
ON LAST EXIT TIMES

BY"

K. L.

1. The terminology and notation of this paper follow that of my book [1],
where not explicitly explained. Results cited without amplification can also
be found in the book.

Let {xt, >- 0} be a well-separable, measurable Markov chain with the
discrete state space I, the initial distribution {pi} and stationary, standard
transition matrix ((Po’)), i, j e I. Let

(1) ip,(t) PIx(to

for every to => 0 for which the conditional probability is defined; thus
Ok’(t) --- 0 if/ i or i j, by stochastic continuity. We note that if k is
a stable state and k i, the definition (1) differs from the one adopted in [1].

Writing as usual

S(w) lt’x(t, w) il, S(w) closure of S(w),
we define

(2) ,(t, ,w) sup {(w) n [0, t]}

and call it the last exit time from i before time t. The separability and measura-
bility of the process ensure that the corresponding w-function 7(t) is a random
variable. Under the hypothesis that x(0, w) i, the stochastic continuity of
the process implies that ,(t) has a distribution function I’( t) vanishing
at zero, continuous in (0, t), and making a jump of magnitude p,(t) at to
reach the value one. We have clearly, if 0 <_- s <= t,

(3) F(s, t) kp(s)[1 F,(t- s)],

where F is the first entrance time distribution from l to i. We define similarly

F.(s, t) P{’(t, w) <-_ s; x(t, w) / x(0, w) i}
(4)

p(s)p(t- s),

noting that the term corresponding to lc i vanishes. Thus we have

Fi(s, t) ’ F’(s, t).

2. The set of sample functions with x(O, w) i and x(t, vo) j can be
decomposed into subsets according to the location of /i(t, w) in a dyadic parti-
tion of [0, t]. Since the terminating dyadics Iv2-’} form a separability set,
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we have by a familiar argument

(5) p(t) lim p 2" P p t--

Let us write this more suggestively as

(6) p(t) -,lim fo
where

() v 1 1
V-----1

, (t ) d") (),

)(s) 2 pik (---) ipk(s).

This motivates the investigation of )(s) as n - , which we now proceed
with. Forij, ti > 0, ands-> 0, weset

(7) (tt; s) (1/)’_ p(ti) pj(s).

1. Given > O, there exists 7() > 0 such that for any positive integer m
satisfying m <- v() we have

(8) o(m/t; s) -> (1 e)o’(/t; s)

for all s >= O.

Proof. Consider the discrete skeleton Xn n >= O} and write
.(m-v)
ui P{x( (m v), w) k, x(n, w) i,

1 =< n-< m--v-- l lx(0, w) i}.
We have

m--1

pk(mS) p(v) i.g-(’-’) ().
v--O

This is the last entrance formula for the discrete skeleton. Furthermore it
followsJfrom the definitions that

.(m-v) , () >= p,() ,p((m 1)).

Hence we have, using the semigroup property of ((pu)) for a fixed i,

1 m--1

v=0 k

1 m--1, () E () ,((m , ) + )

1 m--1

>-_ p,(v) Pi(8) ,pu(s) p( (m v

We choose v (s) so that if m -< v (s), then

min0__<< p(v) min0_<_<, pj((m v 1)8) ->- 1 .
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This is possible since limt$0 pj(t) 1. Then we have

1bi.(m/t; s) => - m(1 c) pi()pj(s) (1 c).(/t; s).

2. For every i j and every s >__ 0,

exists and is a bounded function of s in any finite interval.

Proof. Let
lim infs0C(ti; s) g(s).

Since the series in (7) is dominated by the series k pk() which converges
uniformly with respect to ti in any finite interval, we see that b.(; s) is con-
tinuous in for each s. Furthermore, it follows from (8) that g. is bounded
in any finite interval since (7, is for every 7. Now for all sufficiently
small we may choose m so that .(m; s) is near g(s) hence the existence
of the limit asserted in 2 follows from the inequality (8) and the definition
of gi(s). The above argument is similar to one by Kolmogorov [4] (cf.
Theorem 2.5 of [1]); indeed Kolmogorov’s theorem corresponds to the case
s 0 here.

If we could show that the convergence in 2 is uniform with respect to s,
or equivalently (see below in 3) that the limit function g is continuous, then
we could pass to the limit in (6) and obtain the desired result. Unfortunately
we have to do this in a rather devious way. Let us denote by P(t), P(t),
G(t), and (.. ’((t) the integrals of p.;, p, g, and from 0 to t.

0.

(9)

We have

P(t) f G(t s)pi(s) ds.

(10)

We note first the following complement to (5) or (6)"

pi(t) => fo .s’(’) (t s) drn) (s)

which is immediate by the sample functior interpretation. We can therefore
integrate (6) under the limit sign by dominated convergence and obtain

(11) P(t) lim f a(..) dr)(t-

It follows from (8) that given any > 0, there exists an n0(s) independent of
s such that for all n > n > n0(s) we have

(12) (’)(s) => (1- e)O)(s)
(.:) converges tofor all s >= 0. The(..), and Gare continuousfunctionsand-,

G by 1 and 2. These are the hypotheses in Dini’s theorem on uniform
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convergence except that the condition of monotonicity is weakened to (12).
The usual proof of Dini’s theorem carries over without ado, establishing that
the convergence of (.. (s) is uniform with respect to s in [0, t] for any finite
t. Now simultaneous passage to the limit of the integrand and integrator in
(11) is permitted, and (9) follows since

(n) fOlim t) p( s) ds.

0.

(13)

The Gi’s satisfy he following system of equations"

Gi(s + t) G(t) G(s) p(t)

for all s >= O, >- O.

Proof. Integrating (10) we see that

Pi’(t) => -,’’(’’) (t s) . (s) => 8)

for any s e (0, t). Since P,(t) t, it follows that )(s) converges
uniformly with respect to n (and also with respect to s in any finite interval).
We have by definition

)(s) p(t) ch’ (u) ip(t) du

!.)(u + t)du ])(s + t) (..), , (t).

Letting n - , we obtain (13) on account of the stated uniform convergence.

5. The G’s have continuous derivatives in [0, satisfying

(14) G(s + t) E G(s) p(t)

for all s > O,t > O.

Proof. An application of Fubini’s theorem on differentiation to the system
(13) yields the system (14) for each > 0 and almost all s (depending on t).
Hence it also holds if s Z and Z8 where Z and Z8 are sets of measure zero.
If we consider G- (>_- 0) as the right-hand lower derivate, then we see directly
from (13), upon taking the proper difference quotients and using Fatou’s
lemma, that the inequality obtained from (14) by changing " "into >- "
holds for all positive s and t. Fix an s e Z; if the left member of (14) is strictly
greater than the right member for a certain value of t, then the same is true
for all greater values of by the semigroup property of ((pkj)). This being
impossible by a previous assertion, the equation (14) is true for s e Z and
allt > 0. Now for arbitrary positive s and twrites s + t’where
0 ( s’ ( s, s’ Z. Applying what we have just proved to Gj(s + and
using the semigroup property again, we see that (14) is true for all positive
s and t. The continuity of G is then a consequence of the system (14); see
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Theorem 2.3 of [1]. Finally, this implies the continuous differentiability of
G. by another well-known theorem of Dini.
We are now ready to state the following result.

THEOREM I. If i j, then

() () p.().( ) , o <__ < ,
where gj is the limit of 4,j(/t; s) as i 0, uniformly with respect to s in any finite
interval. The system (14) holds with G gj and

e(t) e(t)

is continuous and nonincreasing for > O. We have gj(O--) p(O) and
(o+) -p’(o).

Proof. It is permissible to differentiate (9) under the integral sign; the
result is (15) with g. replaced by Gti Using this result, we have by (14)

i.(/t; s) - p( u)Gtk(u) pk(s) ds- pii( u)G(u - s)ds.

When i $ 0, the left member tends to g(s), and the right member tends uni-
formly to G(s) by continuity. Hence gj G’i, and (15) is proved. It
now follows from (14) that if g(s) , then for all > 0,

9i(s--[- t) kg(s)[1 Fk(t)] =< g(s) < .
Summing (15) over j i we see that gi(s) < for a.a. s, hence indeed for
all s > 0; and furthermore g is continuous there by the equation above, since
all F are. It is not difficult to show that g is absolutely continuous and that
for each s and a.a. we have

’( + t) -a()f(t),

where f F. The last assertion of the theorem follows from (15).
Theorem 1 has been proved by Jurkat [2]. His treatment is algebraic-

analytical and does not require the "row condition" that ’.. p(t) 1 for
the transition matrix. The above proof is new and shows more directly the
relation to the "movement" of the Markov chain. The probabilistic sig-
nificance becomes clearer in the next statement.

THEOREM 2. For each t, F.(s, t) as defined in (4) has a continuous derivative
with respect to s given by p,(s)g(t s); and the distribution F(s, t) as defined
in (3) has a continuous density in s given by p,(s)gi(t s). One version of
the conditional probability

P{x(t, w) j x(0, w) i, "/(t, w) sl
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is equal to g(t s)/g(t s); thus as a function of (s, t) it is a function of
the difference s only.

Proof. We have by substituting from (15) and using (14),

F.(s, t) p(u)g(s u)p(t- s)du
ki

p,(u)g(t u) du.

Summing over j i we have

F(s, t) p,(u)g(t u) du.

These formulas establish the first two assertions of the theorem. The last
assertion follows from (15) written in the form

p(t) g(t- s)
g(t s) d. r(s, t).

The dual of Theorem 1 is well known. We give it here for the sake of com-
parison.

EOnEM 3. If i j, then

(16) p(t) p(t- s)f(s) ds, 0 < ,
where f is the continuous derivative (density) of the first entrance time distribu-
tion F. We have

f(s + ) p(s)f(t), s > O, > O.

That

(17)

Proof.
(18) p( t) p( s) dF(s)

is a special case of Theorem II. 11.8 of [1]; that Fj has a continuous deriva-
tive f satisfying (17) can be shown (oral communication by D. G. Austin)
by differentiating the following identity:

(19) 1 F(s + t) p(s)[1 F(t)]

as in 5 above.

3. Since the basic formula (18) can be proved by a probabilistic argument
relying on a special case (where the optional time is the first entrance time) of
the strong Markov property, it is natural to ask if this genre of reasoning can
also be dualized to yield a proof of Theorem 1, at least in the form correspond-
ing to (18). This will now be shown.
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For a given T > 0, we define the reversed Marlcov chain in [0, T] as follows"

(20) xr(t, w) x(T- t, w), 0 <=
_

T.

This has the state space I and the nonstationary transition probabilities given
by

pi(T- t)(21) p*r(s,t;j,i) Plx*r(t,w) i lx*r(s,w) j} p(t s),
p(T 8)

where
pi(t) k pk p(t)

is the absolute distribution of xt The first entrance time distribution from j to i
and starting at time s is given by

*(u, w) i, s < u < x*r(s, w) j}F*r(s, t; j, i) 1 P{xr

1- P{x(T-u,w) i,s_u <= t[x(T- s,w) =j}

(22) 1
1 p(T t)p(t s)

p(T 8)

=1--
1 pkFk’(T-- t,T- s).

p’(T 8) k

We shall prove the following first entrance formula for a Markov chain with
nonstationary transition probabilities, corresponding to (18).

THEOREM 4. Let yt, 0 <- <- T} be a measurable Markov chain with the
state space I and transition probability function

p(s, t; i,j) Ply(t, w) J y(s, w) i}, O<=s<-t<-T,i,jI.

The following assumptions are made:
(i) for fixed t, i, and j, p(s, t; i, j) is right continuous in s <= t;
(ii) there exist a set of probability one and a denumerable dense set R e [0, T]

such that if w , then for all e [0, T), y(t, w) is a limiting value of
y(r, w) as r t, r eR.

(iii) for each and j, P{t St(w) S(w) O.
We have then if i j,O <- s < < T,

(23) p(s, t; i, j) p(u, t; j, j) d F(s, u; i, j),

where
F(s, u; i,j) P{y(t, w) j for some e [s, u] y(s, w) i}.

Remark. The condition (ii) may be roughly described as "right separable
with respect to R." Any process has such a version.

This theorem can be easily modified to yield the strong Markov property for the
process. While this property in the nonstationary case has been discussed by other
authors, I was unable to find a result which would cover the situation here.
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Proof. Let R be enumerated as {rm}, and let {rm, 1 =< m =< n} be ordered
as rn)< < r(). Define

/(s, w) inf {t > s, y(t, w) j},

6()(s, w) inf {r() r) > (s, w); y(r(), w) j}.

Clearly, f and () are optional random variables (see [1] for the definition
which is also valid in the nonstationary case). We shall prove that for almost
all w in the set {w (s, w) =< t}, we have

(24) P{y(t, w) l (s w)} p((s, w), t; j, It)

for all k. This implies (23) when/c j.
To prove (24) we have only to repeat the argument in the stationary case

used in [1]. It follows from (ii) that/(n)(s, w) $ (s, w) for almost all w.
Hence if s <- t’ <= t,

P{y(t, w) l; (s, w) < t’} lim P{y(t, w) k; (n)(s, w) < t’}

lim P{(n)(s,w) .,., }Ply(t, w) k ly(r), w) j}
..(n) t’

lim P{()(s, w) r)}p(r(), t;j,k)
(mn

w:(n)(s,w)<t’}
p((’) (s, w), t; j, l)P(dw)

p((s, w), t; j, k)P(dw).

The truth of this for all t’ __< is equivalent to (24), in view of (iii).
We now apply Theorem 4 to the reversed Markov chain {x’r (t), 0 =< -_< T}

defined in (20). A glance at (21) shows that condition (i) is satisfied. As
for condition (ii) we need only take the version of {xt, 0 _-< < }, denoted
by {x_(t), 0 =< < } in [1], which has the property that

then we have

x_(t,w) liminfx(r,w), 0 < < ;
t,rR

*(r, w)*(t,w) liminf xrXT
t,reR T

where Rr consists of the numbers T r where r e R, 0 =< r __< T. Thus (ii)
is satisfied. It is known that (iii) is true for lx_(t) }, hence also for {x(t) }.
We take p 1 for {xt, >- 0} so that p(t) =- p(t) for all k. Applying

(23) with s 0, interchanging i and j, and substituting from (21) and (22),
we obtain after a trivial simplification"

fot -d,F(T-u,T) fot(25) p(t) p(t u)
p(T u)

p(t u) dGr(u),
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say. Without using the results in 2, we can proceed as follows. Each G
is a nondecreasing continuous function in [0, T] which may be normalized
by making Gr(0) 0. For euch positive integer n, and all T >= n, we have
from (25)

Gr(n <
p(n)

min0__<t__< p(t) < "
Applying Helly’s selection principle first in each [0, n], and then diagonalizing,
we see that there exist a subsequence G(), and a G nondecreasing in [0,
and bounded in every finite interval, such that

lim, G(’’) (u) G(u), 0=<u<.

Passing to the limit in (25), we obtain

(26) p(t) p,(t u) dG(u), O__<t< ,
for which it now appears that.G must be continuous since p. and p are.
is possible to start from (26) and derive further properties of G..
However, we shall look back at Theorem 2 and observe at once that

It

-1 0
Fj(T u, T) gj(u).

p,(T u) Ou

Hence Gr is actually independent of T, and we have identified (26) with (15).
For given p and pi, the uniqueness of the G in (26) is of course a known
fact, as is best seen by taking Laplace transforms. Finally, we remark that
the generalization of (19) to the reversed Markov chain leads to the equa-
tion (13).

4. In an interesting special case the treatment of 3 can be simplified.
This case in rather restrictive for the purposes of this paper, but there a
"duality principle" holds which simplifies the preceding considerations.

Consider a class C of mutually communicating states containing two distinct
states 1 and 2. We set

(27) e fo p(t) dt "k- fo p(t) dt, i C.

It can be shown that 0 < e < for every i, and

(28) e p(t) <-_ e

This is proved in [1; Theorem II. 13.5] for a recurrent class with the inequality
strengthened into an equality; for an arbitrary class the proof requires only
an obvious change which necessitates the inequality in general. The existence
of a positive solution {e} for the system of inequalities (28) has been shown
independently by D. G. Kendall [3] without the explicit formula (27). It is
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known that equality holds in (28) for all i if and only if the class is recurrent,
and then there is a unique positive solution apart from a constant factor. In
a recurrent-positive class we may take e lim_ p(t); then ,c e 1,
and/e} yields the stationary distribution of the Markov chain (on C). If
this is taken to be the initial distribution, then the reversed chain in 3 will
have stationary transition probabilities. The case under discussion here is
more general in the sense that /e} plays the role of a stationary pseudo-
distribution even though ,c e may diverge.
We define the dual matrix *(p)) as follows"

(29) p*.(t) (e/e)p(t), i, j e C; O.

The Markov (semigroup) property of the dual matrix is at once verified, but
(28) shows that it is only substochastic. We may however make it stochastic
by the usual device of adjoining a new state 0 and setting

(t) o,
Thus enlarged, the dual matrix becomes a stochastic transition matrix with,
which we may associate a Markov chain {xt, 0 with state space
C* C {} such that

p(t) P{x*(t, w) j [x*(O, w) i].

Taking a well-separable and measurable version of the dual chain (x, 0,
we can introduce the taboo probabilities

(30) ,p%.(t) Px*(t, w) j;x*(s, w) H, 0 < s < t] x*(O, w) i},

where H is an arbitrary subset of C. Similarly,

F%.(t) P{x*(s, w) j for some s [0, t] x*(0, w) i.
Now we have, generalizing (29),

(31) *,p(t) (e/e) ,p(t).

This follows from an analytic way of defining the probability in (30) we have
in fact

* * *p_(t/np t/n)p t/n) ).

Hence (31) follows from (29).
Let us write the first entrance formula for the dual chain corresponding to

(16)"

wheref is he eonginuous derivagive of Fi. Substituting from (29) we ob-

his is no o be confused wigh he () in
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rain (15) with

(32) g,j(s) (ej/e) f(s).
The formula corresponding to (17) is

f(s + t) _, p*(s)fT(t).
By (31) and (32) this is equivalent to

(ei/e)g(s + t) (e/e) p(s)(e/ek)gi(t)

which is (14).
While the above treatment is not adequate for the general results in 2-3,

it seems worthwhile mentioning that it is already sufficient as a basis for a
derivation of Ornstein’s differentiability theorem [5]. Given the state i, con-
sider the class C in which i belongs. Applying (14) to all j e C {i}, for
which the method of this section suffices, and summing, we obtain

(33) p,(t) + p,(t- s)c(s) as di(t)

where c ’,c-/l g’ is a continuous function and d cp is a non-
decreasing, continuously differentiable function. The integral equation (33)
for pi may be used as the starting point to prove the continuous differentia-
bility of p, ;see [2] or [1].
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