a Generalization of the riemann-roch theorem

BY
H. F. Mattison

1. Introduction

In this paper ${ }^{1}$ a Riemann-Roch theorem is proved for a module, over a function field K, which is under the action of simple algebras over K. Specialization of this module leads on one hand to the Riemann-Roch theorem of E. Witt [16] for simple algebras over K, and on the other hand to an extension of A. Weil's Riemann-Roch theorem for matrices over function fields [15], in the case that his "signature" is taken to be identically 1 . In each case the constant field is allowed to be arbitrary.

There is also a brief account (in §2), partly new in method, of the arithmetic of simple algebras over K. In §3 our generalization of the Riemann-Roch theorem is proved for a certain module over the function field K. In $\S 4$ this module is taken to be a simple algebra A over K; a restriction of the definition of divisor then leads to a suitably specific form of the Riemann-Roch theorem for A. Related questions-the different, the Riemann-Hurwitz formula, and a genus-like invariant of A-are then discussed. Finally, in $\S 5$, it is shown that our Riemann-Roch theorem for A implies that of Witt [16]. The paper concludes with a theorem extending the generalized Riemann-Roch theorem of Weil [15] (when his "signature" is trivial) for matrices over function fields.

Part of the origin of this kind of investigation is in the papers of Hecke [7, 8], Chevalley and Weil [3], and Weil [14], which are concerned with the problem of decomposing into its irreducible parts a certain natural representation of $G / H(N)$, where G is the modular group and $H(N)$ the subgroup of matrices congruent $(\bmod N)$ to the identity, as linear transformations of the space of "cusp forms" of type $(2, N)$. Since there is a natural isomorphism between this space of cusp forms and the differentials of the first kind of the associated function field $K_{H(N)}$, the problem can be transformed to one in terms of matrices over $K_{H(N)}$.

The methods used here are those of linear topology and duality, first applied to this kind of problem by K. Iwasawa in [10] and particularly [9]. The proofs in §3 are direct generalizations of the proofs of Iwasawa for the corresponding theorems about K. Indeed, much of this paper may be thought of as the tensor product of the appropriate spaces over K with [9].

I wish to thank Professor Iwasawa for suggesting to me the problems dealt with here. As I have indicated, his works [9] and [10] made these problems

[^0]easy to solve. I have also profited from several discussions with Professor Iwasawa and with my friend Peter Schweitzer, from whom I have received valuable advice and encouragement. Finally, I wish to thank the referee for several very helpful suggestions.

For the preliminaries, let K denote a function field ${ }^{2}$ with field of constants F. Let \mathfrak{M} denote the set of prime divisors of K, ν_{P} the normalized exponential valuation belonging to $P \in \mathfrak{M}, K_{P}$ the completion of K with respect to P, $\mathfrak{o}_{P} \subset K_{P}$ the ring of local integers, \mathfrak{p}_{P} the local prime ideal, $\Omega_{P}=\mathfrak{o}_{P} / \mathfrak{p}_{P}$ the residue-class-field, and $n_{P}=\left[\Omega_{P}: F\right]$ the local degree.

The ring R of valuation vectors of K is defined as the weak direct sum of the K_{P} in the sense that for almost all P, the component a_{P} of the valuation vector a must belong to \mathfrak{o}_{P}. In R we define the subring \mathfrak{o} as the direct sum of the \mathfrak{o}_{P}. We then take the set of all $a \mathfrak{0}$, where a runs through the regular elements of R, as a fundamental system of neighborhoods of 0 in R, defining thereby a linear topology ${ }^{3}$ on R, under which R even becomes a topological ring. $\quad K$ is a discrete subfield of R; and there exists an open linearly compact subspace W such that $R=K+W$, a topological direct sum (cf. [9, 10]). A character of R is a continuous, F-linear mapping of R into F, F having the discrete topology. The space $X(R)$ of all such characters, with the (linearly) compact-open topology, is a linearly topologized vector space over F. A nontrivial character of R which vanishes on K will be called an admissible character of R. If χ is such a character, then a fundamental result of $[9,10]$ is that R is self-dual under the pairing $(a, b)=\chi(a b), a, b \in R$.

We shall so often need the following result from the theory of linear topologies that we state it here as

Lemma 1.1. A linearly topologized space is finite-dimensional if and only if it is linearly compact and discrete.

Let S_{0} be a skew-field of finite rank over the center K. For each prime divisor P of K, define $S_{0 P}$ to be the tensor product $K_{P} \otimes S_{0}$ over K. Then, although $S_{0 P}$ is not always a skew-field, it is a normal simple algebra with K_{P} as center. ${ }^{4} \quad$ As such, $S_{0 P}$ is isomorphic to the full $\mu_{P} \times \mu_{P}$ matrix algebra over some skew-field S_{P} with K_{P} as center; and S_{P} is uniquely determined up to a K_{P}-isomorphism.

The valuation ν_{P} of K_{P} can be extended uniquely to S_{P}, via, for instance, the norm of the regular representation of S_{P} / K_{P}. We denote by v_{P} the

[^1]uniquely determined normalized exponential valuation of S_{P} which results from this extension. S_{P} is complete with respect to v_{P}. We have the result that $\left[S_{P}: K_{P}\right]=e_{P} f_{P}$, where e_{P} is the local ramification index and f_{P} the local rank of S_{P} / K_{P}. We define \mathcal{O}_{P} to be the ring of elements in S_{P} with nonnegative valuation, \mathfrak{B}_{P} to be the maximal ideal of non-units in \mathfrak{O}_{P}, and $\mathfrak{S}_{P}=$ $\mathcal{O}_{P} / \Re_{P}$, the local skew-field at $P . \mathfrak{S}_{P}$ is of finite rank f_{P} over Ω_{P}.

It will also be useful to recall the following well-known result from the theory of valuations: Let $w_{1}, \cdots, w_{f} \in \mathcal{O}_{P}$ be representatives of a basis of \Im_{P} / Ω_{P}, and let $t \in S_{P}$ be a prime element for P, i.e., $v_{P}(t)=1$. Then we have

Lemma 1.2. ${ }^{5}$ The $e_{P} f_{P}$ elements $w_{i} t^{j}$, with $1 \leqq i \leqq f_{P}$ and $0 \leqq j \leqq e_{P}-1$, form a basis of S_{P} / K_{P}; and if $a \in S_{P}$ is written $a=\sum a_{i j} w_{i} t^{j}$, with $a_{i j} \in K_{P}$, then, for every integer $m, v_{P}(a) \geqq m e_{P}$ if and only if all $\nu_{P}\left(a_{i j}\right) \geqq m$.

Lemma 1.3. If the skew-field S_{P} has rank $m_{P}^{\prime 2}$ over the center K_{P}, then $e_{P} \mid m_{P}^{\prime}$ and $m_{P}^{\prime} \mid f_{P},[18]$.

Proof. If t is a prime element for P, then $K_{P}(t) / K_{P}$ has ramification index e_{P}, which divides its degree, which in turn divides m_{P}^{\prime} [1, p. 53]. Since $e_{P} \mid m_{P}^{\prime}$, we have $m_{P}^{\prime 2}=e_{P} f_{P}$ dividing $m_{P}^{\prime} f_{P}$, or $m_{P}^{\prime} \mid f_{P}$.

Let A be an algebra over the center k. The reduced trace T of A / k is always nontrivial if A is semisimple (in fact, the discriminant is nonzero). ${ }^{6}$ In particular, T is a k-linear mapping of A to k such that $T(a b)=T(b a)$ for all $a, b \in A$.

2. The arithmetic of simple algebras over function fields

In this section we present a brief account of the maximal orders ${ }^{7}$ and ideals of a normal simple algebra A over K. The results are known (cf. [5] and [12]), but some of the present proofs are simpler than the older ones.

We first define the ring \widetilde{A} of valuation vectors of A as the tensor product $\tilde{A}=R \otimes A$ of R and A over K. If u_{1}, \cdots, u_{n} is a basis of A / K, then $\widetilde{A}=$ $R \otimes u_{1}+\cdots+R \otimes u_{n}$; thus we may give \widetilde{A} the linear topology of a direct sum of copies of R. This topology makes \widetilde{A} a topological ring and is independent of the basis of A / K chosen above.

Let x be an element of K not in F. Call a prime divisor P of K finite if $\nu_{P}(x) \geqq 0$. An order of A relative to $F[x]$ is a subring of A, finitely generated over $F[x]$, containing $F[x]$, and spanning $A / F(x)$. In this section Q will always denote that prime divisor of $F(x)$ obtained by projecting to $F(x)$ that $P \in \mathfrak{M}$ which is mentioned in the same context as $Q . \quad R_{0}$ is defined as the ring of valuation vectors of $F(x), \mathfrak{o}_{0}$ the ring of integers of R_{0}, and \mathfrak{o}_{Q} the local integers of the completion $F(x)_{Q}$. One of the basic results of the

[^2]classical theory is that R is topologically isomorphic to the tensor product $R_{0} \otimes K$ over $F(x)$, the latter having the direct-sum topology; we write ${ }^{8}$
\[

$$
\begin{equation*}
R=R_{0} \otimes_{F(x)} K \tag{2.1}
\end{equation*}
$$

\]

We now prove, letting \tilde{A}_{P} denote $K_{P} \otimes A$, the P-component of \tilde{A},
Theorem 2.1. The maximal orders of \tilde{A}_{P} relative to \mathfrak{o}_{P} are the same as those relative to o_{Q} and consist of all the maximal open linearly compact subrings of \tilde{A}_{P}.

Proof. Let L be a maximal open linearly compact subring of \widetilde{A}_{P}. Then $L+\mathfrak{o}_{P}+\mathfrak{o}_{P} L$ is an open linearly compact subring of \widetilde{A}_{P}, so that $L \supset \mathfrak{o}_{Q}$. L spans $\widetilde{A}_{P} / K_{P}$ since it is open, and L is finitely generated over \mathfrak{o}_{P} by Lemma 1.1.

Conversely, if E is a maximal order of \tilde{A}_{P} for o_{P}, then E is trivially open and is linearly compact as a finitely generated space over o_{P}. If $L \supset E$ is an open linearly compact subring, then by the previous argument L is an order of \tilde{A}_{P}, since we used the maximality only to prove $L \supset \mathfrak{o}_{P}$. Therefore $L=E$, Q.E.D.

We now investigate the relation between the orders of $A / F(x)$ and those of $\widetilde{A}_{P} / F(x)_{Q}$. We state but do not prove

Lemma 2.1. If J is an order of A relative to $F[x]$ and P a finite prime, then the closure L of J in \tilde{A}_{P} is an open linearly compact subring of \widetilde{A}_{P} containing \mathfrak{D}_{Q}.

Lemma 2.2. If J is a maximal order of A relative to $F[x]$ and P a finite prime, then the closure L of J in \widetilde{A}_{P} is a maximal order of \tilde{A}_{P}.

Proof. By the previous lemma, we know that L is an order of \tilde{A}_{P}. To prove L maximal, let L^{\prime} be an order of \widetilde{A}_{P} containing L. Following [5] and [12], we define J^{\prime} as the set of all $a \in A \cap L^{\prime}$ such that for some integer α, $p(x)^{\alpha} a \epsilon J$, where $p(x)$ is the irreducible polynomial from $F[x]$ giving rise to the prime divisor Q. Notice that J^{\prime} is a subring of A containing J and hence spanning $A / F(x)$. Also, for some integer $\beta>0$, we have $J^{\prime} \subset p(x)^{-\beta} J$, since J^{\prime} is contained in the linearly compact subspace L^{\prime}; thus J^{\prime} is finitely generated over $F[x]$ as a submodule of $p(x)^{-\beta} J$. Therefore J^{\prime} is an order of A; since J is maximal, $J^{\prime}=J$.

Now suppose there is an element a in L^{\prime} not in L. Letting u_{1}, \cdots, u_{m} be a basis of $A / F(x)$, we write $a=\sum a_{i} u_{i}, a_{i} \in F(x)_{Q}$. We can find elements $b_{i} \in F(x)$ close enough to the a_{i} so that $b=\sum b_{i} u_{i}$ is also in L^{\prime} but not in L, since L is closed and L^{\prime} is open. This b is in A. There is a $g \in F[x]$ such that $g \cdot b \in J$, and we may factor g as $g=p(x)^{\alpha} h$, where $h \in F(x)$ is prime to $p(x)$. Then $h b \in L^{\prime}$; and, since h is a unit in \mathfrak{o}_{Q} and L is an \mathfrak{o}_{Q}-module,

[^3]$h^{-1} L \subset L$, which implies $h b \notin L . \quad$ But $h b$ is in $J^{\prime}=J \subset L$, a contradiction. Therefore $L^{\prime}=L$, Q.E.D.

Lemma 2.3. Let u_{1}, \cdots, u_{m} be any basis of $A / F(x)$ and define, for each $P \in \mathfrak{M}, E_{P}=\mathfrak{o}_{Q} u_{1}+\cdots+\mathfrak{o}_{Q} u_{m}$. Then for almost all P, E_{P} is a maximal order of \widetilde{A}_{P} and equals $\mathfrak{o}_{P} u_{1}+\cdots+\mathfrak{o}_{P} u_{m}$.

Proof. Let J be any maximal order of A relative to $F[x], J_{P}$ the closure of J in \widetilde{A}_{P}. By Lemma 2.2, J_{P} is a maximal order of \widetilde{A}_{P} for almost all P. Let $J=F[x] b_{1}+\cdots+F[x] b_{n}$ for some $b_{1}, \cdots, b_{n} \in A$, and let each $b_{i}=$ $\sum_{j} c_{i j} u_{j}$, where $c_{i j} \in F(x)$. Then the matrix ($c_{i j}$) has no column consisting entirely of zeros. Since $J_{P}=\mathfrak{o}_{Q} b_{1}+\cdots+\mathfrak{p}_{Q} b_{n}$, it follows that $J_{P}=E_{P}$ for almost all P, Q.E.D.

Theorem 2.2. For each finite prime P, let L_{P} be a maximal order of \widetilde{A}_{P} such that almost all $L_{P}=\mathfrak{o}_{P} u_{1}+\cdots+\mathfrak{o}_{P} u_{m}$, where the u 's form a basis of $A / F(x)$. Let J denote the intersection of all $A \cap L_{P}$. Then J is a maximal order of A relative to $F[x]$.

Proof. Using the topological properties established up to now, one first proves that J is an order of A. Then Lemma 2.2 implies that J is a maximal order. We omit the details.

In order to clarify later parts of this paper, and to make a convenience rigorous, we now discuss isomorphisms between \widetilde{A} and the matrix ring arising naturally from \widetilde{A}. That is, each \widetilde{A}_{P} is a normal simple algebra over K_{P} and is therefore algebraically isomorphic to the full matrix algebra $r_{P} \times r_{P} S_{P}$ over some skew-field S_{P} with K_{P} as center. If A is isomorphic to the full matrix algebra $r \times r S_{0}$ over the skew-field S_{0}, then $K_{P} \otimes S_{0} \cong \mu_{P} \times \mu_{P} S_{P}$ for some integer μ_{P}, so that $r_{P}=r \mu_{P}$. We define \bar{S}_{P} to be $r_{P} \times r_{P} S_{P}$ and \bar{S} to be the weak direct sum

$$
\bar{S}=\sum_{P \in \mathfrak{M}}^{\prime} \bar{S}_{P}
$$

in the sense that each matrix in \bar{S} must have almost all its P-components taken from $r_{P} \times r_{P} \mathcal{O}_{P}$, in the notation of $\S 1 . \bar{S}$ can be given two topologies, one in which a fundamental system of neighborhoods of 0 consists of the subspaces of the form $X I$, where X is a regular element of \bar{S} and I is the direct sum $\sum r_{P} \times r_{P} \mathcal{O}_{P}$, another which the direct-sum topology of each \bar{S}_{P} gives rise to; that these topologies are actually the same is a consequence of Lemma 1.2.

Let us agree to denote $r_{P} \times r_{P} \mathfrak{O}_{P}$ by I_{P} in what follows. An element U of \bar{S} (or of \bar{S}_{P}) is said to be unitary if it is a regular element of \bar{S} (or of \bar{S}_{P}) such that both U and U^{-1} are in I (or I_{P}). We shall need the decomposition [13, p. 107] of a regular matrix $C \in \bar{S}_{P}$ as

$$
\begin{equation*}
C=U\left(\delta_{i j} t^{\epsilon_{i}}\right) V \tag{2.2}
\end{equation*}
$$

where U and V are unitary in $\bar{S}_{P}, \delta_{i j}$ is the Kronecker delta, t is a prime element for P, and the e_{i} are rational integers.

We now have
Lemma 2.4. A maximal open linearly compact subring of \bar{S}_{P} is always of the form $C^{-1} I_{P} C$, where C is a regular element of \bar{S}_{P}.

For a proof, see Hasse, [5, pp. 519-520].
This lemma enables one to prove rather easily
Theorem 2.3. There is a topological K-isomorphism of \tilde{A} onto \bar{S}. Any topological automorphism of \bar{S} onto \bar{S} transforms almost all I_{P} onto themselves.

Now let J_{1} and J_{2} be maximal orders of A relative to $F[x]$. Let M be a left-ideal for J_{1} and a right-ideal for J_{2}. Let M_{P} denote the closure of M in \widetilde{A}_{P}, and similarly for J_{1}^{P}, J_{2}^{P}. For each finite P let L_{P} be a maximal order of \tilde{A}_{P} such that almost all L_{P} are equal to $\mathfrak{o}_{P} u_{1}+\cdots+\mathfrak{o}_{P} u_{n}=E_{P}$, for a fixed basis u_{1}, \cdots, u_{n} of A / K.

Theorem 2.4. For each finite P, M_{P} is an open linearly compact left-module for J_{1}^{P} and right-module for J_{2}^{P}; almost all $M_{P}=E_{P}$. Conversely, the intersection with A of such M_{P} 's is an ideal of A relative to $F[x]$; in particular, our original ideal M is the intersection of its components M_{P}. Each M_{P} has the form $C_{P}^{-1} L_{P} C_{P}^{\prime}$, where C_{P} and C_{P}^{\prime} are regular elements of \tilde{A}_{P} such that almost all $C_{P}^{-1} L_{P} C_{P}^{\prime}=L_{P}=E_{P}$.

We omit the proof of this theorem, as well as that of the following
Theorem 2.5. The maximal open linearly compact subrings of \tilde{A} are all conjugate to each other in \tilde{A}. They are the direct sums of their P-components.

3. A general Riemann-Roch theorem

Let V be a finite-dimensional vector space over the function field K. Let V^{\prime} denote the dual space to V. As spaces of valuation vectors of V and V^{\prime}, we define $\tilde{V}=R \otimes_{K} V$ and $\tilde{V}^{\prime}=R \otimes_{K} V^{\prime}$. The natural pairing $\left\langle v, v^{\prime}\right\rangle_{0}=$ $v^{\prime}(v)$ of V and V^{\prime} to K can be extended uniquely by continuity to a pairing of \tilde{V} and \tilde{V}^{\prime} to R : $\left\langle\tilde{v}, \tilde{v}^{\prime}\right\rangle$ is a continuous, R-bilinear map of $\tilde{V} \times \tilde{V}^{\prime}$ into R. Letting χ be an admissible character of R, we define

$$
\begin{equation*}
\left[v, v^{\prime}\right]=\chi\left(\left\langle v, v^{\prime}\right\rangle\right), \quad v \in \tilde{V}, \quad v^{\prime} \in \tilde{V}^{\prime} \tag{3.1}
\end{equation*}
$$

and obtain thereby a continuous F-bilinear map of $\tilde{V} \times \tilde{V}^{\prime}$ into F.
Theorem 3.1. The mapping $f: \tilde{V} \rightarrow X\left(\tilde{V}^{\prime}\right)$ of \tilde{V} to the character space of \tilde{V}^{\prime} given by $f(\tilde{v})=[\tilde{v}, \quad]$ is a topological isomorphism onto; that is, the dual pairing (3.1) is topological. Under this pairing, the annihilator $A(V)$ of V is V^{\prime}.

Proof. For any basis $\left\{v_{i}\right\}$ of V / K, let $\left\{v_{i}^{\prime}\right\}$ be the dual basis of V^{\prime} / K. With respect to these (or any) bases, \tilde{V} and \tilde{V}^{\prime} are immediately seen to be paired as direct sums of copies of the self-dual space R (see §1). But [,] becomes this very pairing when expressed in terms of these bases. This ob-
servation also shows immediately that $A(V)=V^{\prime}$, since $A(K)=K$ under the pairing of R to itself mentioned in §1, Q.E.D.

If M is an open linearly compact subspace of \tilde{V}, then $M \cap V$ is finitedimensional over F, by Lemma 1.1. Thus we may define for such M

$$
l(M)=\operatorname{dim}_{F}(M \cap V)
$$

and similarly for such subspaces of \tilde{V}^{\prime}.
We introduce the unique function $\nu(, \quad)$ defined on ordered pairs of open linearly compact subspaces of \tilde{V} such that

$$
\begin{array}{ll}
\text { (i) } & \nu\left(M_{1}, M_{2}\right)+\nu\left(M_{2}, M_{3}\right)=\nu\left(M_{1}, M_{3}\right) \tag{3.2}\\
\text { (ii) } & \nu\left(M_{1}, M_{2}\right)=\operatorname{dim}_{F}\left(M_{1} / M_{2}\right) \quad \text { if } \quad M_{1} \supset M_{2} .
\end{array}
$$

The existence and uniqueness of this ν-function are quite easy to prove; ${ }^{9}$ and it follows that

$$
\begin{equation*}
\nu\left(M_{1}, M_{2}\right)=\nu_{1}\left(\pi M_{1}, \pi M_{2}\right)+\nu_{2}\left(M_{1} \cap V, M_{2} \cap V\right) \tag{3.3}
\end{equation*}
$$

where ν_{1} and ν_{2} are the analogous ν-functions for the spaces \widetilde{V} / V and V, respectively, and π is the natural map from \tilde{V} onto \tilde{V} / V.

Now let M^{\prime} be the annihilator with respect to the dual pairing (3.1) of the divisor M of $\tilde{V} . \quad M^{\prime}$ is open in \tilde{V}^{\prime} by the continuity of [,] and is linearly compact as the dual space to the discrete space \tilde{V} / M. By Theorem 3.1, the annihilator of $M \cap V$ is the (closed) subspace $M^{\prime}+V^{\prime}$ of \tilde{V}^{\prime}; therefore

$$
\begin{equation*}
l(M)=\operatorname{dim}_{F}\left(\tilde{V}^{\prime} /\left(M^{\prime}+V^{\prime}\right)\right) \tag{3.4}
\end{equation*}
$$

since $\tilde{V}^{\prime} /\left(M^{\prime}+V^{\prime}\right)$ is dual to the finite-dimensional space $M \cap V$.
We shall now restate (3.3) in terms of l. We have

$$
\begin{aligned}
\nu_{1}\left(\pi M_{1}, \pi M_{2}\right) & =-\nu_{1}\left(\tilde{V} / V, \pi M_{1}\right)+\nu_{1}\left(\tilde{V} / V, \pi M_{2}\right) \\
& =-\operatorname{dim}_{F}\left(\tilde{V} /\left(M_{1}+V\right)\right)+\operatorname{dim}_{F}\left(\tilde{V} /\left(M_{2}+V\right)\right) \\
& =-l\left(M_{1}^{\prime}\right)+l\left(M_{2}^{\prime}\right)
\end{aligned}
$$

by (3.2) and (3.4). Also, $\nu_{2}(M \cap V, 0)=l(M)$, so that we may put (3.3) as

Theorem 3.2. For any two open linearly compact subspaces M_{1}, M_{2} of \tilde{V}, we have

$$
\nu\left(M_{1}, M_{2}\right)=l\left(M_{1}\right)-l\left(M_{1}^{\prime}\right)-\left(l\left(M_{2}\right)-l\left(M_{2}^{\prime}\right)\right)
$$

where M_{1}^{\prime} and M_{2}^{\prime} are the annihilators of M_{1} and M_{2}, respectively, with respect to the dual pairing (3.1).

Let A and B be simple algebras of finite rank over the center K. Assume now that V is a unitary left A-, right B-module. Then V^{\prime} is naturally a left B-, right A-module, and the pairing $\langle\quad, \quad\rangle_{0}$ satisfies $\left\langle a v b, v^{\prime}\right\rangle_{0}=\left\langle v, b v^{\prime} a\right\rangle_{0}$ for all $a \in A, b \in B, v \in V$, and $v^{\prime} \in V^{\prime}$.

[^4]There is a unique way to make \tilde{V} a unitary left $\tilde{A}-$, right \widetilde{B}-module (with the action denoted for the moment by a dot) such that

$$
\begin{array}{cr}
s \cdot v=v \cdot s=s \otimes v, & s \in R, \quad v \in V, \\
a \cdot v=a v, \quad v \cdot b=v b, & a \in A, \quad b \in B, \quad v \in V .
\end{array}
$$

The map of $\tilde{A} \times \tilde{V} \times \tilde{B}$ to \tilde{V} which sends ($\tilde{a}, \tilde{v}, \tilde{b}$) into $\tilde{a} \cdot \tilde{v} \cdot \tilde{b}$ is then continuous. The analogous result holds for \tilde{V}^{\prime}. Furthermore, there is a unique R-bilinear pairing \langle,$\rangle of \widetilde{V}$ and \widetilde{V}^{\prime} to R such that $\left\langle v, v^{\prime}\right\rangle=\left\langle v, v^{\prime}\right\rangle_{0}$ for $v \in V, v^{\prime} \in V^{\prime} .\langle, \quad\rangle$ is then a continuous map of $\tilde{V} \times \tilde{V}^{\prime}$ into R such that $\left\langle\tilde{a} \tilde{v} \tilde{b}, \tilde{v}^{\prime}\right\rangle=\left\langle\tilde{v}, \tilde{b} \tilde{v}^{\prime} \tilde{a}\right\rangle$ for $\tilde{a} \in \tilde{A}, \tilde{v} \in \tilde{V}$, etc. Finally, we have

Lemma 3.1. If A acts faithfully on V, then so does \widetilde{A}_{P} on \widetilde{V}_{P}.
Proof. The result follows immediately from the general structure theorem for such modules (see [2, p. 46]), which says that if A is K-isomorphic to the full matrix ring $r \times r S_{0}$ over the skew-field S_{0}, then V is K-isomorphic to $r \times r_{1} S_{0}$, for some r_{1}, and the action of A on V is given by the usual matrix multiplication. On tensoring with K_{P} we get the desired result.

We shall now prove a formula which, in some cases, allows us to compute $\nu\left(M_{1}, M_{2}\right)$. Let M_{2} be a given open linearly compact subspace of \widetilde{V}; suppose furthermore that M_{2} is an $\mathfrak{0}$-module, which implies in particular that it is the direct sum of its P-components. Then the same properties hold for the subspace $M_{1}=a^{-1} M_{2} b$, where a and b are regular elements of \widetilde{A} and \widetilde{B}, respectively. We shall compute $\nu\left(M_{1}, M_{2}\right)$.

First assume $M_{1} \supset M_{2}$. Then $\nu\left(M_{1}, M_{2}\right)=\operatorname{dim}_{F} M_{1} / M_{2}$, and it will suffice to compute the F-dimension ρ_{P} of the P-component $M_{1 P} / M_{2 P}$; for then $\nu\left(M_{1}, M_{2}\right)=\sum_{P} \rho_{P}$.

Lemma 3.2. Let the subspace M_{P} of \tilde{V}_{P} be an open, linearly compact $\mathfrak{o}_{P^{-}}$ module. Then there exists a basis $\left\{w_{j}\right\}$ of $\widetilde{V}_{P} / K_{P}$ such that $M_{P}=\sum \mathfrak{o}_{P} w_{j}$.

Proof. The lemma follows immediately from part 1 of [13, §108] when we observe that the openness of M_{P} implies that M_{P} contains a basis of $\widetilde{V}_{P} / K_{P}$.

We can now proceed to compute ρ_{P}, on the assumption that $M_{1 P}=$ $\left(a^{-1} M_{2} b\right)_{P} \supset M_{2 P}$. Let w_{1}, \cdots, w_{n} be the basis of $\widetilde{V}_{P} / K_{P}$ contained in $M_{2 P}$ described in Lemma 3.2. With respect to this basis, the operation at P of a^{-1} and b leads to a nonsingular $n \times n$ matrix $\left(\alpha_{i j}\right)$ over K_{P} as follows:

$$
a_{P}^{-1} w_{i} b_{P}=\sum_{j=1}^{n} \alpha_{i j} w_{j}, \quad a_{i j} \in K_{P}, \quad i=1, \cdots, n
$$

Then

$$
M_{1 P}=\sum_{i} \mathfrak{o}_{P}\left(a_{P}^{-1} w_{i} b_{P}\right)=\left\{\sum_{i, j} \mathfrak{a}_{i} \alpha_{i j} w_{j} ; \mathfrak{a}_{i} \in \mathfrak{o}_{P}\right\}
$$

If we express $M_{1 P}$ as a set of n-tuples, the coefficients with respect to the basis w_{1}, \cdots, w_{n}, we find

$$
M_{1 P}=\left(\mathfrak{o}_{P}, \cdots, \mathfrak{o}_{P}\right)\left(\alpha_{i j}\right)=\left(1 \times n \mathfrak{o}_{P}\right)\left(\alpha_{i j}\right)
$$

In the same way $M_{2 P}$ becomes simply $1 \times n 0_{P}$. Thus

$$
\rho_{P}=\operatorname{dim}_{F}\left(1 \times n \mathfrak{o}_{P}\right)\left(\alpha_{i j}\right) /\left(1 \times n \mathfrak{o}_{P}\right)
$$

In order to calculate ρ_{P}, we represent $\left(\alpha_{i j}\right)$ according to (2.2) as $\left(\alpha_{i j}\right)=$ $u\left(\delta_{i j} \tau^{e_{i}}\right) v$, where u and v are unitary $n \times n$ matrices over K_{P} and $\nu_{P}(\tau)=1$. Now since $\left(1 \times n \mathbf{o}_{P}\right) u=\left(1 \times n \mathfrak{o}_{P}\right)$, our above factor-space is $\left(1 \times n \mathfrak{o}_{P}\right)\left(\delta_{i j} \tau^{e_{i}}\right) v /\left(1 \times n \mathfrak{o}_{P}\right)$, which is isomorphic over F to $\left(1 \times n \mathfrak{o}_{P}\right)$.

$$
\left(\delta_{i j} \tau^{e_{i}}\right) /\left(1 \times n \mathfrak{o}_{P}\right)=\left(\mathfrak{p}^{e_{1}}, \cdots, \mathfrak{p}^{e_{n}}\right) /\left(\mathfrak{o}_{P}, \cdots, \mathfrak{o}_{P}\right) \cong \Omega_{P} \oplus \cdots \oplus \Omega_{P}
$$

with $-\left(e_{1}+\cdots+e_{n}\right)$ summands (the e_{i} being all nonpositive because of the assumption that $M_{1} \supset M_{2}$). Therefore the desired dimension ρ_{P} is $-n_{P}\left(e_{1}+\cdots+e_{n}\right)$. And this in turn may be written

$$
\rho_{P}=n_{P} \nu_{P}\left(\operatorname{det}\left(\alpha_{i j}\right)^{-1}\right)
$$

To find the relation between $\operatorname{det}\left(\alpha_{i j}\right)$ and the norms of a and b, we use the structure theorem [2, p. 46] quoted in the proof of Lemma 3.1. Here it is easy to see that the matrix $\left(\beta_{i j}\right)$ for $a \in A$ arising out of $a v_{i}=\sum \beta_{i j} v_{j}$, with $\beta_{i j} \epsilon K,\left\{v_{j}\right\}$ a basis of V / K, is the r_{1}-fold repetition of the matrix obtained when one replaces each S_{0}-entry of a with its matrix in the regular representation of S_{0} / K. (The positive integer r_{1} is the number of columns in the isomorph of V given by the structure theorem.) Since the matrix of a in the regular representation of A over K is the r-fold repetition of the same matrix, it follows immediately that $\operatorname{det}\left(\beta_{i j}\right)=N(a)^{r_{1} / r}$. When we pass to the local situation, both r_{1} and r are multiplied by μ_{P}, leaving the exponent unchanged.

Similarly, the analogous matrix $\left(\gamma_{i j}\right)$ for $b \in B$ satisfies $\operatorname{det}\left(\gamma_{i j}\right)=N^{\prime}(b)^{r_{2} / r^{\prime}}$ for some positive integer r_{2} (the number of rows in the appropriate isomorph of V, when B is isomorphic to $r^{\prime} \times r^{\prime} S_{0}^{\prime}, S_{0}^{\prime}$ a normal skew-field over K). N^{\prime} denotes the norm of the regular representation of B / K. It can be extended uniquely to \widetilde{B} / R.

Returning now to the provocation for all this, we see that there exist rational numbers $\rho_{1}=r_{1} / r$ and $\rho_{2}=r_{2} / r^{\prime}$ depending only on the module structure of (A, V, B) such that

$$
\operatorname{det}\left(\alpha_{i j}\right)^{-1}=N_{P}\left(a_{P}\right)^{\rho_{1}} N_{P}\left(b_{P}\right)^{-\rho_{2}}
$$

Therefore $\rho_{P}=n_{P}\left(\rho_{1} \nu_{P} N_{P}\left(a_{P}\right)-\rho_{2} \nu_{P} N_{P}\left(b_{P}\right)\right)$. And now we can assert
Lemma 3.3. If M_{0} is an open, linearly compact $\mathfrak{o}-m o d u l e ~ c o n t a i n e d ~ i n ~ \tilde{V}$, and if $M=a^{-1} M_{0} b$ contains M_{0}, for regular $a \in \widetilde{A}, b \in \widetilde{B}$, then there exist positive rational numbers ρ_{1} and ρ_{2} depending only on the module structure of (A, V, B) such that

$$
\nu\left(M, M_{0}\right)=\operatorname{dim}_{F}\left(M / M_{0}\right)=n\left(N(a)^{\rho_{1}} N^{\prime}(b)^{-\rho_{2}}\right)
$$

where $n(c)$ denotes the degree of the regular element c in R.
Proof. We need only recall that $\operatorname{dim}_{F} M / M_{0}=\sum \rho_{P}$ and that the degree of a regular element c of R is $\sum n_{P} \nu_{P}\left(c_{P}\right)$.

Now we need to consider how to compute $\nu\left(M, M_{0}\right)$ in the general case, when M may not contain M_{0}. We still assume that $M=a^{-1} M_{0} b$ for regular $a \in \widetilde{A}, b \in \widetilde{B}$, however, and that M_{0} is an open, linearly compact \mathfrak{o}-module. We simply define $\nu\left(M, M_{0}\right)=n\left(N(a)^{\rho_{1}} N^{\prime}(b)^{-\rho_{2}}\right)$; the verification that property (i) of (3.2) holds for this ν-function is routine, and we have just proved that (ii) holds. Therefore we have proved

Theorem 3.3. Let A and B act faithfully on V, and let the subspace M_{0} of \tilde{V} be an open, linearly compact $\mathrm{D}-\mathrm{module}$. Then for all subspaces of the form $M=a^{-1} M_{0} b$, with a regular in \widetilde{A}, b regular in \widetilde{B}, the ν-function (3.2) satisfies

$$
\nu\left(M, M_{0}\right)=n\left(N(a)^{\rho_{1}} N(b)^{-\rho_{2}}\right)
$$

for certain positive rational numbers ρ_{1} and ρ_{2} depending only on the structure of the module (A, V, B) and not on M_{0} or M.

Under the notations of Theorem 3.3, let us define the degree of M with respect to M_{0} as

$$
\begin{equation*}
n(M)=n\left(N(a)^{\rho_{1}} N^{\prime}(b)^{-\rho_{2}}\right) \tag{3.5}
\end{equation*}
$$

These subspaces M will play the role of divisors in our generalization of the Riemann-Roch theorem to the module V.

Let the annihilator of \mathfrak{o} in R with respect to χ be $d^{-1} \mathfrak{o}$ for a regular $d \epsilon R$. For a given $P \in \mathfrak{M}$, let $M_{0 P}=\mathfrak{o}_{P} w_{1}+\cdots+\mathfrak{o}_{P} w_{n}$ in accordance with Lemma 3.2. Then the P-component of the annihilator of M_{0} is $M_{0 P}^{\prime}=d_{P}^{-1} \mathfrak{0}_{P} w_{1}^{\prime}+$ $\cdots+d_{P}^{-1} \mathrm{o}_{P} w_{n}^{\prime}$, where $w_{1}^{\prime}, \cdots, w_{n}^{\prime}$ is the dual basis to w_{1}, \cdots, w_{n}. And that for M is $M_{P}^{\prime}=d_{P}^{-1} \mathfrak{o}_{P}\left(b_{P}^{-1} w_{1}^{\prime} a_{P}\right)+\cdots+d_{P}^{-1} \mathfrak{o}_{P}\left(b_{P}^{-1} w_{n}^{\prime} a_{P}\right)$. Thus Lemma 3.2 and Theorem 3.3 allow us to state Theorem 3.2 in a more explicit form, which we call our generalization of the Riemann-Roch Theorem to V :

Theorem 3.4. Under the hypotheses and notations of Theorem 3.3, we have

$$
l(M)=l\left(M^{\prime}\right)+n(M)-\left(l\left(M_{0}^{\prime}\right)-l\left(M_{0}\right)\right)
$$

where $n(M)$ is the degree of M with respect to M_{0} as defined in (3.5). Here the quantity $l\left(M_{0}^{\prime}\right)-l\left(M_{0}\right)$ depends only on M_{0}, not on the module structure.

Remark. The functions l and n appearing here are "class-functions"; that is, if a and b are regular elements of A and B, respectively, then $l(a M b)=$ $l(M)$ and $n(a M b)=n(M)$, for any open, linearly compact \mathfrak{o}-module M.

This theorem contains the classical Riemann-Roch theorem: We take $A=V=B=K, M_{0}=\mathfrak{o}, M=a^{-1} \mathfrak{v}$ for a regular element a of R; then $l(\mathfrak{D})=1, l\left(\mathfrak{o}^{\prime}\right)=g$, the genus of K, and the degree of $M=a^{-1} \mathfrak{o}$ with respect to $M_{0}=\mathfrak{o}$ is $n\left(a^{-1} \mathfrak{v}\right)=n(a)$ in our definition. For the classical theorem we define $l^{*}(a)=l\left(a^{-1} \mathrm{D}\right)$ and obtain from our theorem the classical form of the Riemann-Roch theorem, namely,

$$
l^{*}(a)=l^{*}\left(a^{\prime}\right)+n(a)-g+1
$$

where by a^{\prime} we understand any regular $b \in R$ such that $\left(a^{-1} \mathfrak{D}\right)^{\prime}=b 0$; it is well known that $b=a^{-1} d$, when $\mathfrak{v}^{\prime}=d^{-1} \mathrm{o}$.

In the classical case, divisors are defined as the set of all $a \mathrm{D}, a$ regular in R; they can be characterized as the set of all open, linearly compact \mathfrak{o}-modules. For the module V considered in this paper we have taken for divisors the set of all subspaces of \widetilde{V} which are open, linearly compact \mathfrak{D}-modules. In the general Theorem 3.2 the algebras A and B play no role, nor is the assumption that the subspaces be 0 -modules needed there. The use of the algebras A and B and the assumption of closure under \mathbf{o}-multiplication is that they enable us to find a nice formula for the ν-function, provided one of the two divisors can be obtained from the other via multiplication by regular elements of \widetilde{A} and \widetilde{B}. As noted above, this relation holds between any two divisors in the classical case; it does not hold in general for our module V, however. But in one example where this relation fails to be universal, V is not irreducible as a double module; in another such example, B is not normal as a simple algebra over K; but in these examples divisors are further restricted to be modules with respect to the actions of maximal open linearly compact subrings of \widetilde{A} and \widetilde{B}. Whether the reasonable assumptions of faithfulness, irreducibility as a double module, and normality imply that any (reasonably defined) divisor can be obtained from any other divisor via multiplication by regular elements of \widetilde{A} and \widetilde{B} is an open question. This relation between pairs of divisors is an equivalence relation, and Theorem 3.4 holds for divisors taken from any one class.

We now turn to a situation where, when the notion of divisor is suitably restricted, the relation in question holds between any two divisors.

4. Simple algebras over K

Let $A=V=B$ be a simple algebra over the center K, with the action being multiplication in A. Letting T denote the reduced trace from A to K, we pair A to itself by setting $\left\langle c, c^{\prime}\right\rangle_{0}=T\left(c c^{\prime}\right)$, for $c, c^{\prime} \in A$. Then $\left\langle a c b, c^{\prime}\right\rangle_{0}=$ $\left\langle c, b c^{\prime} a\right\rangle_{0}$ for all $a, b \in A$. Our dual pairing of \widetilde{A} to itself becomes

$$
\begin{equation*}
\left[c, c^{\prime}\right]=\chi T\left(c c^{\prime}\right), \quad c, c^{\prime} \in \widetilde{A} \tag{4.1}
\end{equation*}
$$

In order to determine the numbers ρ_{1} and ρ_{2} appearing in the formula (3.5), we need only recall that if A is isomorphic to $r \times r S_{0}, S_{0}$ being a skew-field with center K, then $\rho_{1}=r_{1} / r$, where r_{1} is the number of columns of $r \times r_{1} S_{0}$, the isomorph of V. Thus $r_{1}=r$ and $\rho_{1}=1$. Similarly $\rho_{2}=1$. Therefore, if M_{0} is a divisor of \tilde{A} and if $M=a^{-1} M_{0} b$, for regular elements $a, b \in \tilde{A}$, then

$$
\begin{equation*}
n(M)=\nu\left(M, M_{0}\right)=n\left(N\left(a b^{-1}\right)\right) \tag{4.2}
\end{equation*}
$$

where N denotes the norm (of the regular representation) from \tilde{A} to R. (N is the "direct product" of the local norms from \tilde{A}_{P} to K_{P}.)

Divisors. For convenience we shall denote the set of all maximal open linearly compact subrings of \widetilde{A} as $\mathcal{L}(\widetilde{A})=\mathscr{L}$. In the present situation we
restrict our divisors to be open, linearly compact subspaces M of A such that there exist $H, J \in \mathcal{L}$ for which $H M J=M$. For this divisor we shall occasionally denote H by M_{l} and J by M_{r}.

We can easily prove that all divisors are equivalent in the sense discussed at the end of $\S 3$ by using the isomorphism of $\S 2$ between \widetilde{A} and the appropriate space of matrices \bar{S} : The members of $\mathfrak{L}(\bar{S})$ are of the form $C^{-1} I C$, where C is a regular element of \bar{S} and I is the subring of "integral" matrices defined near the end of $\S 2$. If $C_{1}^{-1} I C_{1}$ and $C_{2}^{-1} I C_{2}$ are two such subrings equalling $M_{1 l}$ and $M_{1 r}$ for a divisor M_{1}, then $C_{1} M_{1} C_{2}^{-1}=M_{2}$ is a two-sided I-module; it is easy to prove that M_{2} must then be of the form $c I$, where c is a regular element of \bar{S} of the form

$$
\begin{equation*}
c_{P}=\left(\delta_{i j} a_{P}\right), \quad a_{P} \in S_{P} \tag{4.3}
\end{equation*}
$$

for each $P \epsilon \mathfrak{M}$. Thus $M_{1}=C_{1}^{-1} c I C_{2}$. Conversely, if C_{1} and C_{2} are regular elements of \bar{S}, then $C_{1}^{-1} I C_{2}$ is a divisor of \bar{S}. If we transfer these results back to A by means of our isomorphism, we can now assert

Lemma 4.1. Each divisor of \tilde{A} is of the form $a^{-1} H b$ for regular $a, b \in \tilde{A}$ and for a fixed subring $H \in \mathcal{L}$. Conversely, every such subspace of \widetilde{A} is a divisor of \widetilde{A}.

For later use, we shall now discuss the element c mentioned above. First we state a criterion for equality between divisors, the proof of which follows rapidly from the decomposition (2.2):

Lemma 4.2. The divisors $C^{-1} I C_{0}$ and $C^{\prime-1} I C_{0}^{\prime}$ of \bar{S} are equal if and only if there is an element $a \in \bar{S}$ locally of the form (4.2) such that both $a C^{\prime} C^{-1}$ and $a C_{0}^{\prime} C_{0}^{-1}$ are unitary.

In our proof of Lemma 4.1 we saw that any divisor M_{2} of \bar{S} which is a two-sided I-module has the form $M_{2}=c I$, where each P-component of c is in S_{P}, i.e., is a diagonal matrix. The above lemma implies that c is uniquely determined up to a unitary factor. Furthermore, $c I=I c$; and c belongs to \bar{S}_{0}, the image of \bar{S}_{0} in \bar{S}. If $H \in \mathcal{L}$, let us define an H-unit as a regular element b of \tilde{A} such that $b \in H$ and $b^{-1} \in H$.

Then we have proved
Lemma 4.3. If the divisor M of \tilde{A} is a two-sided H-module, for $H \in \mathbb{L}$, then M is of the form $c H=H c$, where c is a regular element of \widetilde{S}_{0} uniquely determined up to an H-unit factor.

This lemma assumes that one selects a particular $S_{0} \subset A$.
The degree of a given divisor M satisfies, when $H \in \mathscr{L}$,

$$
\nu(M, H)=\nu\left(M, a^{-1} H a\right)
$$

for all regular $a \epsilon \tilde{A}$; or, in other words, since all $H \in \mathfrak{L}$ are conjugate to each other, the degree of a divisor is invariant with respect to the members of this class 2. From now on in this section we restrict our definition of the degree
(3.5) of a divisor by requiring that M_{0} belong to $\mathfrak{\&}$. (It is true that the degree of a divisor is invariant with respect to the members of any conjugacyclass of divisors, but \mathfrak{L} is a naturally distinguished such class.)

Let H_{0} and H be any two members of $\mathfrak{£}$. As divisors, these have degree 0 , so that if we apply Theorem 3.2 to H and H_{0}, we find that $l\left(H^{\prime}\right)-l(H)=$ $l\left(H_{0}^{\prime}\right)-l\left(H_{0}\right)$, which proves that this quantity is an invariant of A. We denote it by

$$
\begin{equation*}
\xi(A)=l\left(H^{\prime}\right)-l(H), \quad H \in \mathscr{L} \tag{4.4}
\end{equation*}
$$

If A is isomorphic to $r \times r S_{0}$, as before, then we can prove
Proposition 4.1. $\xi(A)=r^{2} \xi\left(S_{0}\right)$.
Proof. We use the isomorphism of \widetilde{A} with \bar{S} : Since $I \in \mathscr{L}(\bar{S})$, it suffices to consider $l\left(I^{\prime}\right)-l(I)$; now $I=r \times r \mathcal{O}$, and $\mathcal{O} \epsilon \mathscr{L}\left(\bar{S}_{0}\right) ; I^{\prime}=r \times r \mathcal{O}^{\prime}$; therefore $\xi(A)=r^{2} \xi\left(S_{0}\right)=r^{2}\left(l\left(\mathcal{O}^{\prime}\right)-l(\mathcal{O})\right)$. We shall discuss some questions related to this invariant farther on.

Canonical divisors. In the classical case $A=K$, the canonical divisor corresponding to a given admissible character χ is defined as the inverse of the annihilator of \mathfrak{o} with respect to the dual pairing $[c, b]=\chi(c b), c, b \in R$. That is, the annihilator \mathfrak{v}^{\prime} equals $d^{-1} \mathrm{v}$ for some regular $d \epsilon R$; and $d \mathrm{o}$ is the corresponding canonical divisor. As a runs through the nonzero elements of K, all admissible characters of R are obtained as χ_{a}, where $\chi_{a}(\quad)=\chi(a(\quad))$; the corresponding canonical divisor is $a d o$. Here the divisors form an abelian group and the principal divisors (namely, $a \mathfrak{D}, 0 \neq a \in K$) a subgroup Π. Thus, modulo Π, the set of all canonical divisors is precisely a coset. Analogous conditions hold in the general case.

Let $M=a^{-1} H b$ be a divisor of \tilde{A}. By the inverse of M we simply mean the divisor $M^{-1}=b^{-1} H a$. The relations $M M^{-1}=M_{l}$ and $M^{-1} M=M_{r}$ hold.

In the present case, "the" ring of integers in \tilde{A} is determined only up to inner automorphism. Each $H \in \mathscr{L}$ will have a collection of canonical divisors; those of $a^{-1} H a$ will be the conjugates under a of those of H.

Let $H \in \mathscr{L}$, and consider the annihilator H^{\prime} of H with respect to (4.1). H^{\prime} is an open, linearly compact, two-sided H-module; in other words H^{\prime} is a divisor of \widetilde{A}. We call $H^{\prime-1}$ the canonical divisor for H corresponding to χ. By Lemma 4.3, H^{\prime} is of the form $\mathfrak{D}^{-1} H$, for some regular $\mathfrak{D} \epsilon S_{0}$ such that $\mathfrak{b} H=H \mathfrak{b}$; and \mathfrak{b} is uniquely determined up to an H-unit factor. If a is a regular element of \tilde{A}, then the canonical divisor for $a^{-1} H a$ with respect to χ is $a^{-1} \searrow H a$, or $a^{-1} \searrow a \cdot a^{-1} H a$. Therefore we need only determine the canonical divisors for H.

By Theorem 3.1, the annihilator of A is A itself; therefore we obtain all characters of \tilde{A} which vanish on A as $\chi_{a}=[a],, a \in A$. Among these, the ones which give rise to dual pairings of \widetilde{A} with itself are those with a regular. For such a, the pairing is $\left[c_{1}, c_{2}\right]_{a}=\chi T\left(a c_{1} c_{2}\right)$. When $a \notin K$, this pairing is not symmetric, so we must speak of left- and right-hand annihilators and
canonical divisors. For example, the left-hand annihilator $A_{l}(H)$ of H is the set of all c_{1} such that $\left[c_{1}, H\right]_{a}=0$; or $A_{l}(H)=a^{-1} H^{\prime}=a^{-1} b^{-1} H$. (We have now $A_{r}\left(A_{l}(H)\right)=H$, but $A_{l}\left(A_{l}(H)\right)=a^{-1} H a$.) The corresponding canonical divisor is $\grave{\searrow} H a$, which we shall call the right-hand canonical divisor.

We now define, by analogy with the case $A=K$, equivalence relations \sim_{l}, \sim_{r} on the set of all divisors of \widetilde{A}. If M_{1} and M_{2} are divisors of \widetilde{A}, we say
$M_{1} \sim_{l} M_{2}\left(M_{1} \sim_{r} M_{2}\right)$ if and only if there exists a regular $a \in A$ such that $M_{1}=a M_{2}\left(M_{1}=M_{2} a\right)$.

We see that the set of left-hand canonical divisors for H is precisely the equivalence-class containing δH under \sim_{l}, and correspondingly for the righthand ones. If a and c are regular elements of A and \widetilde{A}, respectively, then the right-hand canonical divisor for $c^{-1} H c$ corresponding to [, $]_{a}$, is $c^{-1} \delta H c a$.

If $M=a^{-1} H b, H \in \mathscr{L}$, is an arbitrary divisor of \tilde{A}, then $M^{\prime}=b^{-1} H^{\prime} a=$ $b^{-1} \mathfrak{D}^{-1} H a$. If we (inadequately) denote $b^{-1} \mathfrak{b} b$ by \mathfrak{D}_{M}, then $M^{\prime}=\mathfrak{D}_{M}^{-1} M^{-1}$. We can also say that $M^{\prime}=\left(b^{-1} \delta^{-1} H b\right) M^{-1}$, the first factor being the inverse of the canonical divisor for $b^{-1} \mathrm{Hb}$. The left-annihilator of M with respect to [, $]_{c}, c$ regular in A, is $c^{-1} b^{-1} b^{-1} H a$.

We can now assert our generalization of the Riemann-Roch theorem for A :
Theorem 4.1. If M is any divisor of \tilde{A}, then

$$
l(M)=l\left(\mathfrak{D}_{M}^{-1} M^{-1}\right)+n(M)-r^{2} \xi\left(S_{0}\right) .
$$

Corollary 4.1. All canonical divisors have degree

$$
-2 r^{2} \xi\left(S_{0}\right)=n\left(N(\mathfrak{d})^{-1}\right)=-n\left(H^{\prime}\right), \quad H^{\prime} \in \mathscr{L}
$$

Proof. That they all have the same degree $n\left(N(\mathfrak{d})^{-1}\right)$ follows from the construction of them in the preceding paragraphs and the fact that K-elements have degree 0 in R. We obtain the corollary by putting $M=H^{\prime}, H \in \mathscr{L}$, in the theorem.

We can also derive as a corollary the generalization of Riemann's theorem in the special case $A=S_{0}$.

Corollary 4.2. If M is a divisor of \widetilde{S}_{0} with degree $n(M)>2 \xi\left(S_{0}\right)$, then

$$
l(M)=n(M)-\xi\left(S_{0}\right)
$$

Proof. We first notice that for any divisor $M, c \in M \cap A$ implies $n(N c) \geqq$ $-n(M)$. Therefore, $n(M)<0$ implies $l(M)=0$. Now if our given M is of the form $a^{-1} H b$, then we see, from $M^{\prime}=b^{-1} b^{-1} H a$, that $n\left(M^{\prime}\right)=$ $n(N D)-n(M)<0$. Therefore, $l\left(M^{\prime}\right)=0$.

Remark 4.1. Theorem 4.1 is usually stated in terms of the functions l^{*} and n^{*}, where $l^{*}(M)=l\left(M^{-1}\right)$ and $n^{*}(M)=n\left(M^{-1}\right)$ for divisors M of \widetilde{A}.

The theorem then reads

$$
\begin{equation*}
l^{*}(M)=l^{*}\left(\mathfrak{D}_{M} M^{-1}\right)+n^{*}(M)-r^{2} \xi\left(S_{0}\right) . \tag{4.5}
\end{equation*}
$$

Of course, we could have simply reasserted Theorem 3.4 for $V=A$, but the advantages of restricting our divisors are important: The invariant $\xi(A)=$ $r^{2} \xi\left(S_{0}\right)$ arises, and the existence of inverse and canonical divisors allows a nice expression for the annihilator.

Before comparing this theorem with the Riemann-Roch theorem of Witt [16], we shall need to discuss the different, which will lead to some other points of interest. Accordingly we shall defer the comparison to the next section, where we shall also state a generalization of the theorem of Weil [15].

The different. Define the subspace M of \bar{S} as

$$
\begin{equation*}
M=\{a ; a \epsilon \bar{S}, T(a I) \subset \mathfrak{o}\}, \tag{4.6}
\end{equation*}
$$

where T is the reduced trace from \bar{S} to R obtained by extending that from $r \times r S_{0}$ to $K . \quad M$ is obviously an open two-sided I-module and is contained in $b^{-1} I^{\prime}$ for a regular $b \in R$ satisfying $b_{\mathcal{D}} \subset$ kernel χ; therefore M is linearly compact. By the proof of Lemma 4.1, M has the form $M=D^{-1} I$ for some regular element D of \bar{S} of the form (4.3); by Lemma 1.2, each P-component of D in the form (4.3) has $a_{P} \in \mathcal{O}_{P}$. The divisor $D I$ is called the different of I / K. If $C^{-1} I C$ is any maximal open linearly compact subring of \bar{S}, then its different (over K) is defined analogously and turns out to be $C^{-1} D I C$. The different D_{x} of $K / F(x)$ is defined ${ }^{10}$ similarly by the relation

$$
\left\{a ; a \in R, T_{K / F(x)}(a \mathfrak{o}) \subset \mathfrak{o}_{0}\right\}=D_{x}^{-1} \mathfrak{D}
$$

where o_{0} is the ring of integers of R_{0}. The different D^{*} of $I / F(x)$ is defined similarly, and the result that $D^{*} I=D D_{x} I$ follows immediately from the factorability of the reduced trace.

Now let χ be any admissible character of R, and let $d o$ and $\mathfrak{D} I$ be the corresponding canonical divisors of R and I, respectively. We shall prove

Lemma 4.4. $\quad \mathfrak{D} I=D d I$.
Proof. Taking M as in (4.6), we have $(d D)^{-1} I=d^{-1} M$ and $\chi T\left(d^{-1} M I\right)=$ $\chi\left(d^{-1} T(M I)\right)=\chi\left(d^{-1} \mathfrak{v}\right)=0$. Therefore $\mathfrak{D} I \subset d D I$. Since T is open, $T\left(D^{-1} I\right)$ is a divisor of R, which must then be \mathfrak{o}. Therefore $T\left(d^{-1} D^{-1} I\right)=\mathfrak{o}^{\prime}$. Now $\chi T\left(\mathfrak{b}^{-1} I\right)=0$ implies $T\left(\mathfrak{D}^{-1} I\right) \subset \mathfrak{o}^{\prime}$, or $T\left(d \mathfrak{b}^{-1} I\right) \subset \mathfrak{o}$. Thus $d \mathfrak{D}^{-1} I \subset$ $D^{-1} I$, or $\lesssim I \supset d D I$, Q.E.D.

We can apply this result to the separable extension $K / F(x)$, achieving the result that $d \mathfrak{0}=D_{x} d_{0} \mathfrak{o}$, where $d_{0} \mathfrak{0}_{0}$ is the canonical divisor of $F(x)$ corresponding to the admissible character χ_{0} of R_{0}, and $d \mathrm{o}$ is the canonical divisor of R arising from $\chi=\chi_{0} T_{0}, T_{0}$ being the reduced trace from K to $F(x)$. Furthermore, we can easily construct a χ_{0} such that $d_{0}=u^{-2}$, where u is the denominator of x. (To carry out this construction, one needs the facts that $R_{0}=$

[^5]$F(x)+u \mathrm{D}_{0}$, a topological direct sum, and that $\mathrm{D}_{0}^{\prime} \cap F(x)$ has F-dimension equal to the genus of $F(x)$, which is $0,[9,10]$.) Thus we have proved rather simply the well-known result [6, p. 374] that $d=D_{x} / u^{2}$, i.e., that $\left(D_{x} / u^{2}\right)_{\mathfrak{0}}$ is a canonical divisor of R. From this result it follows that $\left(D^{*} / u^{2}\right) I$ is a canonical divisor for I.

Thus there is an admissible character of R such that if $M=C^{-1} I C_{0}$ is a divisor of \bar{S}, then the annihilator of M is the space $C_{0}^{-1}\left(D^{*} / u^{2}\right)^{-1} I C=M^{\prime}$. We have proved

Lemma 4.5. There exists an admissible character χ_{1} of R such that if M is a divisor of \widetilde{A} with $M_{l}=H$, then the annihilator M^{\prime} corresponding to χ_{1} is that divisor satisfying

$$
\begin{equation*}
\left(M M^{\prime}\right)^{-1}=u^{-2} \delta(H) \tag{4.7}
\end{equation*}
$$

where $\delta(H)$ is the different of $H / F(x)$.
Since the various differents of \widetilde{A} / K are determined up to conjugation, and multiplication by units, and since $D_{P} \in S_{P}$ for each P, the integer $\delta_{P}=v_{P}\left(D_{P}\right)$ is an invariant of \widetilde{A}_{P}; in fact, δ_{P} depends only on S_{0}, so that we may as well take $A=S_{0}$ when investigating this differential exponent δ_{P}.

We do so now; our first result will be a relation between the reduced traces T_{P} and $T_{1 P}$ of S_{P} / K_{P} and \Im_{P} / Ω_{P}, respectively. Let $\left[S_{P}: K_{P}\right]=m_{P}^{\prime 2}=$ $e_{P} f_{P}$; thus if $[S: K]=m^{2}$, then $m^{2}=m_{P}^{\prime 2} \mu_{P}^{2}$. For each $a \in \mathcal{O}_{P}$ let a^{*} denote the residue class of a modulo \mathfrak{P}_{P}.

Lemma 4.6. For each $P \in \mathfrak{M}$, the reduced traces satisfy

$$
T_{P}(a)^{*}=\alpha_{P} T_{1 P}\left(a^{*}\right), \quad a \in \mathcal{O}_{P}
$$

where $\alpha_{P}=e_{P} m_{P} / m_{P}^{\prime}$ is a positive rational integer.
Proof. The matrix of the regular representation of a generic element of S_{P} (with respect to the integral basis of Lemma 1.2), on reduction modulo \mathfrak{B}_{P} breaks naturally into submatrices of size $f_{P} \times f_{P}$; below the diagonal block these matrices are zero; the diagonal block is an e_{P}-fold repetition of the matrix of the regular representation of a generic element of \Im_{P} / Ω_{P}. Therefore the characteristic polynomial $c(X)$ of S_{P} / K_{P} is related to that, $c_{1}\left(X^{*}\right)$, of $\mathfrak{S}_{P} / \Omega_{P}$ by the formula

$$
\begin{equation*}
c(X)^{*}=c_{1}\left(X^{*}\right)^{e_{P}} \tag{4.8}
\end{equation*}
$$

Let $f(X)$ be the minimal polynomial of S_{P} / K_{P} and $f_{1}\left(X^{*}\right)$ that of \Im_{P} / Ω_{P}. We know that in general [1, p. 17] the characteristic polynomial of a skewfield is a power of the minimal polynomial, and that, when the center is separable over the base field, this power is the index of the skew-field [1, p. 123]. Therefore (4.8) becomes

$$
\begin{equation*}
f(X)^{*^{m_{P}^{\prime}}}=f_{1}\left(X^{*}\right)^{m_{P e_{P}}} \tag{4.9}
\end{equation*}
$$

where $m_{P} \geqq 1$ is the index of \mathfrak{S}_{P} whenever the center of \Im_{P} is separable over Ω_{P}. But $f_{1}\left(X^{*}\right)$ is irreducible over $\Omega_{P}\left(\xi_{i}\right)$ (the ξ_{i} being indeterminates used to make the generic element); therefore f^{*} is a power of f_{1} : There is a rational integer α_{P} such that $f(X)^{*}=f_{1}\left(X^{*}\right)^{\alpha_{P}}$, which gives our desired formula. It follows from (4.9) that $\alpha_{P}=e_{P} m_{P} / m_{P}^{\prime}$.

Using Lemma 4.6, the formula of which is analogous to the one for fields, in which e_{P} replaces our α_{P}, one proves easily, exactly as in [17, p. 70],

Proposition 4.2. The differential exponent δ_{P} is at least $e_{P}-1$ for all $P \in \mathfrak{M}$, and $\delta_{P}=e_{P}-1$ if and only if both (i) and (ii) hold:
(i) The center of \mathfrak{S}_{P} is separable over Ω_{P}.
(ii) The characteristic of F does not divide α_{P}.

As we shall see in a moment, the condition (i) implies condition (ii) in the noncommutative case, whereas (ii) is necessary for field extensions of K. But the relative simplicity of the proof here and the interesting corollaries which obtain at this point may justify the redundancy.

Corollary 4.3. $\quad e_{P}=1$ for almost all $P \in \mathfrak{M}$.
Proof. $\quad \delta_{P}=0$ for almost all P, and $\delta_{P} \geqq e_{P}-1 \geqq 0$.
Corollary 4.4 If the constant field F has characteristic zero or is finite, then $\delta_{P}=e_{P}-1$ for all $P \in \mathfrak{M}$. When F is finite, then $e_{P}=f_{P}=m_{P}^{\prime}$, and $\alpha_{P}=1$, both for all $P \in \mathfrak{M}$, so that K_{P} splits S_{0} for almost all P.

Proof. The result in characteristic zero is immediate. When F is finite, then S_{P} is a finite skew-field and is therefore a field, by a famous theorem of Wedderburn. Then $m_{P}=1$ for all P, so that $\alpha_{P}=e_{P} / m_{P}^{\prime}$. But $e_{P} \mid m_{P}^{\prime}$ in general, by Lemma 1.3; therefore $e_{P}=m_{P}^{\prime}$, or $\alpha_{P}=1$ for all P. From $e_{P} f_{P}=m_{P}^{\prime 2}$ follows now $e_{P}=f_{P}=m_{P}^{\prime}$.

We now prove that the assumption on α_{P} in the proposition is unnecessary. The proof is taken essentially from [12, p. 148].

Theorem 4.2. The center of the residue-class skew-field \mathfrak{S}_{P} is separable over Ω_{P} if and only if the differential exponent δ_{P} is $e_{P}-1$.

Proof. We need only prove that separability implies $\delta_{P}=e_{P}-1$. It suffices to prove the existence of some $b \in \mathcal{\vartheta}_{P}$ such that $T_{P}(b)$ is a unit in K_{P}. To this end let K_{1} be a separable, unramified, maximal subfield of S_{P} / K_{P} with separable residue-class field Ω_{1} over Ω_{P} [18, p. 12], [12, p. 148]. Then our formula of Lemma 4.6 for the unramified field extension K_{1} / K_{P} becomes $T_{2}(a)^{*}=T_{21}\left(a^{*}\right), a \in \mathcal{O}_{P} \cap K_{1}$, where T_{2} is the trace of K_{1} / K_{P} and T_{21} that of Ω_{1} / Ω_{P}. The separability of the last named extension implies that for some $b \in \mathcal{O}_{P} \cap K_{1}, T_{2}(b)$ is a unit of K_{P}. But T_{P}, when restricted to the maximal subfield K_{1}, equals T_{2}, Q.E.D.

Note. The existence of K_{1} can be proved directly as follows: Let L_{1} be a separable maximal subfield of \mathfrak{S}_{P} over the center C_{P} of $\mathfrak{S}_{P}[1, \mathrm{p} .57]$.

Then $L_{1}=\Omega_{P}\left(a^{*}\right)$ for some $a \in \mathcal{O}_{P}$, by the separability of C_{P} / Ω_{P}. Consider now $K_{P}(a)$, which has L_{1} as residue-class field. Let

$$
f(X)=X^{q}+a_{1} X^{q-1}+\cdots+a_{q}
$$

be a polynomial over \mathfrak{o}_{P} such that $f(X)^{*}$ is the (irreducible) minimal polynomial of a^{*} over Ω_{P}. Then $f(X)$ is irreducible over K_{P}. By Hensel's lemma, $f(X)$ has a zero b in $K_{P}(a) \cap \mathcal{O}_{P}$ such that $b^{*}=a^{*}$. Therefore $K_{P}(b)$ has $\Omega_{P}\left(a^{*}\right)$ as residue-class field, which implies that $K_{P}(b) / K_{P}$ is unramified, being of degree equal to that of $\Omega_{P}\left(a^{*}\right) / \Omega_{P}$. Now we prove that $K_{P}(b)$ is a maximal subfield of S_{P} and therefore that $K_{P}(a)=K_{P}(b)$. If $K_{P}(b)$ were not maximal, then its commutator algebra K^{\prime} in S_{P} would not be a field [1, p. 53]. Then we would have $f\left(K^{\prime} / K_{P}(b)\right)>1$, by Lemma 1.3. This would imply the existence of a proper field extension of L_{1}, in contradiction to the maximality of L_{1}.

The Riemann-Hurwitz formula. We shall give the analogue of the RiemannHurwitz (? or Zeuthen-Halphen) formula relating, in our case, $\xi\left(S_{0}\right)$ to the genus g of K. If $\mathfrak{D O}$ is a canonical divisor of \bar{S}_{0}, we know that $n(N(\mathfrak{D}))=$ $2 \xi\left(S_{0}\right)=n(N(D))+n(N(d))$, the latter from Lemma 4.4. Since $d \in R$, $N(d)=d^{m^{2}}$, where $\left[S_{0}: K\right]=m^{2}$. If $D_{P}=\left(\delta_{i j} a_{P}\right), a_{P} \in S_{P}$, the matrix being of size $\mu_{P} \times \mu_{P}$, then, at $P, N(D)=N_{s_{P} / K_{P}}\left(a_{P}\right)^{\mu_{P}^{2}}$. Thus $\nu_{P} N(D)=\mu_{P}^{2} f_{P} \delta_{P}$, where δ_{P} is the differential exponent. Our above equation now becomes

$$
2 \xi\left(S_{0}\right)=m^{2}(2 g-2)+\sum_{P \in \Re} \mu_{P}^{2} f_{P} n_{P} \delta_{P}
$$

Since $m^{2}=\mu_{P}^{2} e_{P} f_{P}$, we can put this as
Theorem 4.3. Let S_{0} be a skew-field with finite rank m^{2} over the center K. Then the invariants $\xi\left(S_{0}\right)$ and $\xi(K)=g-1$ are related by the formula

$$
2 \xi\left(S_{0}\right)=m^{2}\left(2 g-2+\sum_{P \epsilon \mathfrak{M}} n_{P} \delta_{P} / e_{P}\right)
$$

where δ_{P} is the differential exponent at P, discussed in the preceding section.
The invariant $\xi\left(S_{0}\right)$. An interesting question concerning $\xi\left(S_{0}\right)$ is whether the two terms defining it are themselves invariants. That is, does $l\left(H_{1}\right)$ equal $l\left(H_{2}\right)$ for all $H_{1}, H_{2} \in \mathscr{L}\left(\widetilde{S}_{0}\right)$? The equivalent question, of course, is whether the same holds with $H_{1}^{\prime}, H_{2}^{\prime}$ in place of H_{1}, H_{2}. Some partial results in the affirmative are contained in the following two lemmas. They are phrased in the matrix terminology.

Lemma 4.7. Let S_{0} be a skew-field extension of K with no "constant part"; that is, assume that F is (relatively) algebraically closed in S_{0}. Then $l\left(b^{-1} \mathcal{O}\right)=1$ for all regular $b \in \bar{S}_{0}$.

Proof. Let $a \in S_{0}$ and $a \in b^{-1} \mathcal{O b}$. We wish to prove $a \in F$. The characteristic polynomial $c(X ; u)$ of S_{0} / K is the same as that of $K_{P} \otimes_{K} S_{0} / K_{P}$. When specialized to the element a, this polynomial has coefficients in K. As an element of $b_{P}^{-1}\left(\mu_{P} \times \mu_{P} \mathcal{O}_{P}\right) b_{P}, a$ has the same characteristic polynomial
as $b_{P} a b_{P}^{-1} \in \mu_{P} \times \mu_{P} \mathcal{O}_{P}$ has; this one has coefficients in \mathfrak{o}_{P}, however, since, with respect to the usual integral basis $\left\{w_{i} t^{j} \cdot\right.$ (matrix units) $\}$, $b_{P} a b_{P}^{-1}$ has coordinates in \mathfrak{o}_{P}. Therefore, the coefficients of $c(X ; a)$ are in $K \cap \mathfrak{D}=F$. By assumption, $a \in F$, Q.E.D.

Corollary (of the proof). If u_{1}, \cdots, u_{n} is a basis of S_{0} / K and $u=x_{1} u_{1}+\cdots+x_{n} u_{n}$ a generic element of S_{0}, then the characteristic polynomial of S_{0} / K has coefficients in $F\left[x_{1}, \cdots, x_{n}\right]$.

Our next result shows that in some skew-field extensions obtained entirely by extensions of the constant field, the quantities in question are also invariants.

Lemma 4.8. Let K be a function field of genus 0 , and let S_{0} be a normal skewfield of finite rank m^{2} over K. If the different $D \mathcal{O}$ of \bar{S}_{0} satisfies $n(N(D))<2 m^{2}$, then $l\left(a^{-1} \mathcal{O}^{\prime} a\right)=0$ for all regular $a \in \bar{S}_{0}$.

Proof. The relation $y \in S_{0} \cap a^{-1} \mathcal{O}^{\prime} a$ implies $N(y) \in N\left(\delta^{-1}\right) \mathfrak{0}$, where $\mathcal{O}^{\prime}=\mathfrak{D}^{-1} \mathcal{O}$. Using Lemma 4.4, we find that $N\left(\mathfrak{b}^{-1}\right)=d^{-m^{2}} N\left(D^{-1}\right)$. Now $n\left(N\left(b^{-1}\right)\right)=2 m^{2}-n(N(D))>0$ under our assumptions. Therefore $y=0$.

This condition holds, for example, in the case $K=F(x), F$ the field of real numbers, $S_{0}=K(i, j, k)$, where $i^{2}=j^{2}=k^{2}=-1, i j=k, j k=i$, and $k i=j$. Here all $\delta_{P}=0$. It may be of interest to observe that when P has degree $n_{P}=1$, then $f_{P}=4, e_{P}=1$ (hence $\delta_{P}=0$), and $S_{P}=K_{P}(i, j, k)$. And when $n_{P}=2$, then $e_{P}=f_{P}=1$ (again $\delta_{P}=0$), and $S_{P}=K_{P}$. Thus when F is infinite, it can happen that splitting occurs at infinitely many P, and nonsplitting occurs at infinitely many P.

5. The theorems of Witt and Weil

In comparing Theorem 4.1 with the Riemann-Roch theorem of Witt [16, p. 22] we shall first show that Witt's class of divisors is the same as ours. Witt defines divisors as follows: For a separating element x of K, first consider an ideal M_{0} in A with respect to $F[x]$. A finite prime divisor P being one for which $\nu_{P}(x) \geqq 0$, consider the closure M_{P} of M_{0} in \widetilde{A}_{P} for finite P. (M_{P} is shown to be the P-component of one of our divisors in Theorem 2.4.) At the (finite number of) nonfinite $P \in \mathfrak{M}$, introduce "components" formally in any possible way. These "components" and the M_{P} define a Witt-divisor. Although Witt does not explicitly define these "components", they can only be normal ideals (i.e., those belonging to maximal orders) in \widetilde{A}_{P} with respect to $0_{P}, P$ nonfinite; otherwise his Satz 3, which says that his class of divisors is independent of x, would be false. But our Lemmas 2.4 and 4.1 (local form), plus the obvious fact that a local ideal is open and linearly compact, show that such ideals are P-components of our divisors. Therefore, the set of P-components M_{P}, one for each $P \in \mathfrak{M}$, defining a Witt-divisor M, is precisely the set of P-components of one of our divisors, and conversely.

Witt defines the degree of a divisor M as the degree in R_{0} of $N_{0}(M)$, where
N_{0} is the norm from \tilde{A} to R_{0}. Putting aside the question whether at P this norm maps local maximal orders onto \mathfrak{D}_{Q}, let us take the Witt-degree of M as the degree in R_{0} of $N_{0}(M) \mathfrak{D}_{0}$. If a is a regular element of R, then the degree $n(a)$ of a in R is the degree $n_{0}\left(N_{*}(a)\right)$ of the norm (from R to R_{0}) of a. Therefore, by our definition in $\S 4$ and our formula (4.2), the Witt-degree of M, which we shall denote as $n^{*}(M)$, is the negative of our degree $n(M)$.

Witt defines the quantity $\{M\}$, for a divisor M, as $l\left(M^{-1}\right)$, or $l^{*}(M)$, in the notation of our Remark 4.1.

The "complementary" divisor M^{*} to the divisor M^{-1} is defined by Witt ${ }^{11}$ as that satisfying $M^{*} M^{-1}=u^{-2} \delta\left(M_{l}\right)$, in the notation of (4.7). By Lemma $4.5, M^{*-1}$ is what we call M^{\prime}.

Witt defines a genus G of A by the formula $2 G-2=n^{*}\left(u^{-2} \delta\left(M_{l}\right)\right) . \quad$ By Corollary 4.1, $n^{*}\left(u^{-2} \delta\left(M_{l}\right)\right)=2 r^{2} \xi\left(S_{0}\right)$.

Finally, Witt states his Riemann-Roch theorem as

$$
l^{*}(M)=l^{*}\left(M^{*}\right)+n^{*}(M)-G+1
$$

which agrees with our (4.5) when we determine the δ_{M} there by means of the admissible character χ_{1} of Lemma 4.5.

We shall now sketch the proof of a theorem which includes that of Weil [15, Ch. I, 3] (with trivial signature). Let $V=r \times r^{\prime} S_{0}$ be the space of all matrices of r rows and r^{\prime} columns over S_{0}, a skew-field of finite rank over the center K. As A and B we take $r \times r S_{0}$ and $r^{\prime} \times r^{\prime} S_{0}$, the actions being the usual matrix multiplication. Let T denote the reduced trace from S_{0} to K and Tr the ordinary matrix trace. Then for V^{\prime} we take $r^{\prime} \times r S_{0}$, and we set $\left\langle v, v^{\prime}\right\rangle_{0}=T \operatorname{Tr}\left(v v^{\prime}\right), v \in V, v^{\prime} \in V^{\prime}$. Our dual pairing of \widetilde{V} and \tilde{V}^{\prime} to F is then $\left[\tilde{v}, \tilde{v}^{\prime}\right]=\chi T \operatorname{Tr}\left(\tilde{v} \tilde{v}^{\prime}\right)$, for $\tilde{v} \in \tilde{V}, \tilde{v}^{\prime} \in \tilde{V}^{\prime}$.

The numbers ρ_{1} and ρ_{2} of Lemma 3.3 are r^{\prime} / r and r / r^{\prime}, respectively.
Letting H denote a member of $\mathscr{L}\left(S_{0}\right)$, we take for V-divisors subspaces of \tilde{V} of the form $M=a^{-1}\left(r \times r^{\prime} H\right) b, a$ regular in \widetilde{A}, b regular in \widetilde{B} (V^{\prime}-divisors have the form $\left.b^{-1}\left(r^{\prime} \times r H\right) a\right)$. Our annihilator M^{\prime} is $b^{-1}\left(r^{\prime} \times r b^{-1} H\right) a$. The degree (3.5) of a divisor M is invariant with respect to all divisors of the form $c^{-1}\left(r \times r^{\prime} H\right) c, c$ regular in \widetilde{S}_{0}. We define the degree of M as

$$
\nu\left(M, r \times r^{\prime} H\right)=n\left(N(a)^{r^{\prime} / r} N^{\prime}(b)^{r / r^{\prime}}\right)
$$

where N is the norm from \widetilde{A} to R and N^{\prime} that from \widetilde{B} to R.
The quantity $l\left(c^{-1}\left(r \times r^{\prime} H^{\prime}\right) c\right)-l\left(c^{-1}\left(r \times r^{\prime} H\right) c\right)$ is the same for all regular $c \in \widetilde{S}_{0}$; it equals $r r^{\prime} \xi\left(S_{0}\right)$.

Our generalization of the Riemann-Roch theorem to V is
Theorem 5.1. If M is a V-divisor, then

$$
l(M)=l\left(M^{\prime}\right)+n(M)-r r^{\prime} \xi\left(S_{0}\right) .
$$

[^6]This theorem agrees with that of Weil when his signature is identically 1 if we take S_{0} to be K and F the field of complex numbers. To verify this agreement, one uses the one-one correspondence between canonical divisors and differentials of K (see [9]).

We could derive Theorem 4.1 from Theorem 5.1 if we used the isomorphism of Theorem 2.3.

Bibliography

1. A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloquium Publications, vol. 24, New York, 1939.
2. E. Artin, C. J. Nesbitt, and R. M. Thrall, Rings with minimum condition, University of Michigan Publications in Mathematics, no. 1, Ann Arbor, 1944.
3. C. Chevalley and A. Weil, Über das Verhalten der Integrale 1. Gattung bei Automorphismen des Funktionenkörpers, Abh. Math. Sem. Univ. Hamburg, vol. 10 (1934), pp. 358-361.
4. M. Deuring, Algebren, Berlin, J. Springer, 1935.
5. H. Hasse, Über \wp^{-}-adische Schiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexer Zahlsysteme, Math. Ann., vol. 104 (1931), pp. 495-534.
6. ——, Zahlentheorie, Berlin, Akademie-Verlag, 1949.
7. E. Hecke, Über ein Fundamentalproblem aus der Theorie der elliptischen Modulfunktionen, Abh. Math. Sem. Univ. Hamburg, vol. 6 (1928), pp. 235-257.
8. -_, Über das Verhalten der Integrale 1. Gattung bei Abbildung, insbesondere in der Theorie der elliptischen Modulfunktionen, Abh. Math. Sem. Univ. Hamburg, vol. 8 (1931), pp. 271-281.
9. K. Iwasawa, Algebraic functions, (mimeographed notes for M67, Fall Term, 19531954, M. I. T., Technology Store, Cambridge 39, Mass., February, 1954).
10. -- On the rings of valuation vectors, Ann. of Math. (2), vol. 57 (1953), pp. 331356.
11. S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium Publications, vol. 27, New York, 1942.
12. O. F. G. Schilling, The theory of valuations, Amer. Math. Soc. Mathematical Surveys, no. 4, New York, 1950.
13. B. L. van der Waerden, Modern algebra, vol. II, New York, F. Ungar Pub. Co., 1950.
14. A. Weil, Über Matrizenringe auf Riemannschen Flächen und den Riemann-Rochschen Satz, Abh. Math. Sem. Univ. Hamburg, vol. 11 (1936), pp. 110-115.
15. -- Généralisation des fonctions abéliennes, J. Math. Pures Appl. (9), vol. 17 (1938), pp. 47-87.
16. E. Witt, Riemann-Rochscher Satz und Z-Funktion im Hyperkomplexen, Math. Ann., vol. 110 (1935), pp. 12-28.
17. C. Chevalley, Introduction to the theory of algebraic functions of one variable, Amer. Math. Soc. Mathematical Surveys, no. 6, New York, 1951.
18. T. Nakayama, Divisionalgebren über diskret bewerteten perfekten Körpern, J. Reine Angew. Math., vol. 178 (1938), pp. 11-13.

Sylvania Applied Research Laboratory
Waltham, Massachusetts

[^0]: Received April 22, 1959; received in revised form August 18, 1960.
 ${ }^{1}$ This paper is an extension of the author's Ph.D. thesis, submitted to Massachusetts Institute of Technology in May, 1955. Part of the work on this paper was done while the author was employed at the Air Force Cambridge Research Center, Bedford, Massachusetts.

[^1]: ${ }^{2}$ By the term "function field," we mean a field K, containing a subfield F, (relatively) algebraically closed in K, and containing an element x not in F, such that $K / F(x)$ has finite degree.
 ${ }^{3}$ A vector space over F is linearly topologized if its additive group is a topological group for which some collection of linear subspaces serves as a fundamental system of neighborhoods of 0 . For the theory of such spaces, including the duality theorem, see Lefschetz [11, pp. 72-83]. The analogue of the "second isomorphism theorem" for these spaces is proved in [9].
 ${ }^{4}$ For the structure theory of algebras assumed in this paper, see, for example, [2].

[^2]: ${ }^{5}$ See, for example, the proof of Theorem 5, p. 61, of [17].
 ${ }^{6}$ For the definition and properties of the reduced trace, see [1, pp. 122-125].
 ${ }^{7} \mathrm{An}$ account of orders and their ideals will be found in [4, Ch. VI].

[^3]: ${ }^{8}$ That (2.1) holds even when x is not a separating element of K was proved by Iwasawa in [10, §3].

[^4]: ${ }^{9}$ For proofs of these properties of the ν-function, see $[10, \S 1]$.

[^5]: ${ }^{10}$ Here we need to assume, with Witt, that $K / F(x)$ is separable.

[^6]: ${ }^{11}$ The different appearing in Witt's definition is misprinted as that of $K / F(x)$ instead of $M_{l} / F(x)$.

