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1. Introduction

In this paper a Riemann-Roch theorem is proved for a module, over a
function field K, which is under the action of simple algebras over K. Spe-
cialization of this module leads on one hand to the Riemann-Roch theorem
of E. Witt [16] for simple algebras over K, and on the other hand to an exten-
sion of A. Well’s Riemann-Roch theorem for matrices over function fields
[15], in the case that his "signature" is taken to be identically 1. In each
case the constant field is allowed to be arbitrary.
There is also a brief account (in 2), partly new in method, of the arithmetic

of simple algebras over K. In 3 our generalization of the Riemann-Roeh
theorem is proved for a certain module over the function field K. In 4 this
module is taken to be a simple algebra A over K; a restriction of the definition
of divisor then leads to a suitably specific form of the Riemann-Roch theorem
for A. Related questions--the different, the Riemann-Hurwitz formula, and
a genus-like invariant of A--are then discussed. Finally, in 5, it is shown that
our Riemann-Roch theorem for A implies that of Witt [16]. The paper con-
eludes with a theorem extending the generalized Riemann-Roch theorem of
Weil [15] (when his "signature" is trivial) for matrices over function fields.

Part of the origin of this kind of investigation is in the papers of Hecke
[7, 8], Chevalley and Weil [3], and Well [14], which are concerned with the
problem of decomposing into its irreducible parts a certain natural representa-
tion of G/H(N), where G is the modular group and H(N) the subgroup of
matrices congruent (rood N) to the identity, as linear transformations of
the space of "cusp forms" of type (2, N). Since there is a natural iso-
morphism between this space of cusp forms and the differentials of the first
kind of the associated function field KH(N), the problem can be transformed to
one in terms of matrices over KH(N).
The methods used here are those of linear topology and duality, first applied

to this kind of problem by K. Iwasawa in [10] and particularly [9]. The
proofs in 3 are direct generalizations of the proofs of Iwasawa for the corre-
sponding theorems about K. Indeed, much of this paper may be thought of
as the tensor product of the appropriate spaces over K with [9].

I wish to thank Professor Iwasawa for suggesting to me the problems dealt
with here. As I have indicated, his works [9] and [10] made these problems
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easy to solve. I have also profited from several discussions with Professor
Iwasawa and with my friend Peter Schweitzer, from whom I have received
valuable advice and encouragement. Finally, I wish to thank the referee
for several very helpful suggestions.

For the preliminaries, let K denote a function field with field of constants F.
Let 9) denote the set of prime divisors of K, p the normalized exponential
valuation belonging to P g2, Kp the completion of K with respect to P,
op Kp the ring of local integers, 13P the local prime ideal, p 0p/p the
residue-class-field, and np= [p: F] the local degree.
The ring R of valuation vectors of K is defined as the weak direct sum of the

Kp in the sense that for almost all P, the component ap of the valuation
vector a must belong to op. In R we define the subring as the direct sum
of the 0p. We then take the set of all a0, where a runs through the regular
elements of R, as a fundamental system of neighborhoods of 0 in R, defining
thereby a linear topology on R, under which R even becomes a topological
ring. K is a discrete subfield of R; and there exists an open linearly compact
subspace W such that R K -t- W, a topological direct sum (cf. [9, 10]).
A character of R is a continuous, F-linear mapping of R into F, F having the
discrete topology. The space X(R) of all such characters, with the (linearly)
compact-open topology, is a linearly topologized vector space over F. A
nontrivial character of R which vanishes on K will be called an admissible
character of R. If is such a character, then a fundamental result of [9, 10]
is that R is self-dual under the pairing (a, b) x(ab), a, b R.
We shall so often need the following result from the theory of linear

topologies that we state it here as

LEMMA 1.1. A linearly topologized space is finite-dimensional if and only

if it is linearly compact and discrete.

Let So be a skew-field of finite rank over the center K. For each prime
divisor P of K, define Sop to be the tensor product Kp (R) So over K. Then,
although Sop is not always a skew-field, it is a normal simple algebra with
Kp as center. As such, Sop is isomorphic to the full gp X gP matrix algebra
over some skew-field Sp with Kp as center; and Sp is uniquely determined
up to a Ke-isomorphism.
The valuation e of K can be extended uniquely to Se, via, for instance,

the norm of the regular representation of Sp/Kp. We denote by vp the

By the term "function field," we mean a field K, containing a subfield F, (relatively)
algebraically closed in K, and containing an element x not in F, such that K/F(x) has
finite degree.

A vector space over F is linearly topologized if its additive group is a topological
group for which some collection of linear subspaces serves as a fundamental ystem
of neighborhoods of 0. For the theory of such spaces, including the duality theorem,
see Lefschetz [11, pp. 72-83]. The analogue of the "second isomorphism theorem" for
these spaces is proved in [9].

For the structure theory of algebras assumed in this paper, see, for example, [2].
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uniquely determined normalized exponential valuation of SI, which results
from this extension. SI, is complete with respect to vi,. We have the result
that [Se" Ke] el, fi,, where ee is the local ramification index and fi, the local
rank of Se/Ke. We define 9e to be the ring of elements in Se with non-
negative valuation, e to be the maximal ideal of non-units in 0e, and (R)i,
(ge/e, the local skew-field at P. (R)i, is of finite rank fi, over

It will also be useful to recall the following well-known result from the
theory of valuations" Let wl, ..., wf 0e be representatives of a basis of
(R)e/oe, and let Si, be a prime element for P, i.e., re(t) 1. Then we
have

LEMMA 1.2. The eere elements w , with 1 _<= i <= fi, and 0 <= j <- ee 1,
form a basis of Se/Ke; and if a Se is written a aw , with
then, for every integer m, vi,(a) >= mee if and only if all vi,(a) >= m.

t2LEMMA 1.3. If the slcew-field Se has ranlc mi, over the center KI,, then
ee mi, and me fi,, [18].

Proof. If is a prime element for P, then KI,(t)/KI, has ramification
index el,, which divides its degree, which in turn divides mi, [1, p. 53]. Since

2ee mi,, we have me eefe dividing mi,fi,, or me
Let A be an algebra over the center lc. The reduced trace T of A/lc is

always nontrivial if A is semisimple (in fact, the discriminant is nonzero).
In particular, T is a /c-linear mapping of A to ]c such that T(ab) T(ba)
for all a, b e A.

2. The arithmetic of simple algebras over function fields

In this section we present a brief account of the maximal orders and ideals
of a normal simple algebra A over K. The results are known (ef. [5] and
[12]), but some of the present proofs are simpler than the older ones.
We first define the ring of valuation vectors of A as the tensor product

fi_ R (R)AofRandAoverK. Ifu, ...,u,isabasisofA/K, then
R (R) u -t- + R (R) u; thus we may give the linear topology of a direct
.sum of copies of R. This topology makes A a topological ring and is inde-
pendent of the basis of A/K chosen above.

Let x be an element of K not in F. Call a prime divisor P of K finite if
i,(x) 0. An order of A relative to F[z] is a subring of A, finitely generated
over Fix], containing F[z], and spanning A/F(x). In this section Q will
always denote that prime divisor of F(z) obtained by projecting to F(x) that
P r which is mentioned in the same context as Q. R0 is defined as the
ring of valuation vectors of F(z), o the ring of integers of R0, and o e the
local integers of the completion F(x). One of the basic results of the

See, for example, the proof of Theorem 5, p. 61, of [17].
For the definition and properties of the reduced trace, see [1, pp. 122-125].
An account of orders and their ideals will be found in [4, Ch. VI].
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classical theory is that R is topologically isomorphic to the tensor product
R0 (R) K over F(x), the latter having the direct-sum topology; we write

(2.1) R R0 (R)(x)K.

We now prove, letting p denote Ke (R) A, the P-component of

THEOIEM 2.1. The maximal orders of A, relative to ,, are the same as those
relative to o Q and consist of all the maximal open linearly compact subrings of
Ap.

Proof. Let L be a maximal open linearly compact subring of A. Then
L q- 0 q- L is an open linearly compact subring of A, so that L Q.
L spans Av/K, since it is open, and L is finitely generated over by Lemma
1.1.

Conversely, if E is a maximal order of Av for e, then E is trivially open
and is linearly compact as a finitely generated space over If L :::) E is
an open linearly compact subring, then by the previous argument L is an
order of fi,v, since we used the maximality only to prove L D 0. There-
fore L E, Q.E.D.
We now investigate the relation between the orders of A/F(x) and those

of v/F(x). We state but do not prove

LEMMA 2.1. If J is an order of A relative to F[x] and P a finite prime, then
the closure L of J in is an open linearly compact subring of, containing o

LEMMA 2.2. If J is a maximal order of A relative to F[x] and P a finite
prime, then the closure L of J in A, is a maximal order of Av.

Proof. By the previous lemma, we know that L is an order of Av. To
prove L maximal, let L’ be an order of fi containing L. Following [5] and
[12], we define J’ as the set of all a A n L’ such that for some integer
p(x)"a J, where p(x) is the irreducible polynomial from F[x] giving rise to
the prime divisor Q. Notice that J’ is a subring of A containing J and hence
spanning A/F(x). Also, for some integer > 0, we have J’ p(x)-eJ,
since J’ is contained in the linearly compact subspace L’; thus J’ is finitely
generated over F[x] as a submodule of p(x)-eJ. Therefore J’ is an order of
A; since J is maximal, J’ J.
Now suppose there is an element a in L’ not in L. Letting u,, -..,

be a basis of A/F(x), we write a ai ui a F(x) We can find ele-
ments b e F(x) close enough to thea so that b b u is also inL’ but not
in L, since L is closed and L’ is open. This b is in A. There is a g e F[x] such
that g. b e J, and we may factor g as g p (x)"h, where h e F(x) is prime
to p(x). Then hb L’; and, since h is a unit in oe and L is an oQ-module,

That (2.1) holds even whenx is not a separating element of K was proved by Iwasawa
in [10, 3].
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h-lL c L, which implies hb L.
Therefore L’ L, Q.E.D.

But hb is in J’ J c L, a contradiction.

LEMMA 2.3. Let ul ", u, be any basis of A/F(x) and define, for each
P e), Ee o Qulq- o Qum. Then for almost all P, Ee is a maximal
order of Ae and equals oe ul q- q- oe u,

Proof. Let J be any maximal order of A relative to F[x], Jv the closure
of J in Ae. By Lemma 2.2, Jv is a maximal order of Ae for almost all P.
Let J F[z]b + + F[x]b for some bl, ..., b A, and let each b
-_j c:ju, where c. e F(x). Then the matrix (c.) has no column consisting
entirely of zeros. Since Ji. oob - - oob, it follows that Je Ee
for almost all P, Q.E.D.

THEOEM 2.2. For each finite prime P, let Le be a maximal order of Ae

such that almost all Le e u + - Oe u, where the u’s form a basis q[
A/F(x). Let J denote the intersection q-[ all A n Le. Then J is a maximal
order of A relative to F[x].

Proof. Using the topological properties established up to now, one first
proves that J is an order of A. Then Lemma 2.2 implies that J is a maximal
order. We omit the details.

In order to clarify later parts of this paper, and to make a convenience
rigorous, we now discuss isomorphisms between A and the matrix ring arising
naturally from A. That is, each Ae is a normal simple algebra over Ke and
is therefore algebraically isomorphic to the full matrix algebra re re Se
over some skew-field Se with Ke as center. If A is isomorphic to the full
matrix algebra r X rSo over the skew-field So, then Ke (R) So e e S
for some integer te, so that re re. We define Ne to be re )< re Se and N
to be the weak direct sum

in the sense that each matrix in must have almost all its P-components taken
from re ( re ee, in the notation of 1. N can be given two topologies, one
in which a fundamental system of neighborhoods of 0 consists of the subspaees
of the form XI, where X is a regular element of N and I is the direct sum

re X re 0e, another which the direct-sum topology of each Ne gives rise
to; that these topologies are actually the same is a consequence of Lemma 1.2.

Let us agree to denote re X re (% by Iv in what follows. An element U of N
(or of Ne) is said to be unitary if it is a regular element of N (or of Ne) such
thag both U and U- are in I (or Iv). We shall need the decomposition [13,
p. 107] of a regular matrix C e Ne as

(2.2) C U(:. ) V,

where U and V are unitary in Se, 8. is the Kronecker delta, is a prime element
for P, and the e are rational integers.
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We now have

L:MMA 2.4. A maxiTnal open linearly compact subring of p is always of the
form C-SIp C, where C is a regular element of

For a proof, see Hasse, [5, pp. 519-520].
This lemma enables oe to prove rather easily

THEOEM 2.3. There is a topological K-isomorphism of A onto S. Any
topological automorphism of onto transforms almost all I onto themselves.

Now let J and J be maximal orders of A relative to F[x]. Let M be
left-ideal for J and a right-ideal for J. Let M denote the closure of M in, and similarly for J’, J. For each finite P let L) be a mximal order
of . such that ahnost 11 Lp arc equal to u + + u E, for a
fixed basis u, ..., u, of A/K.

THFOm:M 2.4. For each finite P, M is an open linearly compact left-module
for J and right-module for J. almost all M E,. Conversely, the inter-
section with A of such M’s is an ideal of A relative to F[x]; in particular, our
original ideal M is the intersection of its components M. Each M has the
form C-L, C, where C, and C are regular elements of , such that almost
all C-LeC Le Ev.

We omit the proof of this theorem, as well as that of the following

THEOnEM 2.5. The maximal open linearly compact subrings of A are all
conjugate to each other in A. They are the direct sums of their P-components.

3. A general Riemann-Roch theorem
Let, V be a finite-dimensional vector spce over the function field K. Let

V’ denote the dual space to V. As spaces of valuation vectors of V and W,
V’. The natural pairing (v, v’}0we define V R (R) V nd V’ R (R)

v’(v) of V and V’ to K can be extended uniquely by continuity to a pairing of
17 and ]7’ to R" (a, a’} is a continuous, R-bilinear map of 17 X 17’ into R.
Letting x be an admissible character of R, we define

(:3.1) [, ’l x(<, ,’5), , 17, ’ 17’,

and obtain thereby a continuous F-bilinear map of V X V’ into F.

THEOREM 3.1. The mapping f" ff --> X(ff’) of to the character space of

’ given by f() [, is a topological isomorphism onto; that is, the dual pair-
ing (3.1) is topological. Under this pairing, the annihilator A(V) of V is V’.

Proof. For any basis {v} of V/K, let {v} be the dual basis of V’/K. With
respect to these (or any) bases, 17 and 17’ are immediately seen to be paired
as direct sums of copies of the self-dual space R (see 1). But be-
comes this very pairing when expressed in terms of these bases. This ob-
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servation also shows immediately that A(V) V’, since A(K) K under
the pairing of R to itself mentioned in l, Q.E.D.

If M is an open linearly compact subspaee of V, then M n V is finite-
dimensional over F, by Lemma 1.1. Thus we may define for such M

l(M) dimy(M n V),

and similarly for such subspaces of V’.
We introduce the unique function( defined on ordered pairs of

open linearly compact subspaees of V such that

(i) (M1, M2) -t- (M2, Ma) (]F/, Ma),
(3.2)

(ii) (M, M.) dim,,(M/M) if M D M.
The existence and uniqueness of this -function are quite easy to prove; and
it follows that

(3.3) v(Mt, M2) vt(rM, rM) + v2(M n V, M2 n V),
where v and v are the analogous v-functions for the spaces /V and V,
respectively, and r is the natural map from V onto V/V.
Now let M’ be the annihilator with respect to the dual pairing (3.1) of the

divisor M of V. M’ is open in V’ by the continuity of and is linearly
compact as the dual space to the discrete space VIM. By Theorem 3.1, the
annihilator of M n V is the (closed) subspace M’ -- V’ of 17’; therefore

(3.4) l(M) dim,(’/(M’ -+- V’)),
since ’/(M’ + V’) is dual to the finite-dimensional space M n V.
We shall now restate (3.3) in terms of 1. We have

,(rM, rM) v, 17/V, 7rMl) -t- / /-W, rM,)

-dim.( 17/(M -t- V) -t- dim,( 17/(M. -t- V)

-l(M;) + l(M’2),
by (3.2) arid (3.4). Also, v(M n V, O) l(M), so that we may put (3.3)
gs

I:HEOREM 3.2. For any two open linearly compact subspaces M, M,2 of
V, we have

v(M, M.) l(Mt) l(M;) (l(M) -l(M")),
where M and M are the annihilators of M and M, respectively, with re-
spect to the dual pairing (3.1).

Let A and B be simple algebras of finite rank over the center K. Assume
now that V is a unitary left A-, right B-module. Then V is naturally a

left B-, right A-module, and the pairing ( }0 satisfies {avb, v’)o (v, bv’a}o
for all a e A, b e B, v V, and v’ V’.

For proofs of these properties of the -funetion, see [10, 1].
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There is a unique way to make V a unitary left A-, right B-module (with
the action denoted for the moment by a dot) such that

s.v v.s s (R) v, s R, v V,

a.v av, v.b vb, a eA, b eB, v V.

The map of fi_ X l X / to lY which sends (5, 0, ) into 5.0. is then con-
tinuous. The analogous result holds for V’. Furthermore, there is a unique
R-bilincar pairing of V and V’ to R such tat ([, v’} (v, v’}0 for
veV, v’eV’. is then a continuous map of V X V’ into R such that
(a, ’} (, ’a} for , , etc. Finally, we have

LEMMA 3.1. If A acts faithfully on V, then so does

Proof. The result follows iInmediately from the general structure theorem
for such modules (see [2, p. 461), which says that if A is K-isomorphic to the
full matrix ring r X rSo over the skew-field S0, then V is K-isomorphic to
r X rSo, for some ri and the action of A on V is given by the usual matrix
multiplication. On tensoring with K we get the desired result.
We shall now prove a formula which, in some cases, allows us to compute

(M1, M). Let M be a given open linearly compact subspace of V; suppose
furthermore that M is an 0-module, which implies in particular that it is the
direct sum of its P-components. Then the same properties hold for the sub-

a M b, where a and b are regular elements of/ and , respec-spaeo Mi -tively. We shall compute v(M,, M).
First assume M D M. Then v(M1, M) dim. M/M, and it will

suffice to compute the F-dimension pe of the P-component Me/M=e ;for then
u(M1, M) ’Ov.
LEMMA 3.2. Let the subspace Mv of Ve be an open, linearly compact ,-

module. Then there exists a basis {w.} of g,/Ke such that M, Oe w.

Proof. The lemma follows immediately from part 1 of [13, 108] when we
observe that the openness of Me implies that Me contains basis of
We can now proceed to compute pc, on the nssumption that M1p

(a M. b)e M. Let w, ..., w be the basis of ffe/Ke contained in
M: described in Lcmm 3.2. With respect to this basis, the operation
P of a

-1 nd b leads to n nonsingulr n X n mtrix (a) over Ke as follows:

ap wi b,, a, Wj aij Kv i 1, nj=l

Then

MIp EiDp(a7lvOibP) Ei,jftiaijwj fti gp}.
If we express Mle as a set of n-tuples, the coefficients with respect to the basis

wl "", Wn, we find

Me (oe, "", 0e)(ao’) (1 X
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In the same way M.p becomes simply 1 X n0p. Thus

dim(1 X n0)(-)/(1

In order to calculate pc, we represent (a.) according to (2.2) as (a.)
u(ire)v, where u and v are unitary n X n matrices overKe and ee(r) 1.
Now since (1 X noe)u (1 X n0e), our above factor-space is
(1 nop)(jre)v/(1 no,), which is isomorphic over F to (1 n0e).

with -(el + +e) summands (the e being all nonpositive because of
the assumption that M1 D M2). Therefore the desired dimension o is
-n,(el + + e). And this in turn may be written

pp np p(det(c.)-l).

To find the relation between det(a.) and the norms of a and b, we use the
structure theorem [2, p. 46] quoted in the proof of Lemma 3.1. Here it is easy
to see that the matrix (flii) for a e A arising out of avi flivj, with. e K, {v.} a basis of V/K, is the r-fold repetition of the matrix obtained
when one replaces each S0-entry of a with its matrix in the regular representa-
tion of So/K. (The positive integer r, is the number of columns in the iso-
morph of V given by the structure theorem.) Since the matrix of a in the
regular representation of A over K is the r-fold repetition of the same matrix,
it follows immediately that det(.) N(a) r/r. When we pass to the local
situation, both rl and r are multiplied by t, leaving the exponent unchanged.

Similarly, the analogous matrix (,.) for b B satisfies det(/) N’(b) /r’

for some positive integer r2 (the number of rows in the appropriate isomorph
of V, when B is isomorphic to r’ X r’S’o, S’o a normal skew-field over K).
N’ denotes the norm of the regular representation of B/K. It can be extended
uniquely to /R.

Returning now to the provocation for all this, we see that there exist rational
numbers p rt/r and p2 r2/r’ depending only on the module structure of
(A, V, B) such that

det(a)- Np(a,)N(b)-.
Therefore p n,(o ,, Ne(a,) o Ne(b,)). And now we can assert

LEMMA 3.3. If Mo is an open, linearly compact o-module contained in V,
and if M a-Mob contains Mo, for regular a , b e , then there exist
positive rational numbers p and o2 depending only on the module structure of
(A, V, B) such that

,(M, Mo) dim(M/Mo) n(N(a) N’(b)-O),
where n(c) denotes the degree of the regular element c in R.

Proof. We need only recall that dim M/Mo p, and that the degree
of a regular element c of R is ne e(ce).
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Now we need to consider how to compute (M, M0) in the general case,
when M may not contain M0. We still assume that M a-lMo b for regular
a fi, b e/, however, and that M0 is an open, linearly compact s-module.
We simply define (M, M0) n(N(a)PlN’(b)-P); the verification that
property (i) of (3.2) holds for this -function is routine, and we have just
proved that (ii) holds. Therefore we have proved

THEOnEM 3.3. Let A and B act faithfully on V, and let the subspace Mo of V
be an open, linearly compact o-module. Then for all subspaces of the form
M a-lMo b, with a regular in , b regular in , the ,-function (3.2) satisfies

(M, M0) n(N(a)PiN(b)-2)

for certain positive rational numbers ol and o2 depending only on the structure

of the module A, V, B) and not on Mo or M.

Under the notations of Theorem 3.3, let us define the degree of M with
respect to M0 as

(3.5) n(M) n(N(a)OlN’(b)-P).

These subspaces M will play the role of divisors in our generalization of the
Riemann-Roch theorem to the module V.

Let the annihilator of o in R with respect to x be d-lo for a regular d R.
For a given P , let Mop Oe wl -t- -t- oe w in accordance with Lemma
3.2. Then the P-component of the annihilator of M0 is M0e dloe w --+ dlow,wherewl, .., w is the dual basis to wl, ,w. And
that for M is Me de oe(b, wl ae) + - d-loe(be w ae). Thus Lemma
3.2 and Theorem 3.3 allow us to state Theorem 3.2 in a more explicit form,
which we call our generalization of the Riemann-Roch Theorem to V"

THEOnFM 3.4. Under the hypotheses and notations of Theorem 3.3, we have

l(M) l(M’) + n(M) (l(Mo) l(Mo)),

where n M) is the degree of M with respect to Mo as defined in (3.5). Here the
quantity l(M’o) l(Mo) depends only on Mo, not on the module structure.

Remarlc. The functions and n appearing here are "class-functions";
that is, if a and b are regular elements of A and B, respectively, then l(aMb)
l(M) and n(aMb) n(M), for any open, linearly compact 0-module M.

This theorem contains the classical Riemann-Roch theorem" We take
A V B K, M0 o, M a-o for aregular element a of R; then
l(o) 1, l(o’) g, the genus of K, and the degree of M a-lo with respect
to M0 o is n(a-lo) n(a) in our definition. For the classical theorem we

define l*(a) l(a-o) and obtain from our theorem the classical form of the
Riemann-Roch theorem, namely,

l*(a) l*(a’) - n(a) g + l,
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where by a’ we understand any regular b R such that (a-10) b0; it is
well known that b a-ld, when o’ d-lo.

In the classical case, divisors are defined as the set of all a0, a regular in R;
they can be characterized as the set of all open, linearly compact 0-modules.
For the module V considered in this paper we have taken for divisors the set
of all subspaces of V which are open, linearly compact o-modules. In the
general Theorem 3.2 the algebras A and B play no role, nor is the assumption
that the subspaces be o-modules needed there. The use of the algebras A and
B and the assumption of closure under o-multiplication is that they enable
us to find a nice formula for the -function, provided one of the two divisors
can be obtained from the other via multiplication by regular elements of
and/. As noted above, this relation holds between any two divisors in the
classical case; it does not hold in general for our module V, however. But in
one example where this relation fails to be universal, V is not irreducible as a
double module; in another such example, B is not normal as a simple algebra
over K; but in these examples divisors are further restricted to be modules
with respect to the actions of maximal open linearly compact subrings of A
and/. Whether the reasonable assumptions of faithfulness, irreducibility as
a double module, and normality imply that any (reasonably defined) divisor
can be obtained from any other divisor via multiplication by regular elements
of and/ is an open question. This relation between pairs of divisors is an
equivalence relation, and Theorem 3.4 holds for divisors taken from any one
class.
We now turn to a situation where, when the notion of divisor is suitably

restricted, the relation in question holds between any two divisors.

4. Simple algebras over K

Let A V B be a simple algebra over the center K, with the action
being multiplication in A. Letting T denote the reduced trace from A to K,
we pair A to itself by setting (c, c’}0 T(cc’), for c, c’ A. Then (acb, c’}0
(c, bc’a}o for all a, b e A. Our dual pairing of to itself becomes

(4.1) [c, c’] T(cc’), c, c’ e A.

In order to determine the numbers pl and p2 appearing in the formula (3.5),
we need only recall that if A is isomorphic to r X rSo, So being a skew-field
with center K, then p rl/r, where r is the number of columns of r X rSo,
the isomorph of V. Thus r r and p l. Similarly p2 1. Therefore,
if M0 is a divisor of fi_ and if M a-lMo b, for regular elements a, b e fi_, then

(4.2) n(M) (M, Mo) n(g(ab-) ),

where N denotes the norm (of the regular representation) from A to R.
(N is the "direct product" of the local norms from Ap to Kp .)

Divisors. For convenience we shall denote the set of all maximal open
linearly compact subrings of as 2(.[) 2. In the present situation we
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restrict our divisors to be open, linearly compact subspaces M of A such that
there exist H, J for which HMJ M. For this divisor we shall occa-
sionally denote H by M and J by Mr.
We can easily prove that all divisors are equivalent in the sense discussed

at the end of 3 by using the isomorphism of 2 between A and the appropriate
space of matrices " The members of () are of the form C-IC, where C
is a regular element of and I is the subring of "integral" matrices defined

--1Inear the end of 2 If CIC. and C C are two such subrings equalling
MI and Mr for a divisor M, then C M1 C M is a two-sided/-module;
it is easy to prove that M must then be of the form cI, where c is a regular
element of of the form

(4.) c ( a), a

for ech P . Thus M C c C. Conversely, if C nd C re regular
elements of , then CKIC is divisor of . If we transfer these results bck
to A by means of our isomorphism, we cn now assert

LMM 4.1. Each divisor of is of the form a-Hb for regular a, b and

for a fixed subring H . Conversely, every such subspace of A is a divisor of A.

For lter use, we shll now discuss the element c mentioned bove. :First
we state a criterion for equality between divisors, the proof of which follows
rapidly from the decomposition (2.2)"

LMM 4.2. The divisors C---ICo and c’-lICo of are equal if and only if
there is an element a locally of the form (4.2) such that both aC’C- and
aCo Cg are unitary.

In our proof of Lemm 4.l we sw that ny divisor M of which is
two-sided/-module hs the form M cI, where ech P-component of c is in
S, i.e., is diagonal mtrix. The bove lemm implies that c is uniquely
determined up to unitary fctor. Furthermore, cI Ic; nd c belongs to
0, the image of [0 in . If H , let us define n H-unit s regular element
b of such that b H nd b- H.
Then we hve proved

LEMM 4.3. If the divisor M of A is a two-sided H-module, for H 2, then
M is of the form cH Hc, where c is a regular element of So uniquely deter-
mined up to an H-unit factor.

This lemm assumes that one selects prticulr S0 a A.
The degree of given divisor M stisfies, when H e ,

(M, H) ,(M, a-Ha)
for 11 regular a ; or, in other words, since 11 H re conjugate to ech
other, the degree of divisor is invrint with respect to the members of this
class 2. From now on in this section we restrict our definition of the degree
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(3.5) of.a divisor by requiring that M0 belong to . (It is true that the
degree of a divisor is invariant with respect to the members of any conjugacy-
class of divisors, but is a naturally distinguished such class.)

Let H0 and H be any two members of . As divisors, these have degree 0,
so that if we apply Theorem 3.2 to H and H0, we find that/(H’) l(H)
l(Ho) l(Ho), which proves that this quantity is n invariant of A. We
denote it by

(4.4) (A) l(H’) --l(H), He 2.

If A is isomorphic to r X rSo, as before, then we can prove

PI{OPOSITION 4.1. (A) re(S0).

Proof. We use the isomorphism of fi_ with N" Since I (N), it suffices
to consider l(I’) /(I); now I r X tO, and
therefore ((A) r(So) r(l(O’) l(0)). We shall discuss some ques-
tions related to this invariant farther on.

Canonical divisors. In the classical ease A K, the canonical divisor corre-
sponding to a given admissible character x is defined as the inverse of the
annihilator of with respect to the dual pairing [c, b] x(cb), c, b R. That
is, the annihilator ’ equals d-o for some regular d R; and do is the corre-

sponding canonical divisor. As a runs through the nonzero elements of K,
all admissible characters of R are obtained as x, where x( x(a( ));
the corresponding canonical divisor is ado. Here the divisors form an abelian
group and the principal divisors (namely, a0, 0 a K) a subgroup H.
Thus, modulo II, the set of all canonical divisors is precisely a eoset. Anal-
ogous conditions hold in the general ease.

Let M a-Hb be a divisor of X. By the inverse of M we simply mean the
divisor M-* b-Ha. The relations MM- Mz and M-M Mr hold.

In the present ease, "the" ring of integers in X is determined only up to
inner automorphism. Each H will have a collection of canonical divisors;
those of a-ilia will be the conjugates under a of those of H.

Let H , and consider the annihilator H’ of H with respect to (4.1). H’
is an open, linearly compact, two-sided H-module; in other words H’ is
divisor of X. We call H’- the canonical divisor for H corresponding to x.
By Lemma 4.3, H’ is of the form b-H, for some regular b So such that
bH Hb; and b is uniquely determined up to an H-unit factor. If a is
regular element of AT, then the canonical divisor for a-*Ha with respect to x
is a-*bHa, or a-lba a-*Ha. Therefore we need only determine the canonical
divisors for H.
By Theorem 3.1, the annihilator of A is A itself; therefore we obtain all

characters of X which vanish on A as x [a, ], a e A. Among these, the
ones which give rise to dual pairings of fi_ with itself are those with a regular.
For such a, the pairing is [c,, C]a xT(aCl c2). When a K, this pairing is
not symmetric, so we must speak of left- and right-hand annihilators and
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canonical divisors. For example, the left-hand annihilator A(H) of H is the
set of all Cl such that [cl, H]a 0; or A(H) a-lH a-lb-lH. (We have
now Ar(A(H) H, but A(A(H) a-ilia.) The corresponding canoni-
cal divisor is bHa, which we shall call the right-hand canonical divisor.
We now define, by analogy with the case A K, equivalence relations, r on the set of all divisors of A. If Mx and M2 are divisors of A, we

say

M1 r-l M2 (M1 r’r M2) if and only if there exists a regular a e A such that
M1 aM2 (M1 Ma).

We see that the set of left-hand canonical divisors for H is precisely the
equivalence-class containing bH under , and correspondingly for the right-
hand ones. If a and c are regular elements of A and A, respectively, then the

for c Hc corresponding to ]a, is c-lbHca.right-hand canonical divisor -1

If M a-lHb, H 2, is an arbitrary divisor of fi, then M b-lHta
b-lb-lHa. If we (inadequately) denote b-lbb by bM, then M b31M-1.
We can also say that M’ (b-lb-lHb)M-1, the first factor being the inverse
of the canonical divisor for b-lHb. The left-annihilator of M with respect to

]c, c regular in A, is c-ib-ib-iHa.
We can now assert our generalization of the Riemann-Roch theorem for A"

THEOIEM 4.1. If M is any divisor of A, then

l(M) /(blM-1) + n(M) r(So).
COROLLARY 4.1. All canonical divisors have degree

-2r(S0) n(N(b) -1) -n(H’), H’e 2.

Proof. That they all have the same degree n(N(b)-l) follows from the
construction of them in the preceding paragraphs and the fact that K-elements
have degree 0 in R. We obtain the corollary by putting M H, H e 2, in
the theorem.
We can also derive as a corollary the generalization of Riemann’s theorem

in the special case A So.

COnOLLARY 4.2. If M is a divisor of So with degree n(M) > 2 ( So), then

l(M) n(M) ( So)

Proof. We first notice that for any divisor M, c M A implies n(Nc) >=
-n(M). Therefore, n(M) < 0 implies l(M) 0. Now if our given M
is of the form a-lHb, then we see, from M’ b-lb-lHa, that n(M’)
n(Nb)--n(M) < O. Therefore, l(M’) O.

Remar] 4.1. Theorem 4.1 is usually stated in terms of the functions l*
and n*, where l*(M) l(M-) and n*(M) n(M-1) for divisors M of .
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The theorem then reads

l*(M) l*(b M-I) q- n*(M) r2(So).
Of course, we could have simply reasserted Theorem 3.4 for V A, but

the advantages of restricting our divisors are important: The invariant (A
r(S0) arises, and the existence of inverse and canonical divisors allows a
nice expression for the annihilator.

Before comparing this theorem with the Riemann-Roch theorem of Witt
[16], we shall need to discuss the different, which will lead to some other points
of interest. Accordingly we shall defer the comparison to the next section,
where we shall also state a generalization of the theorem of Weil [15].

The different. Define the subspace M of as

M la; a , T(aI) c o},

where T is the reduced trace from S to R obtained by extending that from
r X rSo to K. M is obviously an open two-sided/-module and is contained
in b-I for a regular b R satisfying bo c kernel x; therefore M is linearly
compact. By the proof of Lemma 4.1, M has the form M D-1I for some
regular element D of N of the form (4.3); by Lemma 1.2, each P-component
of D in the form (4.3) has ap 0p. The divisor DI is called the different of
I/K. If C-1IC is any maximal open linearly compact subring of N, then its
different (over K) is defined analogously and turns out to be C-1DIC. The
different Dx of K/F(x) is defined1 similarly by the relation

{a; a R, TK/(x)(ao) c 00} D-lo,
where o0 is the ring of integers of R0. The different D* of I/F(x) is defined
similarly, and the result that D*I DDx I follows immediately from the
factorability of the reduced trace.
Now let x be any admissible character of R, and let do and bI be the corre-

sponding canonical divisors of R and I, respectively. We shall prove

LEMMA 4.4. bI DdI.

Proof. Taking M as in (4.6), we have (dD)-lI d-lM and xT(d-IMI)
x(d-IT(MI)) x(d-lo) 0. Therefore bI c dDI. Since T is open,
T(D-1I) is a divisor of R, which must then be o. Therefore T(d-ID-1I) 0’.
:Now x:T(b-l/) 0 implies T(b-lI) c 0’, or T(db-lI) o. Thus db-I
D-II, or bID dDI, Q.E.D.
We can apply this result to the separable extension K/F(x), achieving the

result that do Dx do o, where do o0 is the canonical divisor of F(x) correspond-
ing to the admissible character x0 of R0, and do is the canonical divisor of R
arising from x x0 To, To being the reduced trace from K to F(x). Further-
more, we can easily construct a x0 such that do u-2, where u is the denomina-
tor of x. (To carry out this construction, one needs the facts that R0

Here we need to assume, with Witt, that K/F(x) is separable.
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F(x) + uo0, a topological direct sum, and that 00 n F(x) has F-dimension
equal to the genus of F(x), which is 0, [9, 10].) Thus we have proved rather
simply the well-known result [6, p. 374] that d Dx/u2, i.e., that (Dx/u)o
is a canonical divisor of R. From this result it follows that (D*/u)I is
canonical divisor for I.
Thus there is an admissible character of R such that if M C-1ICo is

divisor of N, then the annihilator of M is the space CI(D*/u)-IlC Mt.
We have proved

LEMMA 4.5. There exists an admissible character xl of R such that if M is a
divisor of with M H, then the annihilator M’ corresponding to xl is that
divisor satisfying

(.7) (MM’)-I u-(H),
where 6(H) is the different of HIE(x).

Since the various differents of /K are determined up to conjugation, and
multiplication by units, and since De S for each P, the integer tie
is an invariant of fi-e in fact, tie depends only on S0, so that we may as well
take A S0 when investigating this differential exponent
We do so now; our first result will be a relation between the reduced traces

f2
Te and Tie of Se/Kp and e/e, respectively. Let [Se’K,] me
epfe;thusif[S:K] mz,thenm: metre. For eacha0elet a* denote
the residue class of a modulo

LnMMh 4.6. For each P ), the reduced traces satisfy

Te(a)* ae Tie(a*), a

where (e ee me/m is a positive rational integer.

Proof. The matrix of the regular representation of a generic element of
Se (with respect to the integral basis of Lemma 1.2), on reduction modulo
e breaks naturally into submatrices of size fe X fe below the diagonal block
these matrices are zero; the diagonal block is an ee-fold repetition of the
matrix of the regular representation of a generic element of e/e There-
fore the characteristic polynomial c(X) of Se/Ke is related to that, c(X*), of
e/e by the formula

(4.s) c(x)* c(X*).
Let f(X) be the minimal polynomial of Se/Ke and fl(X*) that of

We know that in general [1, p. 17] the characteristic polynomial of a skew-
field is a power of the minimal polynomial, and that, when the center is
separable over the base field, this power is the index of the skew-field [1, p.
123]. Therefore (4.8) becomes

(4.9) f(X) *m" f(X*) ",ee,
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where me _>= 1 is the index of (R)e whenever the center of e is separable over
e But fl(X*) is irreducible over e() (the being indeterminates used
to make the generic element); therefore f* is a power of fl" There is a
rational integer ce such that f(X)* f(X*) e, which gives our desired
formula. It follows from (4.9) that oe ee me/m.

Using Lemma 4.6, the formula of which is analogous to the one for fields,
in which ee replaces our ae, one proves easily, exactly as in [17, p. 70],

PROPOSITION 4.2. The differential exponent e is at least ee
P ), and e ee 1 if and only if both (i) and (ii) hold:

(i) The center of e is separable over e
(ii) The characteristic of F does not divide ae

1 for all

As we shall see in a moment, the condition (i) implies condition (ii) in the
noncommutative case, whereas (ii) is necessary for field extensions of K.
But the relative simplicity of the proof here and the interesting corollaries
which obtain at this point may justify the redundancy.

COROLLARY 4.3. ee 1 for almost all P J.

Proof. 6e 0 for almost all P, and te _-> ee 1 => 0.

COROLLARY 4.4 If the constant field F has characteristic zero or is finite,
andthence ee l for all P e. When F is finite, then ee fe me,

ae 1, both for all P /, so that Ke splits So for almost all P.

Proof. The result in characteristic zero is immediate. When F is finite,
then Se is a finite skew-field and is therefore a field, by a famous theorem of
Wedderburn. Then me 1for all P, so that ae ee/m’. But
in general, by Lemma 1.3; therefore ee me, or ae 1 for all P. From

12ee fe me follows now ee fe me
We now prove that the assumption on ap in the proposition is unnecessary.

The proof is tken essentially from [12, p. 148].

THEOREM 4.2. The center of the residue-class skew-field e is separable over

e if and only if the differential exponent 5e is ee 1.

Proof. We need only prove that separability implies e ee 1. It
suffices to prove the existence of some b 0e such that Te(b) is a unit in
To this end let K be a separable, unramified, maximal subfield of
with separable residue-class field over e [18, p. 12], [12, p. 148]. Then
our formula of Lemma 4.6 for the unramified field extension K1/Ke becomes
T2(a)* T2(a*), a 0e n K1, where T is the trace of K1/Ke and T21 that
of l/e. The separability of the last named extension implies that for
some b e 9e n K1 T2(b) is a unit of Ke. But Te, when restricted to the
maximal subfield K, equals T2, Q.E.D.

Note. The existence of K can be proved directly as follows: Let L
be a separable maximal subfield of (R)e over the center Ce of (R)e [1, p. 57].
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Then L1 e(a*) for some a 0p, by the separability of Cp/e.
now Ke(a), which has L1 as residue-class field. Let

f(X) X --k al Xq-1 + + aq

Consider

be a polynomial over e such that f(X)* is the (irreducible) minimal poly-
nomial of a* over e. Then f(X) is irreducible over Ke. By Hensel’s
lemma, f(X) has a zero b in Ke(a) n toy such that b* a*. Therefore
Kp(b) has p(a*) as residue-class field, which implies that Ke(b)/Ke is
unramified, being of degree equal to that of e(a*)/e. Now we prove that
Ke(b) is a maximal subfield of Se and therefore that Ke(a) Ke(b). If
Ke(b) were not maximal, then its commutator algebra K’ in Se would not
be a field [1, p. 53]. Then we would have f(K’/Ke(b)) > 1, by Lemma 1.3.
This would imply the existence of a proper field extension of L1, in contra-
diction to the maximality of L1.

The Riemann-Hurwitzformula. We shall give the analogue of the Riemann-
Hurwitz (? or Zeuthen-Halphen) formula relating, in our case, $(S0) to the
genus g of K. If bto is a canonical divisor of 0, we know that n(N(b))
2(S0) n(N(D)) -+- n(N(d)), the latter from Lemma 4.4. Since d R,
N(d) dm2, where [S0"K] m2. If De (tii ae), ae Sp, the matrix being
ofsizete X te ,then, atP, N(D) Ne/e(ae). ThusreN(D)
where tip is the differential exponent. Our above equation now becomes

2(z0) n:(2 2) + +,fn.
Since m e ee re, we can put this as

THORE 4.3. Let So be a skew-field with finite ran]c m over the center K.
Then the invariants ( So) and (K) g 1 are related by the formula

2(S0) m2(2g- 2 + e
where e is the differential exponent at P, discussed in the preceding section.

The inariant (So). An interesting question concerning $(S0) is whether
the two terms defining it are themselves invariants. That is, does l(H)
equal l(H) for all H1, H 2(S0)? The equivalent question, of course, is
whether the same holds with H’, H’ in place of H, H. Some partial results
in the affirmative are contained in the following two lemmas. They are
phrased in the matrix terminology.

LEMMA 4.7. Let So be a skew-field extension of K with no "constant part";
that is, assume that F is (relatively) algebraically closed in So. Then b- tob 1

for all regular b o.
Proof. Let aeS0and ab-tob. We wish to prove aeF. The charac-

teristic polynomial c(X; u) of So/K is the same as that of
When specialized to the element a, this polynomial has coefficients in K. As
an element of b(e X t t0y)by, a has the same characteristic polynomial
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as be ab-le e X te Oe has; this one has coefficients in oe, however, since,
with respect to the usual integral basis {witi.(matrix units)}, be ab- has
coordinates in oe. Therefore, the coefficients of c(X; a) are in K n F.
By assumption, a e F, Q.E.D.

COnOLLIY (of the proof). If ul, ..., u is a basis of So/K and
u zl ul - - x u a generic element of So, then the characteristic poly-
nomial of So/K has coecients in F[x xn].

Our next result shows that in some skew-field extensions obtained entirely
by extensions of the constant field, the quantities in question are also invari-
ants.

LEMMA 4.8. Let K be a function field of genus O, and let So be a normal slcew-
field offinite rantc m over K. If the different D (9 of o satisfies n(N(D) < 2m2,
then l( a- (9’a) 0 for all regular a e o.

Proof. The relation y e So n a-(9’a implies N(y)eN(b-1)o, where
(9’ b-1(9. Using Lemma 4.4, we find that N(b-) d-’N(D-). Now
n(N(b-) 2m n(N(D)) > 0 under our assumptions. Therefore y 0.

This condition holds, for example, in the case K F(x), F the field of real
numbers, So K(i, j, It), where i j /c -1, ij tc, j i, and
]ci j. Here all tb 0. It may be of interest to observe that when P has
degree ne 1, then fe 4, ee 1 (hence 3e 0), and Se Ke(i, j,
And whenne 2, thence =fe 1 (againe 0),andSe Ke. Thus
when F is infinite, it can happen that splitting occurs at infinitely many P,
and nonsplitting occurs at infinitely many P.

5. The theorems of Witt and Weil

In comparing Theorem 4.1 with the Riemann-Roeh theorem of Witt
[16, p. 22] we shall first show that Witt’s class of divisors is the same as ours.
Witt defines divisors as follows" For a separating element x of K, first con-
sider an ideal M0 in A with respect to Fix]. A finite prime divisor P being
one for which e(x) >_- 0, consider the closure Me of M0 in Ae for finite P.
(Me is shown to be the P-component of one of our divisors in Theorem 2.4.)
At the (finite number of) nonfinite P g2, introduce "components" formally
in any possible way. These "components" and the Me define a Witt-divisor.
Although Witt does not explicitly define these "components", they can only
be normal ideals (i.e., those belonging to maximal orders) in Ae with respect
to oe, P nonfinite; otherwise his Satz 3, which says that his class of divisors is
independent of x, would be false. But our Lemmas 2.4 and 4.1 (local form),
plus the obvious fact that a local ideal is open and linearly compact, show
that such ideals are P-components of our divisors. Therefore, the set of
P-components Me, one for each P e ), defining a Witt-divisor M, is precisely
the set of P-components of one of our divisors, and conversely.
Witt defines the degree of a divisor M as the degree in R0 of No(M), where
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No is the norm from A to R0. Putting aside the question whether at P this
norm maps local maximal orders onto 0Q, let us take the Witt-degree of M as
the degree in R0 of No(M)o. If a is a regular element of R, then the degree
n(a) of a in R is the degree no(N.(a)) of the norm (from R to R0) of a.
Therefore, by our definition in 4 and our formula (4.2), the Witt-degree of
M, which we shall denote as n*(M), is the negative of our degree n(M).
Witt defines the quantity {M}, for a divisor M, as/(M-I), or l*(M), in the

notation of our Remark 4.1.
The "complementary" divisor M* to the divisor M-1 is defined by Witt11 as

that satisfying M*M-1 u-2(M), in the notation of (4.7). By Lemma
4.5, M*-1 is what we call Mt.
Witt defines a genus G of A by the formula 2G 2 n*(u-2(M)). By

Corollary 4.1, n*(u-5(M)) 2r(S0).
Finally, Witt states his Riemann-Roch theorem as

l*(M) l*(M*) + n*(M) G + 1,

which agrees with our (4.5) when we determine the b there by means of the
admissible character xl of Lemma 4.5.
We shall now sketch the proof of a theorem which includes that of Well

[1_5, Ch. I, 3] (with trivial signature). Let V r X r’So be the space of all
matrices of r rows and r’ columns over So, a skew-field of finite rank over the
center K. As A and B we take r X rSo and r’ X r’So, the actions being the
usual matrix multiplication. Let T denote the reduced trace from So to K
and Tr the ordinary matrix trace. Then for V’ we take r X rSo, and we
set (v,V’)o TTr(vv’),veV, v’eV’. Our dual pairing of VandV’toFis
then [, ’] xT Tr()’), for V, ’ V’.
The numbers 01 and p. of Lemma 3.3 are r’/r and r/r’, respectively.
Letting H denote a member of (S0), we take for V-divisors subspaces of

ly of the form M a-l(r }( r’H)b, a regular in fi, b regular in (V’-divisors
have the form b-(r X rH)a). Our annihilator M’ is b-l(r X rb-lH)a.
The degree (3.5) of a divisor M is invariant with respect to all divisors of the
form c-l(r X r’H)c, c regular in 0. We define the degree of M as

,(M, r X r’H) n(N(a)r’/rN’(b)"/r’),
where N is the norm from fi_ to R and N that from/ to R.
The quantity l(c-l(r X r’H’)c) l(c-l(r X r’H)c) is the same for all

regular c 0 it equals rr’(So).
Our generalization of the Riemann-Roch theorem to V is

THEOREM 5.1. If M is a V-divisor, then

l(M) l(M’) + n(M) rr’(So).
11 The different appearing in Witt’s definition is misprinted as that of K/F(x) instead

of M/F (x).
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This theorem agrees with that of Weil when his signature is identically 1
if we take So to be K and F the field of complex numbers. To verify this
agreement, one uses the one-one correspondence between canonical divisors
and differentials of K (see [9]).
We could derive Theorem 4.1 from Theorem 5.1 if we used the isomorphism

of Theorem 2.3.
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