
PERIODIC HOMEOMORPHISMS OF THE 3-SPHERE

BY

EDWIN MOISE

1. Statement of results
Let 9X be a triangulated 3-sphere, and let f be periodic simplicil homeo-

morphism of onto itself. Suppose that f preserves orientation and hs
fixed point; let F be the fixed-point set of f; nd let n be the period of f. It
hs been shown by P. A. Smith [S] that when n is prime, F is Mwys
(simple closed) polygon; nd we shM1 show, in the lst section of the present
pper, that for rbitrry n the sme conclusion follows. In the rest of this
pper, therefore, we shM1 ssume that F is polygon. A well-known con-

iecture due to Smith, discussed by Eilenberg in [El, sserts that F is never
knotted.
A prtil solution of Smith’s problem hs been given by Montgomery nd

Sumelson [MS]. They hve shown that if f is n involution (i.e., is of period
2), then (1) if F is simpliciM standard torus knot, then F is unknotted, nd
(2) if F is unknotted, then f is equivalent to rotation.
In the present pper, we generMize the second of these results, to homeo-

morphisms of rbitrry period. Thus our mMn result is"

1.1. THEOREM. If f: ---> J is periodic and preserves orientation, and
F is unknotted, then f is equivalent to a rotation.

The proof is bsed on the following preliminary result"

1.2. THEOREM. There is a polyhedral disk with handles M such that the
boundary of M is F and such that the iterated images

M fi-l(M1)
intersect one another only in F.

Here by disk with hndles we men, of course, compact, connected,
orientble 2-mnifold with boundary, bounded by 1-sphere.
Theorem 1.2 has been proved, for involutions, by Montgomery nd Smel-

son.

2. 2-spines of 3-dimensional complexes
Let be complex, nd let n be positive integer. Then/ denotes

the set of all points of that do not have open neighborhoods in , homeo-
morphic to Euclidean n-space E. The "n-dimensional interior" 9- t
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of is denoted by Int . Note that if is an n-manifold with boundary,
then is the "intrinsic boundary" 0, and Int

If v is a vertex of the complex , then St(v) denotes the closed star of
vine.
Now let be a finite proper subcomplex of a triangulated 3-manifold F.

Let be a 3-simplex of , such that some 2-face of lies in . Let

[Int u Int ].

(Note that is not necessarily the closure of a .)
We proceed by induction to define , , where n is the number of

3-simplices of . Given (i < n), let + be a 3-simplex of , such that
contains a 2-face + of +. Let

+ [Int + Int

Let be . Then is a 2-dimensional subcomplex of . A subcomplex
of , obtainable by the above process, will be called a 2-spine of
Of course, in the case in which is obtained by deleting an open 3-simplex

from a triangulated 3-manifold , the above process is the process usually
employed in describing as a 3-cell with identifications on its boundary,
as in [ST, pp. 206-211].
By a trivial induction, we see that each of the complexes is a deforma-

tion retrac of . Thus, in particular, we have

2.1. LEMMX. is a deformation retrt of
A simplicial homeomorphism of onto itself is called regular if f()

only whenf is the identity. (Here f denotes the i iterate of f. Note
that this is not really a restriction on f; it is merely a requirement that
be sufficiently finely subdivided. If f is simplicial relative to , then f is
automatically regular relative to the first barycentric subdivision of .)
If is a subcomplex of , and f() , then is called f-invariant.

2.2. LEMMA. If f: is regular, and is an f-invariant subcomplex
of , $hen has an f-invariant 2-spine.

Proof. Let e . Then is the only 3-simplex of that contains
f-(a) lie in ; and only if f-; all of the simplices
f-(); and let n W 1 be the smallest integeris the identity. Let

In forming a 2-spine, it is plain that we can deletesuch that +
the sets

IntInt (1 i n)

before deleting any other sets of the same type. Thus we obtain an f-in-
variant complex . Repeating this scheme, until all of the 3-simplices of

are used up, we obtain an f-invariant 2-spine , as desired.
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3. Slab-systems and slab-neighborhoods
The slab-neighborhoods to be defined in this section are related to the reg-

ular neighborhoods of J. H. C. Whitehead [W]. For reasons of convenience,
we set them up ab initio, in a special way.

Let 93 be a combinatorial 3-manifold (not necessarily finite), and let
be a subdivision of . In the usual way, let us set up a barycentric coor-
dinate system in . Then to each point p of each simplex

o" PO Pl P

of )h there corresponds a nonnegative real-valued function f, defined over
the set of vertices v. of g, such that

l:f(,) 1.

Evidently the domains of definition of the functions f can be extended to all
of the 0-skeleton 93h by defining f,(v) as 0 for every vertex v of h which
is not a vertex of any simplex of that contains p.

If ve!fft, and 0 < e < 1, let
(, e)

be the set of all points p of such that

f(v) >-
_

e.

Then (v, e) intersects every simplex of either in the empty set or in a
simplex; in fact, (v, e) is the image of St(v) under a homeomorphism which
throws every simplex of St(v) linearly into itself.
More generally, if v0 v v is an/-simplex of !})h, with i =< 2, and

0 < < 1, let
(, e)

be the set of all points p of such that

’f(v) _>- 1 e.

e) intersects every 3-simplex of rh in the empty set, a "tri-Then 0(g,
angle," or a "plane quadrilateral"; by this we mean that if e is linearly
imbedded in E then the intersections

0(R)(, e) n o-

appear as plane sections of g, containing no vertex of g. This is a conse-
quence of the fact that for simplices in Euclidean spaces, the barycentric
coordinates and the Cartesian coordinates depend linearly on one another.
Now for each o e o, let

(0) (0, _);
for each a e let

(0"1) (0"1, -)
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and for each z !Ft let

Then the collection consisting of the sets (zi) (zi e) is the slab-system
for 1. If is a subcomplex of !gtl, then the set () of all elements (z)
of such that z e is a slab-system for ; and the set

() u u()
is a slab-neighborhood of in . Note that () and 9() depend not only
on , but also on 1, because the same complex may be a subcomplex of
two different subdivisions of !Ft.

Slab-neighborhoods have the elementary geometric properties that one
would expect:

3.1. LEMM_. If ( is a simplex of then (r) is a combinatorial 3-cell.

3.2. LEMMA. If J is a polygon which forms a subcomplex of j, then
9( J) is a solid torus.

(By a solid torus we mean, of course, a set homeomorphic to the Cartesian
product of a disk and a circle.)

3.3. LEMMA. If is a subcomplex of /, and is a 3-manifold with
boundary, then is combinatorially equivalent to (), under a piecewise linear
homeomorphim of j onto itself.

3.4. LEMMA. Let be a subcomplex of Jt, and let be a 2-spine of .
Then and are combinatorially equivalent. And we can choose a
piecewise linear homeomorphism h, of onto itself, such that

(1) h(()) () and
(2) h is the identity on 09 n O

Here it should be understood that !ff is a subdivision of the triangulated
3-manifold , and (o) and (9) are the slab-neighborhoods induced by
the slb-system for !lrt.

3.5. ]EMM_&. Let f be a simplicial homeomorphism of j onto itself. Then
slab-neighborhoods in are f-invariant. That is to say, if 9 is a subcomplex
of j then

9(f(9) f((9) ).

3.6. LEMMA. Let be a 2-spine of , as in Lemma 3.4, and let f be a periodic
homeomorphism as in Lemma 3.5. Suppose that f is regular and is f-in-
variant. Then the homeomorphism h given by Lemma 3.4 can be chosen in such a
way that hf fh.
Here Lemma 3.5 is a trivial consequence of the fact that for every simplex
of !Fh we have

(f(q) f((q) ).
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Demonstrative proofs of the rest of the lemmas of this section require some-
wht tedious geometric rguments. We shll first give the geometric lemms
that are required, and then sketch the arguments.

3.7. IEMM/k. Every triangulated 3-manifold is a combinatorial 3-manifold.
That is, every complex St(v) is a combinatorial 3-cell. This is Theorem 1

of [M].

3.8. LEMMA. Every triangulated 3-manifold with boundary is a combina-
torial 3-manifold with boundary.

The proof is trivial; it was given parenthetically in the proof of Theorem
9.2 of [Ms].

3.9. LEMMA. Let C be a polyhedral 3-manifold with boundary, bounded by a
2-sphere, in a combinatorial 3-manifold ; and suppose that there is a piecewise
linear homeomorphism , of C into E3. Then C is a combinatorial 3-cell.

Proof of lemma. Evidently (0C) is a polyhedral 2-sphere in E3; and
(0C) 0(C). Therefore, by Theorem 1 of [M], (C) is a combinatorial
3-cell. Therefore so also is C.

3.10. LEMM/k. Let C be a combinatorial 3-cell which is a subcomplex of a
subdivision )’ of a combinatorial 3-manifold . Let J be a polygon in OC,
and let P be a finite polyhedron which is a (closed) neighborhood of C J,
such that P lies in the star of a vertex of . Let D1 and D2 be the closures of the
two components of OC J. Then there is a piecewise linear homeomorphism
f, of ) onto itself, such that

(1) f(D1) D2 and
(2) f l() P) is the identity.

We proceed to indicate the proofs of Lemmas 3.1-3.4 and 3.6.
For ech simplex of ), let

(R)’() C[() (0)].

(Here C1 indicates closure.) Every set ’() is a polyhedral 3-manifold
with boundary, lying in the star of some vertex of . Since every complex
St(v) can be mapped combinatorially into E, it follows by Lemma 3.9 that
all sets ’() are combinatorial 3-cells.
Now let be any simplex of ), with faces rl, r. It is straight-

forward matter to show that the combinatorial 3-cells ’(r) can be arranged
in an order C, C., C, in such a way that each set C intersects the
union of its predecessors in disk. It follows, by induction, that [9C is a
combinatorial 3-cell. Since UC (), this proves Lemma 3.1.
To prove Lemma 3.2, let the edges and vertices of J be
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in the cyclic order of their appearance on J. Then the sets ’(v), ’(e)
are combinatorial 3-cells, and intersect one another only when they appear
consecutively, in which case they intersect in disks. It follows that their
union 9(J) is a solid torus.
To prove Lemma 3.3, we first recall that by definition, T(o) is the union

of o and the sets (), where runs through the lower-dimensional faces
of . Evidently it is sufficient to let run through the faces of the complex
B O,,.

Let a be ny 2-face of B; let

and let
c, Cl[,() ];

c, c[() c,].

Then 0C1 is the union of two disks D1, D, where

and D. C1 n C.
By Lemma 3.10 there is a piecewise linear homeomorphism

f:
D-"D2
() C.

By repeated application of this procedure we can show that there is a piece-
wise linear homeomorphism 9)-- , Tt()--* u (B1), where B is of
course the 1-skeleton of B. By iterating the process further, for the edges
and vertices of B, we can complete the proof of Lemma 3.3.
To prove Lemma 3.4, we recall that the 2-spine 9 was the last in a sequence

of complexes, where n is the number of 3-simplices in and

+ [Int , u Int a].
Let

C Cl[T(,) 9(+:)].

It is easy to verify that C is a combinatorial 3-cell, intersecting+ in a disk
which lies in both OC and 0+. By Lemma 3.9 it follows that if the lemma
becomes a true proposition when is replaced by i, then the lemma also
becomes a true proposition when is replaced by +. Since
the lemma thus follows by induction.
Note that this induction argument can also be regarded as a construction

of the desired piecewise linear homeomorphism L. That is, we may con-
struct homeomorphisms

hi: 1 ---)" 1
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taking each of these so that it differs from the identity only in a small neighbor-
hood of the corresponding combinatorial 3-cell C; we can then let h be the
resultant of all these. Thus, if we are forming an f-invariant 2-spine of ,
as in the proof of Lemma 2.2, we can first take

h () - (),such that hi differs from the identity only in a small neighborhood of C, and
then follow hi by the mappings

These mappings commute with each other, because the sets on which they
differ from the identity are disjoint; and it follows that their resultant H
commutes with f. Repeating this process, in a fashion analogous to the proof
of Lemma 2.2, we obtain a piecewise linear homeomorphism of the sort re-
quired in Lemma 3.6.

4. Periodic homeomorphisms of homological 3-spheres
This section will be devoted to the proof of Theorem 1.2. Accordingly,

we shall assume that !l is a triangulated 3-manifold; f is an orientation-
preserving simplicial homeomorphism of !l onto itself, of period n; the fixed-
point set of f is a polygon F. Finally, we suppose without loss of generality
that f is regular (relative to 9) in the sense of Section 2.

4.1. LEMM_. f has period exactly n at each point of j- F.

Proof of lemma. Suppose thatf has period m < n at some point of F.
Let g f’, and let G be the fixed-point set of g. Then G is a (simple closed)
polygon, by the result of Section 6. Thus the polygon F is a proper subset
of the polygon G, which is obviously impossible.

Let be the slab-system for !Ft, and let

(F)

be the induced slab-neighborhood of F. By Lemma 3.2, is a solid torus.
Let e be any edge of F; let v be a vertex of e; and let

D 9t(v) n Cl[9(e) 91(v)].

Then D is a polyhedral disk. Since the slab-system is f-invariant, and
f IF is the identity, it follows that all of the sets il:, 9l(v), 9t(e) have the
same property. Therefore so also do D and OD. Let

J OD.

This polygon J will be fixed, throughout the proof. Let

CI(
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4.2. LEMMA. HI() is infinite cyclic, and is generated by a 1-cycle Zj on J.

This follows from the Alexander Duality Theorem (with integer coeffi-
cients) for homological 3-spheres. Knowing of no convenient reference for
the latter result, we indicate an elementary proof of the lemma.
We shall use, hereafter, a subdivision J’ of ), such that : is a subcomplex

of ’. All cycles mentioned will be cycles in the elementary sense, on )’.
Let P be a polygon in 0:, such that P carries a generator Zp of HI(:),

and such that P crosses J in exactly one point p J n P. Let ZF and Zj
be 1-cycles obtained by assigning orientations to F and J respectively. Since
ZF 0 on Y, it follows that Z is homologous on : to a 1-cycle Z on
such that Z 0 on . But the set Z, Zp} generates HI(0:). Therefore
Z is homologous on 0 to a linear combination iZ + jZ. Since Z 0
on :, and both Ze and Z are generators of HI(:), it follows that i +/-1.
Therefore Z is homologous on 0: to a 1-cycle Z carried by a polygon which
crosses J exactly once. Therefore {Z, Z} generates H(O).
Now every 1-cycle Z on is homologous to zero on }, so that such a Z

is homologous on to a 1-cycle Z’ on 0. Therefore

Z iZj + 3Z, on .
But Z 0 on . Therefore Z iZ one, so that Zj generatesH(). And
Zj is of infinite order in H(). For otherwise we would have

iZ 0 on
and

iZ 0 on : CI() ),

so that by the Mayer-Vietoris Theorem t would carry a nonbounding 2-cycle.
By 2.2, let be an f-invariant 2-spine of o. Then J c . And since
is a deformation retract of (by Lemma 2.1), we know that H() is iso-

morphic to H(), and that Z generates HI().

4.3. LEMM.. There is a connected acyclic linear graph G such that (1)
G , (2) the iterated images Gi fi-(G) are disjoint, (3) each set G J
is connected, and (4) 0 G contains every vertex of .

Proof of lemma. Evidently there is a G which satisfies (1), (2), and (3).
(For example, let G be any vertex of J.) Suppose further that G is maximal
with respect to this property. We shall show that G also satisfies (4).
Suppose first that there is an edge e v0 v of J, such that v0 u vl does not

lie in (3Gi. Then we may suppose that v0 e (JG, or, in particular, that
v0eG. Then

Of(v) n UG O;

the iterated images f(v) (1 -< i -< n 1) are all different; and the same is
true of he sets f(e). Therefore the sets G Guf-(e) are disjoint;
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G; n e is obviously connected; and G n J is connected This means that
G1 was not maximal.

Suppose, on the other hand, that every edge of J has both its vertices in
(J G, but that some other edge e of fails to have this property. We may
suppose, as before, that e v0 vl, with v0 e G and v e G. Then vl e J.
Let G G u e. Then G satisfies (1) and (2), trivially; and (3) is also
satisfied, because G J G1 J. Thus G1 was not maximal; and this
contradiction completes the proof of the lemma.
The sets G J are broken lines. If G and Gj are consecutive on J, then

G n J and Gj J are joined by an edge of J. Evidently there are exactly
n such edges; let them be

el, e. ..., en

in the cyclic order of their occurrence on J. Then e+ fJ(ei) for some j;
f’ has period n, and its iterates are precisely those of f, in some order. There-
fore we may assume, as a matter of convenience, that j 1, so that
f(e) e+. We may also assume that e, G1 n J, and e2 are consecutive on J.

Let b G n J, and let c e u b, with the orientation induced by Z.
Then any linear combination . c., with integer coefficients, is a 1-chain.
For 1 -< i <- n, let v be the "left-hand" vertex of c (which is also the left-
hand vertex of e).
Each vertex of lies in some G. If v v, let by 0. Otherwise, let

by be the (unique) broken line from vi to v in G, oriented positively from v
to v, so as to be a 1-chain.

If C . is a chain on , then f(C) denotes the chain f(j),
where f(a) has the orientation induced by f; that is, f(w) f(v)f(v). It
is clear that the function v -- b is f-invariant, in the sense that b() f(b).
For if u e G, then b is uniquely determined by the property of being a 1-chain
on G+, carried by the unique broken line from v+ to f(v) in G+, oriented
positively from v+ to f(v). And f(bv) is a chain which has this property.
Leta wbean(oriented) edge ofg. Ifa (JG,letC--- 0. Other-

wise, let
C=b,,Wo’-b,,,.

It is clear that for each such C there is a 1-chain C’ on J, with constant co-
efficient 1, such that C C’ is a 1-cycle. (To obtain such a C’, we need
merely assign the appropriate orientation to one of the broken lines in J
joining the "end-points" of b and b, if these "end-points" are the same, we
take C’ 0.) Here C’ is not uniquely determined by a, except when C’ 0.
Now C C’ is homologous on 9 to an integral multiple mZ of Z. Thus

Therefore
C mZ + CP
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and the right-hand member is a 1-chain on J. Let

c’: mz, + c’,.
We assert that C’’ is uniquely determined by v. Obviously C, is so deter-

" such thatmined. And given an alternative C, C

and

it follows that

so that

C, m’Zj + C,

C m’Z + C,

But C ’C’,’ is a 1-cycle on J, and HI() has a generator on J. It follows
that C ’C 0 on J. Therefore, since J is a polygon, we have
C’ ’C’ 0, which was to be proved.
To see the intuitive significance of C, we should suppose that the linear

graphs G are shrunk to points. Each z then becomes a broken line (or
polygon) W with both of its end-points in the image of J. C then measures
the "number of times that the image of winds around 9." If the end-points
of z’ are the same (which can happen, if both end-points of z lie in the same
G), then C may be either 0 or a positive or negative multiple of Zj. If
the end-points of W are different, then C’’ may be either a chain joining the
end-points of W or the sum of such a chain with a cycle mZ,r.

4.4. LEMM&. The function (r C’ is f-invariant; that is to say,

f(c’:).
Proof of lemma.

it follows that

Since

we have

Therefore

It has already been observed that hi(,) f(b,). Since

C b-Sa-- b’ (

C]<,o f(b,,) --t- f(tr) f(b,) f(C,).

Thus f(C[) is a 1-chain on J, homologous to f(C,) C]() on . But C]()"
is uniquely determined by these conditions. Therefore f(C) "

Here, and occasionally hereafter, we use the symbol O in a second sense, as the al-
gebraic boundary operator applied to chains. It should be plain, in each context, which
meaning is intended.



216 EDWIN MOISE

For each o- vv’ e 1, such that a does not lie in U G, we shall define a
locally one-to-one mapping

: -- J (into)

in the following way. Let

Since all coefficients in

are the same, and +/- 1, it follows that takes on only two values, differing
by a constant +/- 1. Therefore C can be represented by a path which starts
at the initial point of b, proceeds to the initial point of b, (in one of the
two possible ways on J), and then goes around J a certain number of times,
preserving its initial direction. Thus this path can be chosen so as to be a
locally one-to-one mapping. Taking the linear interval a as its pre-image,
we obtain ,. It is readily verified that is independent of the orientation
assigned to a.

Such a can be defined for each a in 91. Moreover, this can be done in
such a way that the mappings are f-invariant, in the sense that

For suppose that a particular has been defined, representing the chain C’
By 4.4, CP() f(C:). Therefore ff- has all the properties desired for
(), and can be used as a definition of the latter. Similarly we can define
() as fi4,f-i. We proceed in this fashion in every orbit {f(a)}.
Note that if a e c J, then maps e homeomorphically onto c, leaving

the left-hand end-point of e fixed.
If a vv (J G, let be the mapping which throws a onto the initial

point of b (which is also the initial point of b,).
Consider now an oriented 2-face s of 9. Let

Os _, (1 -<j -< 3).

Evidently a. ’. C, because each b, b, appears twice in the latter
sum, with opposite signs. Therefore

C0 ong.
But

so that
Cr 0 on .

Let S be a polygon, obtained by collapsing into points the edges of s that
lie in U G. (S is a polygon, rather than a single point, because the G’s
are acyclic.) Let g be the mapping Os S. Let



PERIODIC HOMEOMORPHISMS OF THE 3-SPHERE 217

be defined by the condition
8(x) j[g-l(x)] (x eg(.)).

Then 8 is a piecewise linear mapping of $8 into J, such that each set
is finite. The components of the sets 1(c) are broken lines, and each
mapping 8 I is a homeomorphism. Let us number the ’s in the order
of their appearance on $8, in the positive direction on Os, starting from a base-
point x0. For each /, let r 8(). Then each r is c for some i.
Thus the mapping 8 can be represented by a sequence

1 2 tk /q-1 m
T1 T2 Tk Tkl Tm

where is 1 or -1, according as 8 I preserves or reverses orientation.
Now J is a (simple closed) polygon. Therefore the iniection of the funda-

mental group (or the edge-path group) of J into Hi(j) is an isomorphism
onto. But the inection of 8 is the 1-chain CtP;, which is 0. Therefore
8, considered as a mapping, is contractible; and so 8 cannot be everywhere
locally one-to-one. This means that there is a/c such that

Tk Tk+l

O/k O/kq-1

(Here the subscripts are taken modulo m.)
For 1 __< i _-< n, let p be an interior point of e.

Q u-;(p)
Let

1 1 <i<n)(0"

Since the mappings are f-invariant, it follows that Q is f-invariant. If/c
is as in the two equations immediately above, then some two points x, y of
some set 1(p) are successive in Q on os; that is to say, x u y does not sepa-
rate any other two points of Q from one another in Os. Therefore there is a
broken line B, from x to y, lying except for its end-points in Int s. For
convenience, we suppose that ]c m 1.

Let us delete the last two terms from the sequence representing 8, obtain-
ing a mapping Ot. B decomposes s into two disks, one of which intersects
Q only in x u y. Let s’ be the other of these two disks.
Now 8 is contractible. Therefore, as before, there is a k’ < m 2, such

that r, r,+l and a, -a,+, with subscripts taken modulo m 2.
Therefore there is a broken line B,, joining two points x’, y’ of Os Q, such
that x’ y’ does not separate any two points of Q from one another in Os.

Thus, in a finite number of such steps, we obtain a sequence B1, B=,
B/ of disjoint broken lines, such that (1) each B lies, except for its end-
points, inInt s, (2) for each/c, the end-points ofB lie in a single set -1(p) Os,
(3) Q os tJ B, and (4) UB contains no vertex of s.
So far, we have been considering a fixed s. Given the sequence B1, B.,

B,/ for s, the sequences
4’i--1 Bf-l(B), f-l(B), ..., /=
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have the same properties relative to the corresponding 2-simplices f-(s).
(We recall that Q is f-invariant.) This means that B-sequences can be
defined for all 2-simplices s of , in such a way that their union ! isf-invariant.
Each broken line B intersects only one set U ,:(p). Let be the union

of all broken lines B that intersect U,:(p). We have now proved the
following lemma"

4.5. LEMM. There is a polyhedral linear graph ! , such that
7 p

(2) !3n=O,
(3) the iterated images !B f-(!) are disjoint,
(4) if s is a 2-simplex of , then no point of !1 n Os is isolated in ! n s,

and
(5) 31 n J is a single point ql.

(Here (4) is a consequence of the fact that each point of !3 n s is an end-
point of some B n s.)

This lemma states all that we shall need of the discussion beginning with
Lemma 4.3.
We recall that F is a subcomplex of , @ is the slab-system for , is

the induced slab-neighborhood of F, Cl(!l 2), and ’ is a subdivision
of , such that IE and are subcomplexes of !l’. is a 2-spine of , defined
relative to ’. J is a polygon in 0 0, such that J is latitudinal in 2
andf(J) J.

Let @’ be the slab-system for !ff’, and let ’() and ’(J) be the induced
slab-neighborhoods of and J respectively. Let the vertices and edges
of J be

Vl el V2 Y e

in the cyclic order of their appearance on J. Then the sets

’(vi), Cl[’(ei) ,(,0)1
form a sequence

g, g2, "",

of combinatorial 3-cells, in which consecutive cells intersect one another in
disks. By an obvious geometric construction, we obtain a polygon J’, lying in

0’(]) n 0’(),

such that J and J’ are parallel in ’(J). By this we mean that (1) J’ inter-
sects each set g in a broken line, (2) J’ intersects each set g n g+ in a
point, and (3) there is polyhedron A, homeomorphic to the closed annulus
between two concentric circles, such that

OA J u J’,

and such that each set A n g is a disk.
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We know J carries a generator Z of . From this it follows that J’ carries
a generator Z, of (); the verification is omitted.
By Lemma 3.4, ’() is the image of ’(9) under a piecewise linear homeo-

morphism h, such that h iJ’ is the identity.
Consider now the set !, given by Lemma 4.5. We know that n 90 0;

and we may also assume that n ’() 0, as the latter situation can be
obtained by moving the points of slightly farther away from 0. We may
assume further that the components B of the sets n s are "straight relative
to the slab-system ’," in the sense that (1) each intersection B n 0’(e)
is a point, (2) each intersection B n ’(e) is a broken line, and (3) each
intersection

B n Cl[’(s) ,(90)1
is a broken line.

Starting with we shall construct a 2-manifold M,., with boundary, lying
in ’(9), such that

(1) OM. 0’
(2) the images Ma fi-(Ma) are disjoint,
(3) Ma,and
(4) OMa n J’ is a single point, which is a crossing point of OM. with J.

The construction is as follows.
Let b be a component of a set n ’(e), where e is an edge of 9. Then b

consists of a finite nber of linear intervals b n s with a common end-point
w e e. Therefore there is a disk D, containing b, and lying in ’(e), such
that OD lies in 0[’(e) ’() and intersects each set CI[’ (s) ’()in a broken line. The disks D can be chosen so as to be disjoint; and their
images f-(D) will then also be disjoint. For the case w q, D can be
constructed so that OD n J’ is a single crossing point of OD with J’. If
w q, then OD and J’ will automatically be disjoint.
Now let be a set Cl[’(s) ’()], where s is a 2-face of 9; and let c be

a component of
n [ u UD].

Then is the union of two combinatorial 3-cells , , such that

and c lies in he union of wo polygons cx and c2, such ha

nd
c : 02.

It follows that there is a disk D, containing c and lying in , such that
OD (c u c) n 0. The disks D can be chosen so as to be disjoint; and
their images f-(D) will then also be disjoint. Let

M1,1 UD u U
Then M, has the properties desired.
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Starting with M1,1 we shall construct a surface M.,2, having all the stated
properties of M,, such that OMI,. has only one component F,2.

Let F,. be the component of OM, that intersects J’. Let

V O’() (J’u F,).

Then U is homeomorphic to the interior of a disk, so that every polygon
P c U is the boundary of a unique polyhedral disk De in U. Let the com-
ponents of OM,I be F,, P, P and for each j let D# be the disk in U,
bounded by P. Let j be such that Int D contains no polygon P. Evi-
dently the images f-l(D) are disjoint, for otherwise one of them would lie
in the interior of another, and f would not be periodic. We may therefore
add D to M,, and then retract the resulting surface very slightly into
Int ’(9) in the neighborhood of D, by a piecewise linear homeomorphism.
If the set on which this homeomorphism differs from the identity is a suffi-
ciently small neighborhood of D, then the image-surface will satisfy the
hypothesis for M, and its boundury will hve only m 1 components.
It follows that the desired M, can be obtained by m iterations of this process.
We recall from Lemmu 3.6 that the homeomorphism h of Lemma 3.4

can be chosen so that hf fh Let M,a (M,). Then
(1) M, ’(),
(2) oM, , M, O’
(3) the images M, (M,) re disjoint, nd
(4) OM, crosses J’ t exactly one point J’ n Mz,.
Consider the set

’ c[ ’() ].

By Lemm 3.3, ’ is combintorilly equiwlent to (F). Let the
vertices nd edges of F be

in the cyclic order of their occurrence on F. Then the sets

g Cl[(a) ()
nd

g_ (w)

form decomposition of into 3-cells g nd different sets g, g intersect
only if i nd j re consecutive modulo 2m, in which cse g n g is disk lying
in the boundary of ech of them. For ech i, let, ,g g n Cl[g- ()].

It is then straightforward mtter to show that the g’s form decomposition
of ’, hving the properties just stated for the g’s. (Here we re ppeling
directly to the geometric definition of slb-system.)
To complete the construction of the M of Theorem 1.2, it would suffice
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to construct a polyhedron A1, homeomorphic to a plane annulus, such that

A1 F u

A1 n 0’

and the images A fi-l(A1) intersect one another only in F. We could
then define M1 as MI, u A1 For the sake of convenience, however, we shall
first define a new surface M1,4 for which the corresponding A1 is more readily
constructed.
From condition (4) for Ml,a, it follows that HI(O’) is generated by a

pair {Zj,, ZI,}, where Z1,3 is a cycle on FI,a OMI,3. There is no loss of
generality in supposing also that F1,3 is in general position relative to the
gi’s, in the sense that every intersection

Fl,a n g n g+l
consists of a finite number of "true crossing points" of Fl.a with the polygon

P g n g+l n 0’.

If intersection numbers =t=1 are assigned to these intersections in the usual
way, using orientations of FI,s and Pi, then the sum of these intersection
numbers, for fixed i, must be =i=l. We shall show that there is an
having all the stated properties of M,s, such that the intersections of F,
with the polygons Pi are single points.

Let Fi. f-l(Fl.s). Let B be a component of a set

F, n g F. n Og

Then B is a broken line. If every such B joins a point of g-i to a point of
g.+, then M1,3 has the property desired for M1,4. Otherwise, there is a
broken line B’, lying in P (or Py-1) such that B u B’ is the boundary of a
disk DB, lying in Og. n O!. The image-sets f(B), f(B’) have the same
properties, so that we may assume that i 1. The iterated images f(D,)
must be disjoint, because otherwise one would lie in the interior of another,
and f would not be periodic. First we add D. to MI,, obtaining MC,a. Let
D’ be a polyhedral disk in Og, n O!, such that OD’ n OM,a is a broken line
containing B’ in its interior. We take D’ in a sufficiently small neighborhood
of B’ so that the image-sets fi(D) are disjoint. We then retract M,a u D
slightly away from D. into ’, in the neighborhood of D., by a piecewise
linear homeomorphism which is the identity except in a small neighborhood
U of D.. (See Lemma 7 of [M].) If U is taken as a sufficiently small
neighborhood of DB then the resulting surface M", will have all the stated
properties of Ml,a. And the number of points in

OM",3 n UP
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is less than the number of points in F1,3 n UPs. It follows by induction that
M1,4 can be obtained in a finite number of steps of the sort iust described.
We can now define
(I). Consider a set g’2. F g’2 is a linear interval, with end-pointsx0,

and mid-point xl. Evidently g’ lies in the union of all 3-simplices of
that contain F g, so that the points of the annulus Ogt 0’ are joined
to the points x0, xl, x by unique straight lines; if p e P-I, then the interval

(Here,x0 p lies in g’ g2i-1 and similarly, if q e P2i, then x2 q
and also in step (II) below, we are appealing directly to the geometric defi-
nition of a slab-system.) Let the end-points of B F1,4 n g’2 be p e P2,
and q e P2 Then g contains unique 2-simplices xo pxl, pqxl, and xl x2 q,
spanned by the indicated points. And the join J(B,
polyhedral disk. Thus

AI, xo pxl u pqxl u xl x2 q u J(B,

is a polyhedral disk, bounded by

B o x0 p o x. q u (FI, n g).
The iterated images A, fJ-l(Al,.) intersect only in F, because the iter-
ated images of B are disjoint, and f is simplicial.

(II). Consider a set g-l. Then F n g-I is the union of two linear
)(}intervals x0 v and vxl, where v And the points of Og_l are joined to

v by unique linear intervals, each of which lies in a single simplex of . Let
A1,:_1 be the join of v with

g2i-1 f] (A1,2i-2 U Al,.i u

Then the iterated images of A1,2_1 intersect only in F, because the set which
we joined with v has this property.

Let A1 (JAI,j, and let M1 MI, u A1.
M1 may not be connected, but it can be made so, simply by deleting all

components of M1 that do not intersect F. To complete the proof of Theo-
rem 1.2, it remains only to show that M1 is orientable. Evidently M1 M
is a 2-manifold. Therefore M1 u M carries a nonbounding 2-cycle Z, with
integers modulo 2 as coefficients. Therefore, by the Alexander Duality
Theorem, M1 M2 separates into exactly two connected open sets U
and V. (See [L].) Let Y)’ be a subdivision of
subcomplex of ’. Then " !J’;
carries a nonbounding 3-cycle with integer coefficients, but neither of the
sets U and V has this property. By the Mayer-Vietoris Theorem [L, p. 267],
M1 u M carries a nonbounding 2-cycle, with integer coefficients, which
bounds both on U and on V. Thus M1 M2 is orientable, and so also is M1.

5. Simplicial homeomorphisms of the 3-sphere
It remains only to deduce Theorem 1.1 from Theorem 1.2.
Let n be the period of f; let the sets M be as in Theorem 1.2; and let D
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be a polyhedral disk in ), such that

OD F.

We assume also that M1 is chosen so as to minimize the 1-dimensional Betti
number pl(M1), with integers modulo 2 as coefficients. Clearly we my not
suppose that D is in general position relative to the Mi’s, because D Me
contains F for ech i. But we my suppose that D is in "lmost general
position" relative to the Me’s, in the sense that ech intersection D M is
finite union of polygons, intersecting one nother only in F.
As in n nlogous situation in the proof of Theorem 1.2, we my suppose

that the M’s pper round F in the stated cyclic order; that is, one of the
two components of (M M) is disjoint from M. Thus there re
3-manifolds ,, with boundary, such that

Oi M u Mi+l
and

nU 0.

Thus Int my be thought of as a fundamental domain of relative to f.
Let J be a polygon different from F, lying in a set D n M; let D be

the (unique) polyhedral disk lying in D and bounded by J; and let Z be
the nonzero 1-cycle carried by J. (Here, and hereafter, we use coeffi-
cients modulo 2.) We muy suppose that D contains no similar disk
D, (J’ D M J F). It follows thut

IntDnOM 0,

so that Int D lies in Int (or Int _). We suppose also thut i 1.
We assert that Z 0 on M. For suppose not. By moving J slightly

into Int M (that is, slightly away from F), we obtain a simple closed polygon
J’, such that Z, 0 on M, and such that J’ bounds a disk

D, Int u J.

J’ separates M, locally, into two connected ope sets. Let us add D,
to M, so that D, has a neighborhood in M u D, which is the union of two
disks E, E, intersecting in D,. E and E: can then be "pulled apart at
D, ," so as to give a surface M which has all the stated properties of M,
but has a lower 1-dimensional Betti number. (To justify the "pulling apart"
operation, see Lemm 7 of [Ma].)

Since Z 0 on M, it follows that there is a component of M J,
with closure DJ, such thut OD J. We assert that D is a disk. For
otherwise D would be a disk with one or more handles, and

i’ (M- D) uD
would have all the stated properties of M, with a lower 1-dimensional Betti
number.
LetD’ (D- D) D. ThenD’is adisk. AndD- Fcanbe re-
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tracted slightly into Int 2, in the neighborhood of Dj F, so
disk D’, bounded by F, such that

D" n UM c::: D n UM
gnd

J nD"

Thus, in replacing D by D’, we have reduced by one he 1-dimensional
Bei number of D n UM. Therefore, in a finite number of such seps,
w an obtain a disk D, bounded by F, such

DnUM F.

his means ha InD lies in some se In, so ha he disks D =f-(D)
inersee one another only in F.
For each , le C be he 3-manifold wih boundary bounded by D u D/,

such ha In C is disioin from UD. hen C has a opologieal image in
E, because is a 3-sphere. By Theorem 1 of [M], or by he Haupvermu-
ung, heorem of [M], his means ha C has a combinatorial image in
E; and so, by Lemma .0, C is a combinatorial 3-cell. hus Y is he union
of he -eells C and C n C F unless
in which ease C n C.isa disk. rom his i is easily verified haf is homeo-
morphie o a roaion, which as o be proved.

6. Proof that F is always a polygon
We shall show that if 21, f, F, and n are as in Section 1, with n arbitrary,

then F is a polygon. The proof depends on the following:

LEMMK. If F is 1-dimensional, then F is a 1-manifold.
It will turn out, of course, that F is always 1-dimensional.
Proof of lemma. We shall assume, as in the main body of the paper, that
) is sufficiently finely subdivided so that f is regular, in the sense that
f() ( ) only if f] is the identity. It follows that F lies in the
1-skeleton 21, and that F is locally Euclidean except possibly at vertices
of ).

Let v be a vertex of , lying in F, let St(v) be the closed star of v, and let
3 0St(v). Then f is an orientation-preserving periodic homeomorphism
of the 2-sphere onto itself. It follows from well-known results of B. Ker-
kjrt6 [K] that f[ has exactly two fixed points x and y. Sincef St(v) is
simplicial homeomorphism of St(v) onto itself, it follows that F n St(v) is
the union of the edges vx, vy of 1. Therefore F is locally Euclidean at v,
which completes the proof of the lemma.
We shall now show that F is a polygon. Let p be a prime factor of n,

and let q nip. Then ff has period p. Let F’ be the fixed-point set of
ft. By the cited result of Smith, F’ is a polygon. Evidently F c F’; and
since F is locally Euclidean, it follows that F’ F, so that F is a polygon.
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Here we have been merely following, in a straightforward fashion, the sug-
gestions made in the middle paragraph of p. 162 of [S], in which Smith un-
accountably denied that he was sketching a proof.
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