A CLASS OF MULTIPLICATIVE LINEAR FUNCTIONALS ON THE
MEASURE ALGEBRA OF A LOCALLY COMPACT ABELIAN GROUP

BY
EpwiNn HEwitt AND SHizuo KAKUTANI!

1. Introduction

1.1 Group preliminaries. Throughout this paper, “group” means “locally
compact nondiscrete Abelian group”” unless the contrary is explicitly stated,
and G, with elements z, y, u, - - - , will denote such a group. The group of
continuous characters of G (taken as mappings into the multiplicative group
of complex numbers of absolute value 1) will be denoted by X, and elements
of X will be denoted by x, ¢, ---. The word “character’” will mean “con-
tinuous character’” unless the contrary is specified. For an integern > 1, G"
will denote the Cartesian product of G with itself n times. Let R denote the
additive group of real numbers, 7' the multiplicative group {exp(27¢0)}o<o<: ,
Z the group of all integers, and K the field of complex numbers. The group
operation in all groups considered will be written as addition, except for T
and T". For an integer b > 1, the additive group of integers modulo b will
be denoted by Z(b), and the complete direct sum of groups Z(b,), v eI, by
P.1Z(b,). In the special case where I = {1, 2, 3, ---} and all b, have a
single value a, we write D, for this group.

For subsets A and B of @, let A 4+ B be the vector sum of A and B, that is,
theset {r + y:z e A,y eB}. Wewritendford + A4 + --- + A (n times),
forn = 2,3,---. We write —A for the set {—z: xeA}. If A = {a} for
z e, we write A + Basx + B.

1.2 Measure-theoretic preliminaries.’ We shall be concerned with the al-
gebra IM(G) of all complex-valued, bounded, countably additive, regular
Borel measures on G, with setwise linear operations and multiplication of
two measures X and u in M(GF) defined by convolution:

1921 xx p(E) = fa ME — 2) du(z)

for all Borel sets E in G.* The following evident fact will be useful. For a
Borel set E C G and an integer n > 1, let E be the subset of G" defined
by B = {(21, -+, @)1+ -+ +a,eE}. Thenfor), -+, \ e M(Q),
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1 The work of the first named author was supported in part by the U. S. Air Force
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2 For all group-theoretic notions and facts used without explanation, see [9].

¢ For all measure-theoretic notions and facts used without explanation, see [2].

4 Karl R. Stromberg has recently shown that \ = u is regular and hence is in YT(G)
if A and p are in MNU(G) [14].

553



554 EDWIN HEWITT AND SHIZUO KAKUTANI

we have
1.2.2 Mo kM (E) = N X -+ X M(E™),

where Ay X -+ X M, is the direct produet measure of A\;, ---, X\, on G".
For X ¢ M (@), let | A | be defined for each Borel set E < G by

IN(B) = sup {371 | N4, |: 4;n A4, = Bforj = k;
Uri4;=E; A, -+, A, are Borel sets}.

Then | A | is in 9 (G) and is the smallest nonnegative majorant of X in M (G).
We define

124 N = |2 ().

For t e, let €, be the Borel measure on G such that ¢,(E) = 1ifteFE
and &,(F) = 0ift ¢ E. Plainly ¢, is an element of 9 (G). With the algebraic
operations defined above and the norm 1.2.4, (@) is a commutative Banach
algebra, with unit element & . It is easy to see that every A in M (&) can be
uniquely written in the form A = D oy @, &, + A\, where the a, are complex
numbers, D w1 | @, | < o, and \,({z}) = 0 for all z ¢ @. The measure A, is
called the continuous part of A, and if A = \,, X is called a continuous measure.

The carrier C(\) of a measure A e M(G) is defined as the set {x: x G,
| N|(A4) > 0 for all neighborhoods 4 of z}. For a closed subset F of G, we
write MM (F') for the set of all measures A e M(G) for which C(\) C F, o .(F)
for the set of all continuous measures in 9M(F), and N (F) for the set of all
measures in M (F') having zero continuous part. It is easy to see that IN(F),
M(F), and N (F) are closed linear subspaces of M(G), and that M(F) is
the direct sum of 9, (F) and 9, (F).

For A, u e M(G), we write A << u to mean that | A | is absolutely continuous
with respect to | u |, and A L pto mean that | X | and | u | are mutually singular.

1.2.3

1.3. Let S be the compact Hausdorff space of all nonzero multiplicative
linear functionals on 9M(G), with the usual weak topology as linear functionals
on M(G). The structure of S is formidably complicated. For x ¢ X, the
mapping

131 Ao A(x) = f(, () d\(z)

is obviously an element of S, and if x; # x2, then &(x1) # €:(x2) for some
teG. Thus X is embedded in S. The topology of X as a subspace of S
agrees with its topology as the character group of G.5 Yu. A. Sreider [13]

8 One way to describe the usual topology of X is to define it as the weakest topology
under which all functions & are continuous, where the measures « in 9 (G) are absolutely
continuous with respect to Haar measure on @ ([6], pp. 134-135). Since every function
X is continuous in this topology, we see that X retains its usual topology when embedded
in &.
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has given a concrete construction of the multiplicative linear functionals
on M(G) for the case in which G has a countable basis for open sets. His
construction is valid for an arbitrary G. It is too general to yield by itself
much specific information about S.

1.4. Sreider has also produced a curious example of a multiplicative linear
functional on IM(R) [12]. This multiplicative linear functional has the
form yu(R) for every u absolutely continuous with respect to Lebesgue’s
singular measure on Cantor’s ternary set, where v is a complex number such
that 0 < |y | < 1. In fact, one has

14.1 lim f exp (2713"z) du(z) = yu(R)
p—>0 Vo0

for all such u. Then M can be taken as any point in N7y ({2737} 5=:)", the
closure being taken in S for the algebra 9M(R).

In the present paper, we give two constructions of classes of multiplicative
linear functionals on M (G). The first of these generalizes the construction of
asymmetric multiplicative linear functionals in 9(@&), and the second displays
in much stronger form the phenomenon produced by Sreider.

1.5 DeFINITION. A subset A of G is said to be independent if, whenever
2y, + -, X, are distinet elements of 4 and ¢y, + - - , ¢, are integers, the equality
o+ -+ guxn = 0implies that ¢ = -+ = ¢, = 0. Let a be an integer
> 1. A subset A of G is said to be a-independent if all elements of A have
order a, and if, whenever ; , - - - , x, are distinct elements of A and g1, - -+ , g»
are integers, the equality ¢12; + --+ + ¢u%, = O implies ¢ = ¢ = -+ =
g» = 0 (mod a).

Qur first main result follows.

1.6 TaEOREM. Let G be any group, and let P be any closed subset of G that is
etther independent or a-independent for some integer @ > 1. Let L be any linear

functional of norm 1 on the linear space M(Pu (—P)) suchthatif 2, -+ , T
are elements of P (not mecessarily distinct), ¢, -+, ¢ are inlegers, and
Q1 S R gn Tn = 0, then

1.6.1 L(esy)®L(e)® -+ L(e,,)™ = 1.

Then there is a multiplicative linear functional M on M (QG) such that L(\) =
M(\) forall N e M(Pu (—P)). If every neighborhood of 0in G contains an ele-
ment of infinite order, then every nonvoid open subset of G contains an independent
set homeomorphic to Cantor’s ternary set. If some neighborhood of 0 in G con-
tains only elements of finite order, then every neighborhood of 0 in G contains an
a-independent set A, for someinteger a > 1, homeomorphic to Cantor’sternary set,
and every monvoid open subset of G contains a translate P of A for
which (P u (—P)) has the property stated above.
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1.7. To state our second main result, we define sets of complex numbers
Ty and Ty for every group G. If every neighborhood of 0 in G contains an
element of infinite order, then

To=1{z:2¢K,|2| =1 and T\={z:2¢K,|z| = 1}.

If there is a neighborhood of 0 in G containing only elements of finite order,
then there is at least one integer ¢ > 1 such that every neighborhood of 0
in @ contains a replica of D, (for the proof of this fact, see 2.2 infra). Select
any such a, let Ty = {1, exp(2ni/a), exp(4ni/a), - -, exp(2(a — 1)mi/a)},
and let T'; be the convex hull in K of T .

1.8 TurorREM. Let Q be any subset of G homeomorphic to Cantor’s ternary
set such that every continuous function defined on Q with values in T is arbitrarily
uniformly approximable by characters of G. Let L be any linear functional
on M(Q) such that

1.8.1 L(\) ey if NeM(Q), A20,and N@) =1
and
1.8.2 L(e;) €Ty if zeQ.

Then there is a multiplicative linear functional M e X~ such that M(\) = L()\)
for all N e M(Q). Furthermore, every nonvoid open subset of G contains a set Q
of the sort described.

1.9. In §2, we show that every nonvoid open subset of an arbitrary group
G contains a set P as described in Theorem 1.6. The proof of Theorem 1.6
is given in §3, and various inferences are drawn from Theorem 1.6 in §4. In
§5, we construct sets @ as required in Theorem 1.8, and in §6 we give an
analogue of Kronecker’s approximation theorem for finite sets of measures
on Q. This theorem is applied in §7 to prove Theorem 1.8. We are indebted
to W. Rudin, K. R. Stromberg, and J. H. Williamson, respectively, for the
privilege of reading [11], [14], and [16] in manuscript form.

2. Construction of sets for Theorem 1.6

2.1. Suppose that every neighborhood of 0 in G contains an element of
infinite order. Rudin has shown [10] that every neighborhood U of 0 in G
contains an independent perfect set homeomorphic to Cantor’s ternary set,®
which we denote by A.” Now let z be any element of G. Let P = z + A.
If x has finite order, it is obvious that P is an independent set. If x has
infinite order, let 4; and A, be perfect complementary subsets of A. Assume

¢ The first construction of perfect independent sets in R is due to J. v. Neumann [8].
v. Neumann’s set actually consists of algebraically independent elements.

7 If G'is nonmetrizable, then Rudin’s construction can be modified in an obvious way
to yield perfect independent sets not necessarily homeomorphic to Cantor’s ternary set.
This generalization is unimportant for our present purposes.
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that neither x + A; nor # 4+ A, is an independent set. Then we
have m;z = ¢\Vaf +...+ qf,jj)a:.’;.),where theai” arein 4;, the g5’ and m;
are integers, andm; = 0 (j = 1, 2). It follows that m; ms 2z is a linear com-
bination of elements from A, and also a linear combination of elements from
A, . 'This can oceur only if m; mex = 0, which is impossible. Hence one of
the sets x + A, ¢ + A.isindependent. We choose P to be an independent
set z + A, (j = 1or2). Since the neighborhood U of 0 is arbitrary, we find
that every nonvoid open subset of G contains an independent set homeo-
morphic to Cantor’s ternary set.

2.2. Suppose now that there is a neighborhood of 0 in G containing only
elements of finite order. Here a little care is needed in constructing our
sets P. Let U be any neighborhood of 0 in G with compact closure and let
y be any element in @ having finite order m. Let V = U + {0, 4}, W =
Vu(—=V),and Gy = Us_; nW. Clearly Gyis a compactly generated open and
closed subgroup of G. The structure theorem of Pontryagin-van Kampen
(9], p. 274, Theorem 51) shows that Gy is the direct sum Z' + G, , where G,
is compact. Note that y e G;. Thus G, is an infinite compact group with a
neighborhood of 0 containing only elements of finite order. Rudin ([10], p.
161, Lemma 3) has shown that the orders of all elements in G; are bounded.
Hence the same is true of the character group X; of G; . As a discrete Abelian
group of bounded order, X; is the algebraic direct sum of cyclic groups of
bounded order (see for example [1], p. 44, Theorem 11.2). Therefore G is
the complete direct sum of cyclic groups of bounded order, G4 = P, Z(b.),
where I is an infinite index class. The topological structure of G, as
a Cartesian product of finite discrete spaces and the fact that there are only
finitely many distinct integers b, show that every neighborhood of 0 in G,
contains a replica of the group D, , for some fixed integer a > 1.

2.3. Let D, be represented as the group of all Z(a)-valued functions
2(w) defined on a countably infinite set @, with the usual addition and the
Cartesian product topology. We may suppose that Q is the set of all finite
dyadic systems: @ = Uy—; Q. , where Q, consists of 2" elements w,,,...,s, , €ach
n:is0or 1for< = 1, - - - , n, and the sets @, are pairwise disjoint. Let Y = {y}
be a realization of Cantor’s ternary set as the set of all infinite dyadic sequences
with the usual topology: y = (m(y), n(y), -+ ), where 5;(y) is 0 or 1 for
j=1,2,---. Put 2,(w) = 1if @ = wyy,...,q, for some n, and z,(w) = 0
otherwise. Then it is easy to see that the mapping y — =z, is a
homeomorphism of Y into D,. Write the set {x,},.r as A. Suppose that
Xy, , *** 5 Ly, are distinet elements of 4 and that 12y, + -+ + qmay,, = 0,
where ¢1, - - - , ¢n are integers. There is obviously a positive integer n such
that the elements (m(y;), -+, 7.(y;)) €, are all distinct. Hence the
only entry in the sum ¢i &y, + -+ + @n %y, at (m(ys), +* , m(y;)) s ¢;.
Thus 4 is a-independent in D,. (For a similar construction, see [7].)
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2.4. Now let y be any element of finite order in G. We have already
constructed Gy so as to contain y. A neighborhood of y in G; (and hence in
G, since G is open and closed) consists of all € G; such that z, = y, for all
¢ in a certain finite subset {u1, -+, tm} of the index class I. Let y’ be the
element of G; equal to y on this finite set and equal to 0 for all other values
of vel. Let D, be a replica of the group D, contained in the subgroup of Gy
consisting of all 2 such that z,, = -+ = z,, = 0. Let A’ be any subset
of D, of the sort constructed in 2.3. In this case, let P = y' 4 A’. The
elements of P need not have order a, so that P need not be a-independent.
However, P has the important property that no multiple of y' is in the group
D, unless it is equal to 0.

Finally, let y be any element of G having infinite order. Plainly no multiple
of y except 0-y liesin G;. Let D. be any replica of D, contained in a fixed
neighborhood U of 0 in G, let A’ be a subset of D, as constructed in 2.3,
and let P = y 4+ A’.

2.5. We summarize the constructions of 2.3 and 2.4. Suppose that there
is a neighborhood of 0 in G containing only elements of finite order. Then
every neighborhood of 0 in G contains a set P homeomorphic to Cantor’s
ternary set which is a-independent. Let H be an open subset of G not con-
taining 0. Then H contains a compact set P of the form w + A, where
no multiple of w different from 0 lies in the subgroup generated by 4, and
where A is a-independent and homeomorphic to Cantor’s ternary set.

2.6. In2.1-2.5, we have given rules for constructing a set P in an arbitrary
nonvoid open subset of a group G. Throughout §3, and elsewhere where
Theorem 1.6 is referred to, the set P will be taken to be one of the sets de-
scribed in 2.1 or 2.5. If G has arbitrarily small elements of infinite order,
we use the construction of 2.1; if not, we use 2.5. For all of the sets P con-
structed, we have Pn (—P) = @ unless all elements of P have order 2, in
which case it is obvious that P = —P.

3. Proof of Theorem 1.6

3.1. We break up the proof into several steps. The basic idea is simple.
The elementary theory of commutative Banach algebras shows that to prove
Theorem 1.6, we need only show that the set {u — L(u)eo}, u e M(Pu (—P)),
is contained in some ideal of M(G). That is, we must prove that the identity

3.1.1 i1 (uj — L(uj)eo) * aj = &

canhold forno uy, « -+, pm in M(Pu (—P)) and oz, - -+ , am in M(G). We
make several reductions to put the left side of 3.1.1 into tractable form, from
which we will prove that 3.1.1 is impossible. Since y; is a linear combination
of nonnegative measures and L is linear, we may obviously suppose that each
u; in 3.1.1 is nonnegative and has total measure 1. Our second reduction is
to the case in which the u;’s have pairwise disjoint carriers. For this, we
need a preliminary result.
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3.2 THEOREM. Let B be any closed subset of an arbitrary group G,

let w1, * -+, pm be any nonnegative measures in M(B), and let ¢ be any positive
number. Then there are nonnegative measures N1, + -+ , A tn M(B) with pair-
wise disjoint carriers, and nonnegative real numbers e? (G =1,-, m;
k=1,--+,n), such that®

3.2.1 s — 2a et || < (G=1,,m).

Proof. Letu = u + -+ + um. All of the u,’s are absolutely continuous
with respect to u and have nonnegative finite-valued Radon-Nikodym deriva-
tives p; with respect to u. For each p; there is a simple Borel measurable
function o; defined on B such that 0 = ¢; < p; and

3.22 [ @) = @ du@ <n/2 G =1, m).
For every ordered m-tuple of real numbers (a;, « - , an), let

E(ai, - ,am) ={x:2€B, gj(x) = a;forj =1, ---,m}. There are only
a finite number of nonvoid sets E(ai, -+, am), say E1, -+, E,. These

sets are pairwise disjoint, and their union is B.
Let ¢4 be the characteristic function of the set By (k = 1, ---,n). There
are (obviously unique) nonnegative numbers cf” such that

3.2.3 o; = 2iact e G=1,-,m).
Let ¢ = max {¢{” + -+ + ¢’:j =1, ---,m}. Since uis a regular measure,
there are compact subsets F of Ej such that

3.2.4 [J(E}c) < M(Fk) + 77/20 (k = 1, o ,n).

Let ¥, be the characteristic function of Fj, and A the measure in 9 (B)
defined by
xk(Y)=”(FknY) (k:]_,...’n)

for Borel sets ¥ < G. Plainly the sets C(\1), -+, C(\,) are pairwise dis™
joint. Relations 3.2.2, 3.2.3, and 3.2.4 imply that

H M = Zl?=1 c,ﬁj))\k H = Mj(B) - El?:-l Clﬁj)M(B)
= L[Pj(x) - Uj(ﬂﬁ)] du(z) + /B [217;1 Cly)(ﬁok(x) - 'Pk(m))] du(z)

<#/24+c/2c=n (G=1,---,m).
This is 3.2.1, which we wished to prove.

3.3 LemMa. If 3.1.1 holds, then there are nonnegative measures Ny, *++ , Aa
n M(Pu (—P)) and measures By, « - - , Bn tn M(G) such that
3.3.1 D it (v — L&) * B = &,

8 The following result holds for measures on any locally compact Hausdorff space;
we state it only for the case needed below.
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and such that the sets C(\y), + -+, C(\.) are patrwise disjoint and C(\;) 7s con-
tatned in P or in —P (k = 1, -+, n).

Proof. In Theorem 3.2,let B = Pu (—P),andlet n = (2> 7o || o; )™
It is clear that in constructing the A:’s of Theorem 3.2, we may suppose that
C(\) cPorC(\) € —Pfork =1, ,n (recall that Pn (—P) =
or P = —P). A simple computation shows that
lleo — [oia (v — L) &) * (s ek’a)] |

= [| 207 (5 — Llpg)eo) % ay — 25mr [(ier cb”M)
— Lk e W)l x o || < 20 [l 05 1) =
(recall that || L| = 1). Hence the measure
2oia (v — L(W)eo) * (27 ei’ay)

has an inverse, say 8, in M (G). Consequently 3.3.1 holds with 8, =
(Za=lcl(c7)a1) *6(k = 1,--+, n).
‘We now make a third reduction.

3.4 LemMA. If 3.3.1 holds, then there are continuous nonnegative measures
Vi, Ya tn M(Pu (—P)), poinis x1, -+, 2, in Pu (—P), and meas-
UTES A1y *** 5 Omy PBr, ", Bn tn M(G) such that

341 270 (vi— L(vi)eo) * aj + 2 ie (m, — L(ez)e0) * i = &.

The sets C(v1), +++, Clym), {21}, -+, {xa} are pasrwise disjoint, and each s
contained in P or in —P.

Proof. The measure M in 3.3.1 has the form vi + 271 tie. , where

~1 is continuous, the ¢§* are positive or zero, and St <o b=1, -+ ,n)
The norm || s — (i + D 1%t §’°)ez(k>) | = 2 fnis1 t can be made arbitrarily

small by proper choice of the Nz (k = 1, -+, n). The proof now follows
that of Lemma 3.3. The disjointness and inclusion relations asserted follow
from the inclusions

Conu faf?, - e} ©Cm)  (h=1,---,n).

3.5 LemMA. Let v be any monnegative continuous measure in IM(G) such
that v(G) = 1, and let z be any complex number such that | z| < 1. Let u be
any posttive number less than 2. Then there are complex numbers u and v such
that |u| = |v| = 1 and nonnegative continuous measures & and &
with 8,(G) = 8(G) = 1, C(6:) n C(8:) = B, and C(6:) u C(8:) < C(v), such
that®

3.5.1 |38 — ueo) + 3(8 — veo) — (v — 2&) || < n.
Proof. For z = 0, let » and v be the unique complex numbers such that
|u| =|v]|=1andz = 3(u +v). Forz=0,letu = —1,v» = 1. Since

9 See footnote 8.
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v is continuous, there is a measurable subset 4 of C(v) such that y(4) = 3.
Since v is regular, there are a compact subset F; of A and a compact subset
Fy of C(v) n A’ such that v(4 n F1) < i, v(Cly) n A nF:) < iy Let
8; be the measure such that 8;(E) = v(F;n E)(v(F;)) ™ for Borel sets E cG.
Then we have

| $(60 — ueo) + (8 — veo) — (v — 2&0) ||
= v(F)é + v(Fa)ée — v || + || 380 — v(F1)é, ||

+ 1380 — y(Fo)é || < in+in+ 31 =
which is 3.5.1.

3.6 LEmma. If 3.4.1 holds, there are continuous nomnegative measures
81, + -, 0q €ach of total measure 1, complex numbers a, , -« - , aq each of absolute
value 1, and measures wy, «++ , g 10 M(G), such that

3.6.1 Z‘{.l (51 - E‘o) * Ty + ZI?=1 (8;,;,, - L(S,;k)é‘o) *Bk = & .

The sets C(81), -+, C(8y), {x1}, - -, {xa} are pairwise disjoint, and each s
contained in P or in —P.

Proof. There is no loss of generality in supposing that v; % 0 for
j=1,---, m, in 3.4.1. Writing (y; — L(y;)e) *a; as

Mvs s — LAl 17y e0) * lvi ll e,
we may also suppose that v;(G) = 1 (j = 1,---, m). Since | L] =

we then have | L(y;) | £ 1. If | L(v;) | = 1, we set v; equal to a single
measure §; and write L(y;) = a;. If | L(y;)| < 1, we apply Lemma 3.5,
choosing complex numbers %; and v; such that |u; | = |v;| = 1, L(v;) =

1(u; + v;), and finding measures 85" and 5" such that
3055 — u; &) + 3(8° — v;e0) — (v; — L)) || < n.

Choosing 7 sufficiently small, using the argument of Lemma 3.3, and re-
numbering the &’s, we obtain 3.6.1.

3.7. We summarize our present situation. If Theorem 1.6 fails, there exist

continuous nonnegative measures A\, -+, An in M(P u (—P)), points
Ty, , %, in Pu (—P), complex numbers a;, « -+, a» of absolute value 1,
and measures ai, *** , m, B1, - , Bn in M(G) such that

371 20 (N = aj&) xaj + 2ia (6n, — L(en)e0) %8 = &.

The sets C(\1), + -+, C(Am), {21}, - -+, {x.} are pairwise disjoint and each is

contained in P or in —P. We will prove that 3.7.1 cannot hold.

3.8 THEOREM. Let p be any positive integer, and all notation as in 3.7. Then™

10 Products and powers of measures are convolution products, here and below.
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s I 07 4 s o
T 2+ Headet + oo+ ey =

Proof. Let w denote the measure written on the left side of 3.8.1. The
general term of = is

382 ALy, vy lm)B(ky, -+, k)M % oo % AP % Shrmite ke
where0 =, =p—-1(G=1:+ ,m),0=k=p—-1@(=1,---,n),

3.8.3 Ay, -y ly) = a7 o g0,
and
3.8.4 B(ky, «++ ,ky) = L(es)" 7"+ L(e,, )"
We first show that

PAEURERETS i Ekyzy oo dhpon L Mikox )\,l,{'” * Eklgy e Hhhn
unless i, = Iy, -+, lm = ln. With no loss of generality, we suppose that
I, > I and will prove that

Mg a M e (COME % - xNmxg,)) =01

where for brevity we have written ky @y + -+ + kn@n = u, k1o 4 -+ +

k2. = %. This of course will prove that

Miw N we, LS *)\,l,f”*eu'.
Write C(\;) = P; (j =1, ---,m). It is easy to see that

COMiw oo % NP wew) =UPi+ v + b P+ o

As pointed out in 1.2.2, we have
385 M- *aMrwe(lPi+ o+ W Putw)

=MX s XNy X XA X o X Mty X €u(E),
where E is the set of all points (z®, - R TR ™, xﬁﬁ), u) in
QM guch that 28 e Py (s =1, -++,1;;5 =1, -+ ,m) and
o+ ol a4 +ﬂm+uduﬂ+~-+um+w.

For every point in E, therefore, we have

1 )
386 o+ - +al) 44”4+ Fal fu
(1 1) (m) (m)
=y’ oty e F e el
1t This does not assert that
Mis.oxabmxe, and AV e\ ke

have disjoint carriers, which is a much stronger condition than mutual singularity.
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or

387 TP - Sy 4 T2 - Ny - =0,

where the z{” and y are in P; (j = 1, .-+, m). Suppose first that P is
independent or a-independent in the sense of 1.5. Then, since Py, +++ , Pm,
{xd}, - -+, {x,} are pairwise disjoint and each is contained in P or in — P, it is
clear that

3.8.8 S — SH y® =

if 3.8.7 is to hold. If the equality x(l) = =" holds for no distinet s and ¢,
1<s=1l,1=t=1,then each 2{° must combine with a distinct 3¢’ in
order for 3.8.8 to hold. Since L, > I , this is impossible, and we have
2P = 2 or 2’ = —2z{ for some distinct s and ¢. Fubini’s theorem and
the cont1nu1ty of M\ now show that the right side of 3.8.5 is zero, which we
wished to prove.

If P has the form w + A as in 2.5, then the equality 3.8.6 leads to the
equality

No+ 22l 4+ -+ +u=Nwt+ Dyl + -+ 2y 4+

where N and N’ are integers, the 2’s and ’s lie in A, and % and %’ are now
linear combinations of elements of A. It follows that Nw = N'w, and then
we argue as before to prove that the right side of 3.8.5 is zero.

Now look at the measures

1 1 I 1 ,
)\11 L IRECIEE )\mm * Ekyzy+ee o Ahonzn a:nd )\1 L JCIICEE 3 )\mm * Ekyzyteeetopzn o

which have carriers

C=l1P1+ ”'+lum+(k1xl+"'+knxn)
and

D=04LP+ - 4 1pPut (kras+ - + kna),

respectively, and suppose that ky 21 + -« + kp 2, 5 k1o + - + kn 2a

Assume that C n D = @. If P is independent or a-independent, then the dis-
jointness of Py, -++, Pu, {21}, -+, {2}, and the fact that each P; is con-
tained in P or in — P, give an immediate contradiction. Suppose that P has
the form w + A as in 2.5 and that C n D = @. Write a¢ = 2 — w

(k=1,---,n). Then there are points y{” and 2!’ in P, — w < A such
that

Wt lw+ oyl ) e eyl
289 4+ (b4 - 4 k)w + kot + - + kaan

=0+ Fl)w+ 2P+ - +z(1)+.--+z§m)+“'+z§:)
+ (bt 4 o+ EDw A kiar 4 -+ ko

The sets Py — w, -+ - , Pm — w, {z1}, -+ - , {x} are obviously pairwise dis-
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joint, and each is contained in A or in —A. No multiple of w except for 0
is in the group generated by A. Equahty 3.8.9 therefore implies that

(b + ; s k)w = (k1 + - 4+ k )w, and the propertles of A imply that
Icllx; = k;xl,---,kx: = knaxy. Hence iz + -+« + kuza =
kiay 4+ -+ + kn @, , which is a contradiction. The measures

PRI LN Ehior o tbzy DA Ak ook AT x Ekizy+--- +hizn

therefore have disjoint carriersif ki@ + -+« + kn@n = kiay + -+ + kn Zn
and are certainly singular with respect to each other.

Condltlon 1 6.1 on the linear functlonal L shows that B(Ic1 y o, k) =
Bkiy -y kn) i kyay + - 4 kn@o = by + -+ 4 kn 2a .

We have thus proved that every pair of distinct measures appearing in the
expansion of  as a sum of monomials Af* % -+« & A\ % Exyay 4. 4kyz, ATE MOULU-
ally singular, and that equal measures appear with equal coefficients. The
coefficients A(ly, «++, ln)B(ky, - -+, ks) all have absolute value 1. Since
the norm of a sum of pairwise singular measures is the sum of the norms,
the equality 3.8.1 is proved.

3.9 Completion of the proof of Theorem 1.6. Multiply both sides of the
equality 3.7.1 by the measure = introduced in Theorem 3.8. An elementary
computation then gives

stl o * ()\J —a; eo)nsul 8] (>\a p + as p-z +‘ R af“lé‘o)

39.1 * H¢=-1 (sp_l + L(ezc)sx -+ L(ezg)rleo)
o + erc;l Blc * (&Lk L(ezk)p) * Hm—l ()\p_l + Qs p-—Z + e + af—lé‘o)
s [ bt e (€270 + L(ez,)é‘p_z oo+ L(eg,) o) =

The usual norm inequalities show at once that the norm of the left side of
3.9.1 is less than or equal to 2p™ "™ (2 7 |l a; || + 25t |l Be II), & contra-
diction if p is sufficiently large. This completes the proof of Theorem 1.6.

4. Some consequences of Theorem 1.6

4.1 TarorEM. Let L be any linear functional on the lnear space
M(P u (—P)) of norm not exceeding 1. Then there is a multiplicative linear
Sfunctional M on M(G) that agrees with L on 9M.(Pu (—P)).

Proof. Let ¢ be any character of G, continuous or discontinuous. For

=N+ DT, e M(PU (—P)),let Li(\) = LO\) + Dt ar ().
Since M (P u (—P)) is the direct sum of M, (Pu (—P)) and My(Pu (—P)),
L, is well-defined. Plainly, L; satisfies the hypotheses of Theorem 1.6.

4.2 TurorREM. Let f be any Borel measurable complex-valued function of abso-
lute value not exceeding 1, defined on Pu (—P). Then there is a multiplicative
linear functional M on (G such that

MO = fa f(@) d\(z) for all A e M(P u (—P)).
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This fact follows at once from Theorem 4.1.

4.3. Theorem 4.2 can be regarded as a partial generalization of the theorem
of Yu. A. Sreider referred to in 1.4, except for the fact that the M of Theorem
4.2 need not liein X~. In §7, we shall show that a similar result can be ob-
tained with M ¢ X~ if Pu (—P) is replaced by a more special set Q.

The following fact is a slight improvement over previously obtained results

(131, [11], [16]).
4.4 TarorREM. The algebra M(G) is asymmelric. In fact, there is a multi-

plicative linear functional M on M(G) such that M(N) = M(\) for
N eM(Pu (—P)) if and only if M(G@) = 0.

Proof. In Theorem 4.2, let f be the function identically equal to
i (# = —1). Then there is a multiplicative linear functional M on IN(G)
such that M(\) = i\ (G) forall A e M, (Pu (—P)). Since \(G) = \(@) and
C(\) € Pu (—P), the present theorem will be proved as soon as we show
that there are nonzero continuous measures on Pu (—P). Taking P homeo-
morphic to Cantor’s ternary set, we see that P u (—P) is also homeomorphic
to Cantor’s ternary set, and hence carries a large number of nonzero con-
tinuous positive measures.

The following theorem is also a slight generalization of known facts.

4.5 THEOREM. There is a measure u with carriter P u (—P) u {0} such that
| & | is bounded away from zero on X and u has no inverse in M(G).”

Proof. Let Pand Abeasin 4.4, andlet u = N\ + X — 2ig.

4.6 Note. Condition 1.6.1, which is evidently necessary for Theorem 1.6,
imposes a severe restriction on L(e,) for x ¢ Pu (—P). This is quite natural,
since any multiplicative linear functional M is a character of G (continuous or
discontinuous) when applied to the point measures ¢, (2 € G).

47 THEOREM. Let M\, :--, N, be patrwise singular measures in
M(Pu (—=P)), forwhich || M| = -+ = || \a|| = 1. Then thejoint spectrum
of My -+, Aa 18 the product of n unit disks {z: 2z e K, | 2| < 1}. That is, for
every n-tuple of complex numbers (21, -+, 2.) for which || = 1, -+,
| 2o | = 1, there is a multiplicative linear functional M on M(G) such that
M()\l) =21, """ ,M()\n) = 2n .

Proof. Consider the linear space 91, spanned by A;, - - - , A\, and the linear
functional Ly on M defined by Lo(ai M+ -+ + @ \) = @121+ -+ + an2a .
The norm of Lois max (| 21|, -+, | 2. |), and by the Hahn-Banach theorem,
there is a linear extension L of L, over 9. (P u (—P)) with the same norm.
Now apply Theorem 4.1.

12 The last assertion is due to Wiener and Pitt [15] for the case G = R. The con-
struction given by Wiener and Pitt is difficult to follow. The first satisfactory proof,
for G = R, is due to Srelder [13].
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4.8 THEOREM. Let k and I be distinct positive integers, let Ny, - -+ , A, and

B1, -, i be nonnegative measures in M (Pu (—P)), and let = and p be arbi-
trary elements of norm 1 in M(Q) that have inverses. Then the measures
A=N*-cxlgxmandpu = u * -+ %y * p are mutually singular.

Proof. Let t be a real number such that 0 < ¢ < 1, and let M be a multi-
plicative linear functional on 9M(G) that is equal to ¢(G) for all
o eIM.(Pu (—P)). Theorem 4.1 shows that such an M exists. Sreider [13]
has shown that M can be represented by integration with respect to a general-
ized character x,(x) of G, which is defined as follows. For every ¢ ¢ M (G),
xo is a Borel measurable function™ defined on @ such that

(1) o1 K o implies x,,(z) = x.(x) a. e. (| o1]);

(2) supeence) €88 SUPse | X0 () [} = 1;

(3) x(2)x(y) = xe( 4 y) for almost all points (z, y) € G* with respect
too X oy

(4) M(o) = [¢x.(2) do(x) for all ¢ e M(G).

In examining the measures A and u for singularity, we lose no generality in
supposing that all \; and u; have total measure 1. Assume that there is a
nonzero, nonnegative measure § such that § << A and 8 << u. Then we have
xs(x) = xa(x) a.e. (§) and xs(x) = x.(z) a. e. (§), by condition (1). Hence
there is a Borel set E such that A\(E) > 0, u(E) > 0, and xa(z) = xu(z) for
allz e E. Wealso have M(\) = t*M (x) and M (p) = t!M(p). It is easy to
see from this that x\(z) = t*M (x) a.e. (| A |) and xu(z) = t'M(p) a.e. (| u|),
in view of condition (4). It follows that t*M (r) = t'M(p). Since0 < ¢ <1
and | M(w) | = | M(p) | = 1, this is impossible.

4.9 THEOREM. Let N and u be monzero nonnegative measures 1in
M(Pu (—P)). Then N xpu ¢ M, (Pu (—P)).

Proof. Let M be the multiplicative linear functional used in the proof of
Theorem 4.8. Wehave M(\ xu) = M(\)-M(u) = ENGu(G) = £\ % u(G).
If N % u were in M, (Pu (—P)), we would have M (N * u) = I\ * u(G), an im-
possibility.

5. Construction of the set Q for Theorem 1.8

The sets P that figure in Theorem 1.6 are pathological, to be sure, but they
are constructible explicitly in groups such as R and D, , and they are charac-
terized essentially by the condition of independence or a-independence (barring
the special case discussed in 2.5). If we construct more special sets, then we
can expect even more bizarre results, like Theorem 1.8. We proceed to the
construction of sets @ in arbitrary groups.

13 Karl R. Stromberg has pointed out that the functions x, can all be taken Borel
measurable, and not merely measurable with respect to l v l, as in Srelder’s original con-
struction.
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5.1. Let G be a group, and let Vy, ---, V, be arbitrary nonvoid, pairwise
disjoint open subsets of G. We wish to find points z; e V; (j = 1, ---, n)
with the following property. Let 2, ---, 2, be any complex numbers that

are values of (continuous) characters of G, and let # be any positive number.
Then a character x ¢ X can be found such that | x(z;) — 2;| < nforj =1,

-, n. If this can be done, we say that G is Kroneckerian. For the con-
struction of the sets @, we need to show that certain groups are Kroneckerian,
as follows.

5.2. If G = R, then in V; we can choose z; such that z; , - - - , @, are ration-
ally independent. Applying Kronecker’s approximation theorem, we see that
R is Kroneckerian.

5.3. Suppose next that G is compact and that every neighborhood of 0 in
G contains an element of infinite order. Let p1, --- , p. be integers not all
zero, and let f be the function with domain G" and range contained in @ such
that f(ya,  ++ , ¥n) = D11+ +++ + Do yn. Plainly fis a continuous homo-
morphism. If 7(0) contains a nonvoid open subset of G, then f(0) con-
tains a neighborhood Wy X -+ X W, of (0,0, -+ ,0) in G",so that p; z; = 0
forallz; e W; (j = 1, --- ,n). This contradicts our hypothesis on G. The
set BE(pr, -+, pu) = {(11, o+, Yn)iDrys + -+ + payn # 0} is thus an
open dense subset of G". Since G" is compact, theset E =N E(py, -+ , pn),

taken over all n-tuples (p1, -+, p.) of integers not all zero, is dense in G".
Hence Vy X -+ X V, contains a point (x;, ++- , ,) such that pra: + --- +
Pnt, = 0 if and only if p = --- = p, = 0. Now look at the subset

B = {x(z1), *++ , x(@x) }xex of T". Plainly B isa subgroup of T". If Bisnot
dense in T", there is a character ¢ of T that is equal to 1 on B and is not
identically 1 (see [9], p. 258, Theorem 42). That is, there is a sequence
(pry D2, - -+, Pu) of integers not all zero such that x(x;)™ --- x(2,)™ =
x(prxy 4+ -+ 4 paza) = 1 for all characters x of G. Thus pyx; + -+ +
Pn T, = 0, which is impossible, and therefore B is dense in 7" This means
of course that G is Kroneckerian.

54. Suppose finally that G = D,. For a sequence of integers
(ri, o y7m),where0 = r; <a(j=1,---,m),let F(r;, -+, rn) be the
set of all z ¢ D, such that z; = r; (j = 1, --- , m). Pairwise disjoint open
subsets Vi, ---,V, of D, may be taken to be of the form V; =
FOi?, oo 2y (=1, -+, n). Let 2” be the element of V; such that
o’ =1ifk=m+jandaf” = 0ifk >mandk=m+j(j=1,---,n).
Let b; be any integers 0,1, -+ ,a — 1 (=1, ---,n). Let x be the func-
tion on D, such that x(y) = exp [271¢ (b1 Ymyzs + **+ + bn Ymsn)]. Plainly

14 This fact can also be proved from a general approximation theorem of Hewitt and
Zuckerman ([4], Theorem 2). The set {z1, -+, .} generates a free group, and there
is a character of the discrete group G assuming arbitrary values of absolute value 1 at

Z1, +++ ,%s . This character is arbitrarily approximable at z; , - -+ , . by a continuous
character of G.
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x is a continuous character of D, , and x assumes the value exp [27tb;/a] in the
set V;(j=1,---,n). Since every character ¢ of D, has the property that
¢* = 1, we have shown that D, is Kroneckerian.

5.5. Suppose now that G is a metric group with metric d that is Kronecker-
ian. Let {7 be a sequence of positive real numbers with limit 0. Let

” be any compact neighborhood in @. Suppose that for a nonnegative
1nteger r, the pairwise disjoint compact neighborhoods Q(') .+, Q5P have been
defined. We proceed inductively to define Q"™ -+, Qir¥l. First select
nonvoid open subsets W$irY and W™ of Q5 that have disjoint closures
G=1,---,2). Letax™ (k =1, --,2™) be points in Wi+ such that
the set {a{"™, .-, z$5rFP} satisfies the Kroneckerian condition. It is clear
from the Kroneckerian property that we can find a finite set Y, of characters
of G with the following property. Consider any sequence {u; , « « + , Ugr+1} of
complex numbers each of which is a value of a character of G. Then there is
a character x e Y,4q such that | x(2) — w| < &41/2 (k = 1, .-+, 2",
Now let Q™ be defined by

U =N{a:zed | x(x) — x(m) | £ &41/2)

5.5.1 0
nfz:ze@ dz,av™) £ 1/(r + Din Wi,
where the first intersection is taken over all x e Yoyq (b = 1, -+, 2"™).
We have thus defined by induction the sets Q”, - -+, Q5 for every non-

negative integer r. The sets Q5 are compact neighborhoods, are pairwise dis-
joint for each fixed r, and have the property that QsFY u QY < @
(r=20,1,2,---;5=1,2,---,2"). They have a further vital property,
to wit: if {u;, - - -, uer} is any sequence of complex numbers each of which is
the value of some character of G, then there is a character x of G such that
|x(x)—u,1<e,forauer'>(j—1 ,20).

Finally we define Q as the set Ny (U3, ,(')).

5.6. It iseasy to see that the set @ just defined is homeomorphic to Cantor’s
ternary set. It is also easy to see that continuous functions of absolute value
1 on @ can be approximated by characters as follows. If G is Kroneckerian
and has arbitrarily small elements of infinite order, let f be any continuous
complex-valued function on @ such that | f| = 1, and let 4 be any positive
number. Then there is a character x ¢ X such that | f(z) — x(z) | < » for
allz e Q. If @ = D,, then any continuous function f on @ whose range is
contained in the set {1, exp (2xi/a), ---, exp (2(¢ — 1)wi/a)} is actually
equal to a character of G on Q. Note also that we have constructed sets @
in arbitrary nonvoid open subsets of R, D, , and compact metric groups con-
taining arbitrarily small elements of infinite order.

5.7. We will now show that sets @ with the properties described in 5.6 can
be constructed in every nonvoid open subset of an arbitrary group G. Sup-
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pose first that G contains arbitrarily small elements of infinite order. Let W
be any open subset of G with compact closure, and let G; be an open and
closed compactly generated subgroup of G that contains W. (One can take
GrasUsnY,where Y = Wu Vu (=W) u (=7V), V being any neighbor-
hood of 0in G with compact closure.) A well-known structure theorem, already
referred to in 2.2, asserts that Gy = Z* 4+ R' 4 G., where G, is compact. If
is positive, then every open subset of G; , and hence in particular W, contains
an open interval from the real line R, and this interval contains a set @ as
constructed in 5.5. Since every continuous character of the closed subgroup
R-of G, admits an extension over G that is a character of G, we have our set
Q in case [ is positive. If [ = 0, that is, if G; fails to admit R as a direct
summand, then G» must be an infinite compact group containing arbitrarily
small elements of infinite order.

Suppose that the open set W is contained in G2 and that « is any point of
W. We wish to show that there is a compact metric subgroup H of G, having
arbitrarily small elements of infinite order such that H n W = @. Consider
the discrete character group X, of G». Since G as the character group of
X, has the topology of pointwise convergence on X, we need to show that,
given the character u of X, , there exists a character « of X, that is arbitrarily
close to w on a preassigned finite subset {x:, - - - , xm} of Xs and also generates
a metric subgroup of G» having arbitrarily small elements of infinite order.
Since (> has arbitrarily small elements of infinite order, X, is not of bounded
order (see [10]). Let Y be any countable subgroup of X, that contains
{xi, -+, xm} and is of unbounded order. Let Y’ be a countable divisible
group containing Y (see [1], p. 65, Theorem 20.1). The identity mapping of
Y onto Y can be extended to a homomorphism carrying X, into ¥’ ([1], p. 59,
Theorem 16.1). Let X, be the kernel of this homomorphism. Then distinct
elements of Y lie in distinet cosets modulo X,. Let H be the (compact)
character group of X./X,. Plainly H is a compact subgroup of G;. Since
X./X, is of unbounded order, H has arbitrarily small elements of infinite
order. Since X,/X, is countable, H is metric. Since no new relations are
introduced among the elements of ¥ by the homomorphism carrying X onto
X./X,, there is a character of X,/X,, that is, an element of H, that agrees
with w on the set {x1, - -+ , Xm}-

Thus H has nonvoid intersection with a preassigned neighborhood of wu.
Construct a set @ asin 5.5 lying in W n H, which isa nonvoid opensubset of H.
Then any continuous function of absolute value 1 on @ can be arbitrarily
uniformly approximated on @ by a character of H. This character can be
extended to a character of G.

Now suppose that W lies in some coset of G; modulo Z* different from G .
There is a character of Z* 4 G, that is identically 1 on Z"* and is an arbitrary
character on G, so that here there is no problem in translating a set Q with
preservation of its required properties.
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We have thus shown that sets @ with the properties given in 5.6 exist in
every nonvoid open subset of every group G that contains arbitrarily small
elements of infinite order.

5.8. We must now deal with the case in which G has a neighborhood of 0
containing only elements of finite order. In every neighborhood of 0, there
is a replica of the group D, for some ¢ > 1, as was pointed out in 2.2, and
for D, we have the construction of 5.5. Just as in 2.4, we see that upon trans-
lating these groups D, , we can always arrange to have this translating done by
a direct summand of of D, , so that the required properties of @ < D, can be
preserved by translation of @ into an arbitrary open subset of G.

5.9. We summarize the constructions of the present section. Let G be a
group containing arbitrarily small elements of infinite order. Then every
nonvoid open subset of G contains a set @ that is homeomorphic to Cantor’s
ternary set and has the property that every continuous function of absolute
value 1 on @ can be arbitrarily uniformly approximated on @ by a character
of G. Let G be a group having a neighborhood of 0 consisting solely of ele-
ments of finite order. Then every neighborhood of 0 in G contains a replica
of some group D,. For every such a and every nonvoid open subset W of G,
there is a set @ homeomorphic to Cantor’s ternary set contained in W such
that every continuous function on @ with range contained in

{]-7 €xXp (21!"1:/0), cec, €Xp (2((1' - 1)“/“)}

is equal to a character of G on Q.

6. A property of measures on Q
6.1. Let @ be any subset of G of the sort described in 5.9. Let I'p and Ty

be as in 1.7. The following result, which may be of independent interest, is
an analogue of Kronecker’s approximation theorem, for finite sets of measures

on Q.

6.2 THEOREM. Let )y, - -+ , A be nonnegative continuous measures in M(Q),
and Ty, -+ + 5 Tn, points of Q such that the sets C(\1), -+ , C(Am), {a}, «++ , {2}
are pairwise disjoint (either N’s or x’s may be absent). Let 21, -+, 2m,
Wi, + -, W, be complex numbers such that z; € \;(G)Ty (j = 1, -+, m) and
wyelo(k=1,---,n). Letnbea positive number. Then there is a character
x of G such that
6.2.1 ’fe x(y) d)\,(y) -2 | < (.7 = 17 )m)
and
6.2.2 | x(zx) — we| < 7 k=1,---,n).

Proof. We may obviously suppose that \;(G) = 1 forj = 1,---, m.

Write C; = C(\;) (j = 1,---,m). Thesets C1,-++, Cu, {z}, -+, {x}
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are pairwise disjoint, the measures \; are continuous, and @ is homeomorphic
to Cantor’s ternary set. Hence we can find a dissection of @ into pairwise
disjoint open and closed sets, say Dy , « -+ , D, , such that no D; intersects more
than one of the sets Cy, -+, Cw, {xl}, -+, {z4} and such that \;(D;) < iy
forj =1,--«-,mand Il =1,---, 7 Consxder now a fixed A; and let
EP, ..., EJ) bethose sets D, that mtersect C;, enumerated in some fixed order.
Let F(k) be the set D; that contains z;, (k = 1, -+ ,n). Plainly no set D; ap-
pears more than once among the E’s and the F’

We have D _ iy N\;(EY )y = 1. Consider first the case in which G contains
arbitrarily small elements of infinite order. We look for a character x ¢ X
for which 6.2.1 and 6.2.2. hold. We discuss 6.2.1 first. For the indices j
such that | z; | = 1, we require that

6.2.3 | x(z) — 2;| < %n forallz ¢ B{”u - u B,

For the indices j such that 0 < | z; | < 1, let a; and b; be the complex numbers
such that |a; | = | b;| = 1and 2; = $(a; + b;). TFor the indices j such that
2; = 0,let a; = —1and b; = 1. For all 1nd10esy such that |z; | < 1, let
l be the greatest among the integers [ for which D4 M (ES) = 1. erte

= YU N(EY). Forall indicess such that | z; | < 1, we requlre further
of 'che character x that

6.2.4 | x(x) — a;| < in forall z e B{?u --- U Efj’
and
6.2.5 | x(z) — b;| < 31 forallz e Bi, u -+ u BS) .

We require finally of the character x that
6.2.6 [ x(z) — we | < forallz e F* (k= 1, ---,n).
There is no inconsistency among the requirements 6.2.3-6.2.6, and they can
all be satisfied by a single character x of G, in view of the properties of @
(see 5.9).

For indices j such that | z; | = 1, we have

627 | [ x@) @) =z s 2 [ Ix@) = 5 @) S B <
(e} u=1l YEy

For indices j such that | z; | < 1, we have

fxu)dx(x) — ‘}:/(,x(w)dk(x) ~ 4a

|2 [ Ix@) -l dy)

628 -

3 [ox@ a@ -

+ > L<i)1x<x>—bj\dxj<x>+z‘,,j_%1é%wzlpj_%lq

u=lj+1
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The inequalities 6.2.7 and 6.2.8 are just 6.2.1. Inequality 6.2.2 is obviously
satisfied for the present choice of x. This completes the proof for the case in
which G contains arbitrarily small elements of infinite order.

Suppose finally that every neighborhood of 0 in G contains a replica of D,

for some a = 2, 3, ---. Here we have z; = R b,fj) exp (2wiv/a), where
the b.? are nonnegative numbers such that Y g b = 1, uniquely deter-
mined by z; (j = 1,-:-, m). Also each w; is one of the numbers

1, exp (2ni/a), -+, exp (2(a — 1)mi/a). The proof is a repetition of the
preceding case, with a; and b; replaced by the set

{1, exp (2wi/a), --- , exp (2(a — 1)wi/a)}.
We omit the details.

7. Proof of Theorem 1.8
7.1. Let G be any group, Iy and Ty as in 1.7, and @ as in 5.9.

7.2. Let L be a linear functional on 9M(Q) satisfying the hypotheses of
Theorem 1.8. Let {u1, -+, un} be any finite subset of M(Q), and n any
positive number. Let A(us, « -« , um : 7) be the set of all x ¢ X such that

721 | pi(x) = L(ug) | < forj=1,--,m.

If A(ur, -+, um : n) is nonvoid for all choices of u;, --+, un and 7, then
the set

7.2.2 NAQp, - s umin) =1

is nonvoid, where the intersection is taken over all {u;, - -+, um} and 7 > 0
(the closure is in the space S). This follows at once from the compactness
of S and the finite intersection property of the sets A(uz, -+, um : 7). Now
let M be any multiplicative linear functional in the set I,. It is obvious
that M(u) = L(p) for all u e M(Q) and that M ¢ X ™.

We have thus only to prove that the set A(u;, -+« , um : 7) is nonvoid for
each {uy, * -, wm} C M(Q) and o > 0. As in the proof of Theorem 1.6,
we make a number of reductions. The first of these is the trivial reduction
to the case in which all u; are nonnegative.

7.3. Our second reduction is to the case where the sets C(u1), «** , C(um)
are pairwise disjoint. In fact, every set A(pi, - -+, um : 1) contains a set
A\, -+ ¢, At §) such that the sets C(\), « -+, C(\,) are pairwise disjoint,
the \’s are nonnegative measures in 9M(Q), and ¢ is a positive number. This
is proved from Theorem 3.2 and the linearity of L by a simple computation,
which we omit.

7.4. Our third and last reduction is to the case where each \; is either a
continuous measure of total measure 1 or a measure ¢, with x ¢ Q. This
reduction is accomplished by an argument like that used in proving Lemma
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3.4. We omit the details. Changing our notation, we thus have to prove
that A\, *c ¢ ;Amy oy " *° 5 €y 2 1) 7 B, where the sets C(\1), - -+, C(Am),
{zi}, -+, {xn} are pairwise disjoint subsetsof @ and M (G) = -+ = Au(G) =1.
This is just Theorem 6.2.

8. Some consequences of Theorem 1.8

We observe first that Theorems 4.1, 4.2, 4.8, and 4.9 remain true with
Pu (—P) replaced by Q. Note too that Theorem 1.8 cannot be used to prove
the asymmetry of (@), since the multiplicative linear functionals con-
structed in Theorem 1.8 lie in X~ and necessarily satisfy the relation

M@R) = M) for all A ¢ M(G).

8.1 TurorEM. Let G be a group containing arbitrarily small elements of
infinite order, and let Ny, - - - , N, be nonnegative, patrwise singular measures in
M(Q) such that M(G) = 1 (k =1, .-+, n). For every sequence of complex
numbers {21, - - - , 24}, each of absolute value < 1, there is a multiplicative linear
SFunctional M on W(G) such that M e X" and M(\;) = 2z (K =1, -+, n).

8.2 THEOREM. Let G contain arbitrarily small replicas of D, (a = 2,3, - -+ ).
LetT1beasin 1.7. Theorem 8.1 holds for G, if the numberszy , -+ - ,2,lietn Ty .

The proofs of Theorems 8.1 and 8.2 are very like the proof of Theorem 4.7.
We omit the details.

8.3 THEOREM. Let Ty and Ty be as tn 1.7. Let ¢ be any function on Q with
range contained in Ty, and let Lo be any linear functional on 9.(Q) such that
Lo(\) e T14f A e M(Q), N = 0, and N(G) = 1. Then there is a multiplicative
linear functional M on M(Q) such that M ¢ X, M(e,) = o(x) for all x € Q,
and M(N) = Lo(\) for all \ e M.(Q).

Proof. For peM(Q), write p = ue + 2 i-1ti€&s,, and define L(u) =
Lo(pe) + DT tio(). Then L is well-defined, is linear, and satisfies the hy-
potheses of Theorem 1.8.

8.4. Other multiplicative extensions of L. Let BX be the Stone-Cech
compactification of the completely regular space X, and let X ~ be the closure
of X in the compact Hausdorff space S. The identity map ¢ of X onto itself
admits a continuous extension i mapping X onto X~ (see for example [5],
p. 1563, Theorem 24). Let L and M be as in Theorem 1.8, and let p be any
point of X lying in " (M). It is easy to see that the evaluation f(p) is a
multiplicative linear extension of the linear functional L over the algebra
€(X) of all bounded continuous complex-valued functions on X. TUsing
X with its discrete topology, denoted by X, , we can similarly extend L to be
a multiplicative linear functional on the algebra €(X;) of all bounded com-
plex-valued functions defined on X. Thus we find infinite-dimensional linear
subspaces § of €(X) and €(X;) such that all linear functionals on § satis-
fying certain weak conditions are actually evaluation at points of 8X or 8(X4).
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8.5. Theorem 1.8 is not strictly a generalization of Srelder’s theorem

quoted in 1.4, since Sreider’s multiplicative linear functional is exhibited as a
limit of a sequence of values of Fourier-Stieltjes transforms, while Theorem
1.8 exhibits the multiplicative linear functional M only as an element of X ~.

If

we limit ourselves to separable subspaces of M(Q), we can produce similar

representations for our M. Note too that Sreider’s measures have carriers
contained in Cantor’s ternary set, while ours have carriers contained in the
pathological set Q. Distinct improvements in Sreider’s results for Cantor’s
ternary set can be obtained, however, and we hope to discuss these in another
communication.
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