t™ is left-continuous
as usual and e, e;, ete. are the exponential holding times between jumps
of p.

Coming to the case p, = -+, p(¢) experiences an infinite number of
jumps during each time interval [t , &) (& < ), but

p([tlyt2)x[£7+°°))<+°° (t2<+°°a€>0)v
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and so it is legitimate to label the jumps as follows:

(a) arrange in separate rows the jumps occurring in (0, 1], (1, 2], etc.;

(b) in each row, arrange the jumps in order of magnitude beginning
with the largest one;

(e) if several jumps of the same magnitude occur in a single row, arrange
them in correct temporal order;

(d) number the rows as indicated below:

hzlbzlzh,
bzlzh,
b=k,

l; ete.

A I\%

Diagram 2 gives an approximate idea of the sample path in the case p. = 0.
Diagram 3 (p; = 0, £(0) = 0) is based on the alternative description 3:
the standard Brownian path ¢ has been slanted off to the left for the purposes
of the picture, and the rule is to translate the excursions of = between the
endpoints of the flat stretches of p~" until the left legs of the hatched curvilinear
triangles abut on the time axis and then to fill up the gaps with £* = 0. The
picture is not so simple in case p» > 0: then Q = (I:pp~*(1) = 1) has positive
measure, and, on Q~ = ({:t7(¢) eQ), t* = pp 't~ — ¢~ reduces to the re-
flecting Brownian motion t~ — ¢~ = ™.

AN

Ix

A

o/t

B/t

Diagram 3
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13. Simple Markovian character: p; = ps = 0 (ps > 0/ps = +»)
Consider the sample path

L. rEpt =t =t

described in Section 12.

Given =t = 0, ifm= p_ t_(tl), if p+(t) = p(t + m) - p(m), and if
tr(t) = —min,< (s + &) — & (f1)], then, as the reader will check,

2. Yt () — 0t ()

= inf(s:p(s) >t (&) — ¥t (4))

= inf(s:p(s + m) > t7())

= inf(s:pi(s) + p(m) > [k — 4) — £@WIV £(0) ™
inf(s:p(s) > [tr(t: — t1) — ()] V [t (&) — p(m)])
= inf(s:p4(s) > [th(te — &) — (W] V 0),

where the last step is justified as follows: a = t (#) — p(m) = 0 since esther
p; > 0 or pi(0, +o) = 4w, p7(0) = 0, and it follows that either
b =1t (t — ) — ¢'(4i) <Oandinf(s:py(s) > a\V b) = inf(s:p, > 0) =0
orb=z0andaV b="

Coming to the sample path, itself, an application of 2 implies

3. '(t) =Wt (L) + ¢ ()
= p(ny ([l — #) — (0] V 0) + m) + ¢ (&)
= P ([ (e — &) — ()] V 0) + w7t (8) + 1t (k)
= PP ([l — &) — (I V 0) + [£ () — £ (8] + (&)
= 007 E(f — 0) 4 Bt — 4).

Consider this conditional on ¢*(4;) = a = 0.
Because of the differential character of the standard Brownian motion

4a. t— Bl = [ (t+t) — ()] + £ (h)

is likewise a standard Brownian motion starting at £(0) = () = a, in-
dependent of ¢ (s):s =< # and of p (and hence independent of ¢*(s):s = ¢,
and of p, also) with minimum function

4b. —(ming, £(s) A 0) = —(minege[£ (s +#) — £ (&)] + £°(8) A O)
= [-ming [t (s + &) — ¢ ()] — (W] V O
= [t(®) = "))V O
= 1.

me larger of a and b.
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Given ¢ = 0, the indicator of the event
5. (m>t) =@t () > =~ >)

is a Borel function of p(s):s = tand ¢ (s):s = #, and, since ¢ and p are
independent, m is a stopping time for p, i.e., p is identical in law to p and
independent of ¢~ and of p(s):s = m and hence independent of £°(s):s < &
and of ¥.

But now it is clear that, conditional on t*(#1) = a, £*() is independent of

the past £°(s):s = t; with law
6. Pa[,1:°(t) édb], a = g'(tl), t=1 —
as was to be proved.

14. Local times: p; = ps = 0 (p, > 0/ps = + )

Because the reflecting Brownian local time t* was central to the construc-
tion of the Brownian motions in the case p, = 0 treated in Section 10, one
expects that a similar local time t* based upon the path ¢* = pp 7t — t+ 4+ ¢
should figure in the general case; the purpose of this section is to prove its
existence.

Given p, > 0, the contention is that the local time

la. t°(t) = limelo(2ep2)_1 measure (s:2°(s) < &, 8 £ ), t=0

exists and can be expressed as

1b. t°(t) = pat7(Q n 0, 1))
=pi | Qa0 ()]
= p (),

in which

2a. Q = (t:pp'(t) = 1),

2b. QF = (£:t7() e Q).

foe! 45
'y %
%
Iy

Diagram 1
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Consider, for the proof, the intervals [I1, I ), [z, 7), etc. of the comple-
ment of Q, and note that the complement of QF is the union of the in-
tervals [t (I7), t7(F)), [t (1), t1()), ete., whence®™ 9Q™ is countable.

Because tT is continuous and t* = " on QF,

3. lim,o(2¢) ™ measure (s:2°(s) < & se Q¥ n(0,1])
= lim, | o(2¢) ™" measure (s:z7(s) < & se QT n]0, 1))

=t7(Q n]o, 1]).
Consider, next,

4, Q7 = (1:4¢ QT 1" < &)
=U,sa [, @) 0 (8205 — tF < &)
=Unzt [£7(5), £7(I0) n [0 — &), 4+ 0)
=Unzi (G V (I =€), ().

Because t is left-continuous, N .50 Q7 = @, and, seeing as 9Q; is countable
and t* is continuous, it develops, much as in 3, that

5. Tim,;o(2¢)™" measure (s:z'(s) < & s€l0, {] — Q)
< Iim, | o(2¢) ™" measure (s:27(s) < &, seQ3nl0, &)
= t7(Q5 a0, 1)
10 (510,

which justifies the definition 1a and the first line of 1b; the second line of
1b is immediate from the definition of Q7, and, as to the third line,

6. =t teQ,

=If, tellz,I7) (nz1),
= —1 l —1
pv + [ 190,571 x ),

and, picking out the continuous part on both sides, it is clear that
7. p(dt) = pz'dt on 9,

=0 off Q,
completing the proof.
p 't can still be interpreted as a local time in case p; = 0 (ps = +»):

> > measure (siz°(s) < g, se [t715), ) n (0, 1)
epyle, + ) '

8 ptT(t) = lim
€lo0

23 9Q+ denotes the boundary of Q.
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Consider, for the proof, the scaled visiting times:
9. b, = £ > measure (s:1°(s) < & selt™ (1), t(IH))).

Conditional on p (i.e., conditional on IF¥, If, etc.), the visiting times
b, are independent because ¢ starts from scratch at the place r¥(m) = 0 at
time m = t7'(I;) (n = 1); in addition, if I, > &, then b, is identical in law
to measure (s:z(s) > 0, s < my), where ¢t is a standard Brownian motion
starting at 0 and my is its passage time to 1, as will now be verified.

Given ¢ > 0, the scaling

10. £(t) — or(t/d")

preserves the Wiener measure for standard Brownian paths starting at 0 and
sends

11a. £ (t) — ox™(1/d),
11b. tt(t) — ot (1/6%),
11c. t7(t) — ot (t/0),
12a. £ (t) = or (t/d"),
12b. t7(t) — ot (¢/0%),
12c¢. m; — azmm s

where ¢~ is the standard Brownian motion t* — ¢, t” = t* = max,<; £ (s),
and m; = min(¢:z” = [), and, using a = b to indicate that a and b are iden-
tical in law, it follows from the rules 11 and 12 that in case I, > ¢,

13. b, = ¢ *measure (s:l, — t7(s) + t7(s) <& s <t7(l)), rT(0) =0,
€ *measure (s:1 — t7(s/d”) + 17 (s/d") < e/a,8/d" < t7(1)),

Il

c=1,,
= & %2 measure (s:1 — t1(s) + £7(s) < &/ln, s <t7(1))
= ¢ °I> measure (s:2 (8) > 1 — &/l,, s < my)

= £ measure (s:r (8) > 1 — &/ly, Mg, < 8 < M)

I

1% measure (s:z(s) > 0, s < Me,), t(0) = 0,
= measure (s:z(s) > 0, s < my),

where the scaling 10 was used in step 2 (¢ = [,) and in step 7 (¢ = &/l,.).
Coming back to 8, the strong law of large numbers combined with the rule

14. lime o pale, +0)7p([0, ] X [¢, +=)) = ¢ (tz0)

(see Section 11) and the simple evaluation
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P
9_3 ] L3
=2 LZ
e, L, t
DiagraMm 2
400
15. Bo(by) = fo dt Pz(t) < 1, mo > {]
—+00 16—(0—1)2/2t — e—(a-|-1)2/2t da
- fo d”fo @ri)yi
1
=f 2ada = 1,
0
justifies
16, T 2ot>e Measure (s1°(s) < & se [f7(T), (1) n [0, #])
BT e2pyle, + )
= lim

elo l,,;eét bn/p4[€,+°°)

t=1()

. L:l,>etdN) 2 t)
— E b 1 #( n n E) n) = 24
o) e = )
- lim #(y: 1, > & 1h < t7(1))
elo p4[€’ + )
_ iz 20 @] X [, +))
el Dale, + )
= p— t+(t)’
where the use of I < t*(¢) in place of t *(I}) = ¢ in step 3 is justified because
both describe the same class of jumps plus or minus a single jump and
pe, +o) 1 4o as ¢ | 0; a picture helps to see that I < t+
and p'(If) < p'(t*) are identical as needed in step 4.

p~tt cannot be computed from the sample path if p, = 0 and ps < + =, as
is clear from Diagram 2 in which

17 v 4 @) =eg+ o Fen, TG E o F L) SE<tT (A -+ 1),

and r* is independent of the holding times ¢;, ¢;, ete. But it still has some
features of a local time: it is the sum of n independent holding times ¢ with

24 4(l,:etc.) denotes the number of jumps I, with the properties described inside.
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! t
A
A
. 'Q3
-1 +
_t (ﬂzrwl—l(yl)) .;_..____._e
)
'QZ
=
711, 2
- » 1t
_ 0 _ _— p 'r
1,=x(0) .‘2]
Diagram 3

common conditional law P.(e; > t]1’) = ¢ **, where n is the number of
times that the sample path approaches 0 before time ¢ (see Diagram 3).

15. Sample paths and Green operators:  p; u(0) + ps(Gu)(0) = p. u+(0)
+ Jor [w(@) — u(0)Ipa(dl) (p2 > 0/ps = +)
Consider the motion * = pp™t7 — t* 4 ¢ and its local time t* = p"1t+,
and let us use them to build up the sample paths in the general case
(p2 > 0/ps = -+ ) imitating the preseription of Section 10:

1a. yE) =PI # f < m,
le. P(me >1t|2") = e—th‘!f"l(t)].

Given! = 0,
2 (@ = B ([ ) a)
B ([ e e () ar)
[ [ e
= m[ [ e a]

+ em [ |
= (GZH Q) + (@ 1)(0),

25 ¢® = y* and t* = 0 up to time mo = min(¢:x* = 0), and ¢° starts afresh at that
moment.

[

I

~+00

26

() (dt)]
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especially, the Green operators map C[0, 4 « ) into itself in the special case
pr=ps = 0 (Y = 1t*), and, since z° starts afresh at constant times, it follows
that it must be a Brownian motion. y° is likewise a Brownian motion as is
clear on arguing as in Section 10 with ¢* and t* in place of r™ and t*, and now,
for the identification of its generator as the contraction of & = D?/2 to

5. D(&) = CY0, +) n (u: pr(0) + po(Gu) (0)

= O + [, ) — O,

it suffices to make the evaluation

4. e = (GuN(0) = E, [fom e e (") f (dt)]

P22 fo+ e-<2a)1/21f(l) dl + p:f(0) + j;+ (G ) (1) pa(dl)

P4 (20)"ps + oy + [ 1= ¢ M py(al)
0+

e is decomposed into simpler integrals in several steps (see the explanation
below) :

o0
5 ¢= E, [f e—ate—(P1+ap3)t0f(Io) dt]
(]
o0
+ pgf(O)Eo [A\ e—-ate—(pl-l-aﬂg)ﬂto(dt)]
— Z ol I:f e-—at e-—(mﬁ-aps)v—lwf(l: _ t+ + 1/.+) dt:l
w1 (=101 (E )
+ Eo [f+w e—ate—(p1+apa)v_‘t+f(¥+) dt]
0
- E Eo I:f e—ate—(p1+ap3)b‘lt+f(§+) dt]
n=1 [t=10R)t~1A%)
+o0
+ s f(O)Eo [f e—aze——(m+aps)n-1:+p_1t+(dt):|
0
_ —at=i(1R) —(prtar)p=1( )
= gl Eo [6 [
- t71(1,)
B([ e+ 1]
0
+ E, [f+°° e—ate—(p1+apa)v"lt+ f(l~'+) dtjl
(]

_ _ t=1(ly)
—_ Z E, [e—at‘l(ln) e—(m+apa)v l(l;)Eo <]; e_“tf(g+) dt l ln>:|

n=1

Ps f(O) <f —at_—(p1+apg)p~1tt > ®
A JATT t
+ ) 3‘ 1 ol A e e d l

=€ + e — e+ e,

26 ps/(p1 + aps) = 0if ps = 0.
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where t*(dt) = 0 outside 3° = ({:¢° = 0) was used in step 1, [0, + » ) was
split into QF + Unsi [t7(72), t7(14)) in step 2, and pp~t" was evaluated
astt or I} accordingas t e QT ort™(l;) < t < t7(I%), and, in step 3, it was
noted that, conditional on p, the standard Brownian traveller starts afresh
at time m = t7'(I;;) at the place I = 0; the addition rule

1) = 7)) + 7, wiian)

was also used in step 3, and a partial (time) integration was performed under
the expectation sign in e, .

To compute e; , substitute the standard Brownian motion 1~ = t7 — ¢+
and its passage times m; = t~'(1) into the conditional expectation and integrate
them out, next integrate out t (1) conditional on b, express the integral in
terms of the Poisson measure p(d¢ X dl), and use the differential character
of the latter to integrate it out also:

- _ Min
6. e = Z E, [6—at‘1(ln>e—(m+ap3)h 1(l}'{)E0<f e_atf(ln _ I—-) dt l ln)]
(]

n=1

= 3 BT R mer D (G ) (1,)]

nzl

— Z Eole—(za)1/217._6—(p1+aps)v“(l‘,t)(G;f)(ln)]

n=l

- EO [‘/.[0 +00) X (0,4-0) p(dt X dl)e—(za)ll%(t—)e—_(pﬁ-apa)t(G;f) (l)]

_ lim B, [ [ bl X dl)e“”“)‘”"“‘”e“””‘*“"(G:f)(l)]

EXZY

dt pa (dl) exp {-—t [m(zoo”’ +f.a- e~<2“’”")p4(dz>]}

-[[0.+eo)><(0.+oo)

. e-—-(m+am)t(G:f) (l)

[ @p@pdan
0+

p1 + (20)' "2 + aps + f (1 — @™ py(dl)
0+

2(b 4+ a) —@ra2e

+-c0 _ o0 -+o0 b + a _ 2
_ at G+ar?/2t
7. e =E [fo et [ av [ da 2 o

To compute ez, use the joint law da db of ¢t and t*:

L @rtepa)yT? (b)f(a):l



216 K. IT0 AND H. P. MCKEAN, JR.
e 1/2 -1 /2
— E, l: f LR O A C) db:| 9 f e %50) da
0 0+
heo 1/2 1/2
— Eol:f 6—(2«) ve—(P1+ap3)tp(dt):| 2f e—-(2a) lf(l) dl
0 0+

= Pl( 2+)fg’3 Eq [ f P — ) dt] 2 fo L a
1/2 _ —(20)1/2]
= (20‘) b2 + ]‘;‘i‘ (1 ¢ )p4(dl) 2 f e_(Za)”zlf(l) dl
1/2 —(2a)t/21 (20‘)1/2 0+ )
p1+ (2) pataps+ b (1—e )pa(dl)

To compute e;, use the same manipulations as for e; together with the
lemma®’

) 102
8. E([ () dt>=(Gif)(0)[1—e“‘2"‘) 1,
obtaining
9. ZZ Byle™ 0!/ g=rtapdv=iai) (] _ =@My} (ot £)(0)

= B, [f p(dt X dl)e—(2a)1/%(t-)e—(m+aps)t(1 _ e—(Za)l/zl):I
[0,400) X (0,4-00)
(GZ1)(0)

_ —(2a)1/2]
£+ (1—e )pa(dl) 2 —(2a)1 12
(2a)1/2 fo+e J i

p1+ (20)" Do+ aps + f (1 — &™) py(dl)
0+

To compute e, use 6 with f = 1:

10, (20)"%py + fo (= py(an)

_ p:f(0)
p1+ aps

€4

P+ (20) prtops + [ (1= ¢ ) py(al)
0+
_ s f(0) .
p1+ (2a)1/zp2 + aps + £+ (1- 6_(h)llzl)P4(dl)

Combining 5, 6, 7, 9, and 10 verifies 4, and that finishes the proof.
16. Bounded interval: [— 1, 4 1]

A Brownian motion on [—1, +1] is defined as in Section 5 except that
1. '] £ 1, t < mg,

21 GF is the reflecting Brownian Green operator.
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and the stopped path
2a. (8t < e = limgyoinf(s:fe’] > 1 — &),
-1 <¢(0) =1< +1
is now identical in law to the stopped standard Brownian path
2b. r(t):t < e = min(t:)z] = 1), (0) = L

Except in the case P’[|r*(¢’)| = 1] < 1 which can be treated as in Section
6, C[—1, +1] is mapped into itself under the Green operators, & can be
defined as before, and D(®°®) can be described in terms of six nonnegative

numbers p.ii, P2, Prs and two nonnegative mass distributions pys(dl)
subject to

+1

3a. p-1+ p-2 + -5 + -[—1 (14 Dp-s(dl) =1, p—(—1) =0,
+1

3b. P41+ P42+ pis + [1 (1 = Dp+a(dl) = 1, p+a(+1) =0,

4a,. pa(—1, +1] = +x incase p_p = p3 =0,

4b. pul—1, +1) = 4+ incase Py = pi3 =0

as follows. D(®") is the class of functions u e C*[—1, +1] subject to

5a. pyu(—1) — psu™(—1) + p_s(®u)(—1)

= [ ®) — (=11 ptan),
5b. pru(+1) + preu (+1) + pra(Gu) (+1)
+1
- [ @ = w0k,

" is the contraction of = D*/2 to D(®"),
6. (GaNH(D) = (Gaf)() + e-(D(Gf)(—1) + e+(D)(Ga f)(+1),

il =1,
in which
¢ +1
o @H@ = E([ iwa) =2 [ a@ow s ®
7b. G(a,b) = G(b,a) = sinh(22)"*(1 4 @) sinh (2)"*(1 — b) e<b

(2a)172

28 4~ (41) = lime o e u(l) — u@ — &)l
2% P., E., ¢, mare the standard Brownian probabilities, expectations, sample paths,
and passage times.
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is the Green operator for the Brownian motion with instant killing at 41 and
sinh (22)"*(1 — 1)

8a. (D) = —+ SEay (€ ma < ma),
h (20)"2(1 + 1 —am
8b. er(l) = sin 51£1ha2)(2<(x)1/_2|_ ) = Ei(¢™*™, my < m—y),

and, substituting 6 into 5 and solving for (G% f)(=1), one obtains
@GN-D] [ e
[(G;f)(+1)] - Lm ezj
[p—z(GZf)*’(—l) Fpaf(-0 + [ (@DWpsa)

+1
[—p+2(G:f)‘(+1) +paf(+1) + [ (62 DWpralal)

én €
where the exponent —1 indicates the inverse of |: :I , and
€21 €2

108,  en = pa— ¢-(—1)ps + aps + f (1 — e)p_a(dl),

+
10b. €12 = —p_zei(—l) - fl e+p_4(dl),

+1
10c. €21 p+26:(+1) bl [1 6_p+4(dl),

+1
10d. en = P+ + GI(+1)I)+2 + apss + . (1 - 6+)p+4(dl),

all of which is due to W. Feller [1], [3]; the proofs can be carried out as in
Section 8.

Coming to the sample paths, let us confine our attention to the case
p_a(—1, +1] = pu[—1, +1) = + «, leaving the opposite case to the reader.

Given a standard Brownian motion with sample paths ¢ — g(¢) and proba-
bilities P,(B), if f is the map: R' — [——1, —+1] defined by folding the line at
41, +3, 45, ete. as in Diagram 1, then t7 = f(z) is the (reflecting) Brownian
motion on [—1, +1] associated Wlth 5 in the special case Py = Pyz = Py =
(ut(—=1) = w (4+1) = 0); the dot sample path will be made up using ¢*
and its local times

1la. t (1) = lim,;o(2¢)™" measure (s:zt(s) < —1 + ¢, s £ 1),
11b. t*(2)

lim, | o(2¢)™" measure (s:zt(s) > 1 — ¢ s < 1),

a pair of independent Poisson measures p.(df X dl) with means dt p.s(dl),
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Diagram 1 DiaGgram 2

and the associated differential processes

12a. b-(0) = poat + [ (L Dpe(10, ) X ),

19b. pe(t) = prat + f L, (= Do, 0 x .

Diagram 2 depicts the sample paths associated with 5 if py; = py = 0:
" and r' agree up to time my = min(¢:[rt] = 1); if m_; < my,, as in
the picture, then ¢* changes over into p_p~'t" — t~ -+ ¢+ until it hits +1,
at which instant it changes over into —p.. ittt 4+t + ;c+ until it hits —1
for the second time, ete.

If py = ppu = 0and ps + pys > 0, then the desired motion is as in
Diagram 2 but run with the new clock f* which is the inverse function of

13a. f=1t4 pst™ + pt™,
13b. £ = pI'tt,

while, if p_; + p41 > 0, then one has just to kill the above motion r*(f™) at
time m., with conditional law

* . —[p_yte—(f—1 ot (f—1
14. P(my > t|yg) = ¢ ot IT0FrarTamol,
the proofs are left to the industrious reader.

17. Two-sided barriers

A Brownian motion on R with a two-sided barrier at I = 0 is defined as in
Section 5 except that

L reR, t<me,

and the stopped path

2a. r'(t):t < ¢ = lim.oinf(#:2"] < &), 1(0) = leR' — 0
is identical in law to the stopped standard Brownian motion

2b. r(t):t < e = min(¢:x = 0), r(0) = L
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Except in the case P[z°(e") = 0] < 1, which is ignored as before, C'(R") is
mapped into itself under the Green operators, ®° is the contraction of
® =D*2t0®

3. D(®") =C*R"Yn (u:p1 w(0) + p_au”(0) — pr2u(0) + ps(Gu) (0%)

= [ [u(l) —u(o)]p4<dl)>
121>0

for some nonnegative numbers p;, pi2, ps and some nonnegative mass dis-
tribution p4(dl) subject to

0. mtpeteatnt [WADRG@=1  p0) =0,
4b. ps(RY) = + o incase pyu = ps =0,
and the Green operators are
5. (@) = (G HHA) + ¢ *1GE )(0),
where
~ gt b—al _ —()1/2btal
6 @ =[ i (b) b

is the Green operator for the Brownian motion with instant killing at I = 0
and

7a. (Go)(0)
~paGa D) (0) + palGN(O) + pf(0) + [ (G Wp(a)

’

m + (20[)1/2(}7_2 + p+2) + ops + /;ll>0 (1 _ e—(2a)112]ll)p4(dl)

7b. +(GZ)(0) = 2 fi Q) dl

Coming to the sample paths, P. Lévy [3] proved that if ¢ — r(¢) is a standard
Brownian path starting at 0 and if 3;, 3., ete. are the (open) intervals of
the complement of 8 = (¢:r = 0), then the signs e; , €2, etec. of the excursions
t(t):te B, etc., are independent Bernouilli trials with common law
Py(e; = £1) = % (standard coin-tossing game), independent of 3 and of the
(unsigned) scaled excursions

8. u(t) = |87 |e(t 8] + inf By, 0<t=<1,
etc.

which are independent, identical in law, and likewise independent of 3 (see

Diagram 1).

Given p_s + p42 > 0, it is not difficult to see that if ¢, e, ete. is now a
skew coin-tossing game independent of the scaled excursions and of 3 (i.e.,

0 C°2(RY) = C(—, 0] n C2[0, +0) A (w:iw”(0=) = u’(0+)).
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3
1 4
+
Z3 =+l s g
z, e, =+l -t
e =-|
I -2 m
-0
' ;_(o) -
Diagram 1 Diacram 2
independent of |x|) with law
9. Po(el = ""1):Po(61 = +1) = P2 P42,
then the skew Brownian motion
10. ) =e, t(®)] i teBa, n=1,
=0 if ted,

starts afresh at each constant time ¢ = 0; in addition, its Green operators
decompose as in 5, and evaluating (G f) (0) as *

(@0 = T T ( [ ertentd dt)
-z (p__lg;_ﬁ Fo [ [ =1 dt:
+ ;_22)_:—211‘_2130 —L" e_atf(+|¥‘) dt])

N 10__2%_—27+2E° [fow e *f(—tl) dt]

e g [ [ oy dt:l
P2+ P2 L
0—
2p_2f e—-(za)uzzf(l) dl + 2p4s j‘;+ e—(za)llzzf(l) dl

(22)"2(p—2 + P42)
—p-2(G2 £)7(0) + p+2(G2£)*(0)
(22)"%(p—2 + p42) ’

#13]=0.
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one identifies 10 as the Brownian motion associated with 3 in the special case
Dm=ps=p=0 (p2u (0) =p4 w"(0)).

Coming to the case p; = pis = p3s = 0 (puo(R' — 0) = + ), if p(dt X dl)
is a Poisson measure with mean df ps(dl) independent of the standard
Brownian motion g, if [l , ), [lz , I¥), ete. are the flat stretches of the inverse
function p~" of p(¢) = [ |I| p([0, £] X dI), and if t* is the local time at O of

the (independent) reflecting Brownian motion ¢™ = |t|, then the desired
motion is
12. () = r(¢) if ¢t < mp= min(¢{:x = 0),

= 2[pp " —tT 4+ 1 if teQT,

=0 if my=te Q+;

where QF = U, [t7(1), t7(%2)), and the ambiguous sign in the second
line is positive during the interval [t™(I;), t " (I})) if I, = I} — I, is a jump
of p(dt X dl n (0, + «]) and negative otherwise (see Diagram 2).

Granting that 12 is simple Markov (the proof is left to the reader), it is
enough for its identification to evaluate™

=m0 eteaz - e 4 1a)

nzl U}

=§mWWWMMﬂm

I

13.  (Gof)(0)

= B, [/:rwfl_op(dt ><dz)e‘“"‘)‘“““‘)(G;f)(l):l

_ _ _ —(20) 1127
= [, @nwpa /[ - pgan

with the aid of the tricks developed in Section 15.

Coming to the case p; = p; = 0, it suffices to combine the special cases
pr = p; = ps = 0and p; = pie = p; = 0 as follows.

Given p(dt X dl), ¢, and t* as above, if ¢} is the skew Brownian motion based
upon pys and 1, if ¢i is the motion of 12 based upon p*(¢) = [ |7| p([0, {] X dl)
and g, if [Ii , I7), [lo , I3), etc. are the flat stretches of the inverse function of
p=pet+ D (p2=pas+ pp),andif QF = U, [t7(%), £(IF)), then
the desired motion is

14. () =) i t<m,
n) i teQt = Q" n]0, 1),
=) if te[m, +w) —QF

the reader will check that this sample path starts afresh at each constant

2| [0, +«) — QF | = 0 because p(t) has no linear part (p:t).
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time ¢ = 0 and will complete its identification with the aid of

5. GNO) =B [ o) ]
-z mf N0 ]

nzl -1y

—Lam)
= ¥ Bl TR (G ()]

0

+-o00
sl [ e a0 - B Bl - ey

n=1

= B, [f:w Ll_op(dt X dl)e‘@“)”"“"(G:f)(l)]

+ B [ | ) dt]

X (1 — B [ fo - fR R dl)e"(z")m"(“)e“@“’”2'”:D

—p2(G21)(0) + pl(GzNT(0) + [ (62 HWpslal)

(200" + [ (1 = M a)

If p, > 0 = py, it is clear that the desired motion is the sample path ¢* of
14 run with the stochastic clock ™ inverse to f = ¢ + ps ¥t (see Section
14 for the interpretation of ¥t as a local time), while, if p; > 0 also, the
motion 1*(f') has to be annihilated at time mJ, with conditional law

16. P.(ms >t (Fh)) = g™ e,

The reader is invited to furnish the proofs.

Brownian motions with the same kind of two-sided barrier can be defined on
the unit circle ' = [0, 1) as W. Feller [1], [3] pointed out.

Given a standard Brownian motion on R', its projection onto® §' = R'/Z'
is the so-called standard circular Brownian motion; its generator is the contrac-
tion of ® = D’/2 to C*(S").

Consider now the general circular Brownian motion with a two-sided barrier
at I = 0 (i.e., the obvious circular analogue of a Brownian motion with two-
sided barrier on R'), and, as before, single out the case

17. Plr(e’) = 0] = 1, ¢ = lim. o inf(¢: ¢

< ¢g).

33 Z1 is the integers.
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®" is the contraction of ® = D,/2 to*
18, DO = ¢S n (wipral0) + p-su(0) = prau(0)
+ 20 02) = [ ) — w(Olpu(a))

for some nonnegative numbers p;, pis, ps and some nonnegative mass dis-
tribution p4(dl) subject to

1
19a. P14+ p—2 + Py + P + /0 (1 — Dpu(dl) =1, pa(0) = ps(1) =0,

19b. pa(8') = + o incase pu = ps = 0,
and an application of 18 to

20a. (Gof)() = (G 1)

sinh (20)""1 + sinh (2a)"*(1 = 1) , .
* sinh (2a)72 (Guf)0), 0=1l<1,
200, (@D @ =2 [ 6o, b)) d, 0sa<1,

sinh (22)"?a sinh (2a)*(1 — b)
(2a)'2 sinh (2a)12 ’
0<a=b<1,

20c. G(a,b) = G(b,a) =

establishes the formula

1 vzeq
921. (G4 1)(0) = [2p_2£ sinh (2a)"*(1 — 1)

sinh @y W &

) 1/2 1
+2pys [ SRCDL ) a0 + [ (@ Opia) | /

vz
I:Pl + (2a)" cosgn(foz%a)m L (p-2 + P+2)

! sinh (2a)"% + sinh (22)"*(1 — 1)
Toop fo <1 - sinh (2a)' ) p‘(dl)]'

Given a standard circular Brownian motion g with local time

22. t(¢) = lim,;o(2¢) " measure (s:|t(s)| < &, s < t)

and a (circular) differential process p based on py, and ps, it is possible to
build up the circular Brownian sample paths as in the linear case, but a
second method suggests itself: the method of tmages.

Consider for this purpose a Brownian motion on R with two-sided barriers
at the integers having as its generator the contraction of & = D?/2 to the
class of functions u ¢ C(R") n C*(R' — Z') such that

30 (8Y) = C(SY) n C2(St — 0) n (u:w”(0—) = u”(0+)).
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23a. (Gu)(n—) = (Gu)(n+),
23b. pru(n) + posu(n) — praut(n) + ps(Gu)(nk)

=£wa+m—ummmw

at each integer n = 0, £1, £2, etc. (the reader is invited to build up the
sample paths for himself). Because the barriers are periodic, the projection
of this motion onto 8* = R'/Z'is (simple) Markov, and its identification as
the desired circular Brownian motion is immediate.

18. Simple Brownian motions

Given a simple Brownian motion on [0, + « ), described as in Section 5 except
that 2t need not start afresh at nonconstant stopping times,

1. (@) = (G HA) + "G ) (0+), >0,

as will now be proved with a view to the classification of all such Brownian
motions.

Given o > 0, a nonnegative Borel function f, and &, = & = 0,
2. Efe™ (G2 ) (2" () | Bi)
= ¢ E(G ) (2 (1)], L=¢g(t),t=t—t,

+o

= e“"tzfo e ds BEi(Eyewlf(z°(s))])
+o0

=fm£eW%EWﬂme

=" f:w ¢ ds Eilf(z"(s))]

< (G N (1),

ie., ¢ *'(Guf)(z") is a (nonnegative) supermartingale; as such, it possesses
one-sided limits as® ¢ = k27" | s (s = 0), and it follows that if I > &£ > 0
and if m*® is the crossing time inf(¢:¢° < ¢), then

&(mﬁm=E{f}wwmq

-+ liIIlnT_,_w Zk_z_o E; [(k - 1)2_—” =Em' < k2_",

+ -n)

MWy
e-—ak2"‘ f e_atf(g.(t + kz—’n)) dt]
0

_ B |: | ") dt]

+ lim 400 D ko Bil(k — 1)27 < m® < k27",

e (G ) (2 (k27)))
35 See J. L. Doob [1].
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_ 5 [ [ e dt] + Be™" Tim-n (G2 1) (B2,

where ¢ is a standard Brownian motion, E. its expectation, and m its passage
time min(é:y = ¢).

But, in the standard Brownian case, limu—» ,w(G% ) (£(k27")) is measur-
able over By, and also independent of By (i.e., it is measurable
over B[z(¢ + m):¢t = 0] which is independent of B, conditional on the
constant t(m) = ¢); as such, it is constant, and inserting this information
back into 3 and letting ¢ | 0 establishes

4. (G = (Gaf)() + ¢ @™ X constant,
which implies the existence of (G% f)(04) and leads at once to 1.
Given a bounded function f on [0, + ), continuous apart from a possible
jump at I = 0, define a new function f on (—1) u [0, + ) as
5. T =f0) i 1= -1,
= f(0+) if 1=0,
= f(l) if 1>0,
and introduce the new Green operators
6. Gaf = @)’

mapping C((—1) u [0, 4+ «)) into itself.

(G« is the Green operator of a strict Markov motion on (—1) u [0, + « ) with
sample paths t — £(¢) = £(t+) e (—1) U [0, +») U », and ¢* is identical
in law to the projection of £ under the identification —1 — 0, as the reader
can check for himself or deduce from the general embedding of D. Ray [1].

One now computes the domain D(®) of the generator & of this covering
motion and finds that it is the class of functions

ueC((=1) n[0, +)) u C*0, +)
subject to

T —padt© +pu@0O = [ ) —u(@)lpe(d),
p+4(0) = 0 = pia, prs, pra(dl)

prat pis + v —1) + [ UADDD) + prl) = 1,

7. ps(Bu) (—1) = f[ L ) = u(=Dlp-i(a),

pa(—1) = 0 = p_3, pu(dl),
Pz + paf0, + ) + py(o) = 1,

+0)

where u( ) = 0.
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S,

|

- 0 -1 0

DiagraMm 1 Diacram 2

If p_; = 0, the motion starting at —1 begins with a jump ! ¢ [0, ) U «
with law p_s(dl) as in Diagram 1, u(—1) = [(0,4e) u(1)p—a(dl), and 7a goes
over into

S piul0) = g (0) + p(Bw(0) = [ () — wO)picaD,

8b. P1 = psa(®) 4+ pr(—1)pu( ),
. p; = P42, p; = P43,
pi(dl) = pia(dl) + pra(—1)p-s(dl), 1> 0,

i.e., the covering motion does not land at —1 which is a superfluous state, and
T = 1" is a strict Brownian motion on [0, + « ) as in Sections 5~16.

If p_3 > 0, then @ is the contraction of ® = D?/2 to D(®) with the added
specification

0 Bu(-1) = [ [ —u(-ZEB () =,
[0,4-c0) P

at —1, and the particle starting at —1 waits there for an exponential holding

time ¢ with law ¢ ?-*7-% (p_, = P-4([0, + ) U «)), and then jumps to

1e[0, + ) u « with law p_s(dl)/p_s as in Diagram 2.

If, in addition to p_s > 0, one has p, = 0 and p4(0, + ) < 4 «, then the
motion starting at 0 is of the same kind, and it is clear that the projection of
this motion down to [0, +x) (—1 — 0) cannot even be simple Markov
unless p_s = pysand p_y(dl) = p(dl) (I 0) up to a common multiplicative
constant, in which case the projection is the Brownian motion associated with

9. pu(0) + pra(©)(©0) = [ [ul) — w(Olpeata),

9b. p1 = p+a( o)
studied in Section 9.

If p_s > 0 and either ps > 0 or p44(0, + ) = -+ o, the particle starting
at —1 waits for an exponential holding time ¢; and then jumps as in Diagram
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L, =0

Diagram 3

3tol; [0, 4+ o) u « and starts afresh;if 0 < [; < + «, the particle performs
the Brownian motion on [0, 4 « ) associated with

10a. p1u(0) — prawt(0) + prs(Gu)(0) = '{ . [u(@) — u(0)]p+d(dl),

10b. P1 = pu(—1uU »)

up to the killing time of that motion, at which instant it jumps tol, = « or —1
with probabilities pi4( 0 ): pya(—1), and, if [, = —1, it starts afresh as in
Diagram 3, while if [, = «, then the motion rests at that place at all later
times.

Now the projection t* of this motion onto [0, +«) (—1 — 0) is simple
Markov if the Brownian motion attached to 10 does not spend positive
(Lebesgue) time at ! = 0; otherwise the knowledge that t*(s) = 0 is not
sufficient to diseriminate between the two possible coverings, and the law of
°(t): t = sis moot. But if ¢ is the indicator of I = 0, and if

11. (N (< my), oo (= my)
12a. f=t4pth
12b. x. = pp—lt-'- —_— t+ + E+

is the motion attached to 10, then, in the notation of Section 14,
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t
13. measure (s:r*(f) = 0,s < t) = f elr'(FH)] ds
0

F=1(t)
- / e(x")f (ds)

= —Lt
p+3fs+nn+mo.f-lu>> v (@)
= prp QT n [0, (1)), t < ma,

and this cannot be positive unless p4; > 0 and 0 < t¥(Q*) = |Q], ie.,
unless p.e > 0 also; in short, the projection is simple Markov unless p12ps > 0,
and now the classification is complete.

N. Ikeda had conjectured part of our classification (private communi-
cation); the case of a two-sided barrier on R is similar except that three
covering points lie over 0.

19. Feller’s differential operators

Given a nonnegative mass distribution e on the open half line (0, +«)
with 0 < e(a, b] (a < b), let D(®) be the class of functions u ¢ C[0, 4 )
such that

1. w(b) — ut(a) = f £ de, a<b,
(a,b]

for some f ¢ C[0, 4 = ), and introduce the differential operator Gu = f
wt(b) — u*(a)

e(a,b]
W. Feller [3] proved that if (0, 1] < + o, and if p;, p2, ps, pa(dl) are

nonnegative with p4(0) = 0 and p1 + p2 + ps + Jor (0 A 1)ps(dl) = 1. then
the contraction @° of @ to

2. (Gu)(a) = lim
bla

3. D(®") = D(®) n(u:plu(O) — p2u’(0) + pa(Gu)(0)
= [ ) = wo)ipu(an)
o+

is the generator of a strict Markov motion (diffusion) on [0, 4+ «).
Given a reflecting Brownian motion ¢™ on [0, + ), the local time

4. th(¢, 1) = (measure (s:r7(s) edl, s < t))/2dl

is continuous in the pair (¢, 1) [0, + «)* (see H. Trotter [1]), and the motion
associated with ®" in the special case p; = ps = ps = 0 (u*(0) = 0 is identical
in law to £ = t7(f) where f = f0+ t*(t, De(dl) (see V. A. Volkonskii [1]
and K. It6 and H. P. McKean, Jr. [1]).
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Because t*(dt, 1) = Ooutside 8 = (t:xF = 1),

i F=1(t)
5. [raryas =[5 [ ¢ s et

= f0+ (lf“(o t+ (ds, l)) FfDe(dl)

= [, #17®, uimetan;
hence the local time
6. t°(t) = lim,}oe(0, &] ™ measure (s:z'(s) < &, s < t)
= t7(f, 0)

exists, and now it is clear that the discussion of the Brownian case can be
adapted with little change.

20. Birth and death processes

Quite a general birth and death process on the nonnegative integers can be
changed via a scale substitution into a motion on a discrete series
Q0 =<l <l < - - <1having as its generator

1. Gu = (u" — u7)/e,

2a. u+(l,.) = U (lpt1) = (bota — l‘n)—l [u(lan) — u(la)],
2b. e=¢(l,) >0,

2¢. e(lh) +ellh) + -+ <+,

subject to

3a. u(0) = 0,

3b. pru(l) + ps(Gu)(1) = —pu (1) + /; [u(l) — u(1)]ps(dl),
P+ p2 + p3+f (1 — Dpa(dl) =1
Q

(see W, Feller [4]). In the special case p; = p; = ps = 0 the corresponding
motion is just the reflecting Brownian motion on [0, 1] run with the inverse
function of | = fq t*(t, l)e(dl), t* being the reflecting Brownian local time.
Once this motion has been obtained, the general path can be built up using
local times and differential processes as before.
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