THE GENERALIZED BACKWARD KOLMOGOROV EQUATION
IN ABSTRACT SPACE

BY
D. G. AusTiN!

In this paper we consider questions which arisein the study of Markov proc-
esses with stationary transitions where the random variables assume values
in an abstract space. By (¥, X) we denote the abstract space X together
with a Borel field of subsets & which contain X and all one-point sets. We
discuss here some properties of nonnegative ‘““transition” functions P,(z, E),
defined fort = 0, z ¢ X, and E ¢ F which describe the probability of a Markov
process being in state E at time ¢ + 7 conditioned by the process being in
state z at time 7 (stationarity implies that this conditional probability is
independent of 7).

The transition functions may then be assumed to satisfy the following con-
ditions for any 2 e X, E ¢F, and ¢, s = 0:

I Pz, -) is a probability measure on &,

II P.(-, E) is measurable &,
T Pu.(z,B) = f P.(-,E) dP.(z, -) .
X

We shall also assume that for some z = ¥,
IV limg o [1 — P(a*, {¥)]/t < .

Probabilistic and analytic implications of IV have been discussed by Doob [3]
(assuming X to be a linear Borel set) and by Kendall [4], and by Chung,
Doob, Lévy, and others for the chain case, where it is assumed that X is count-
able. Doob’s arguments with X linear can be generalized to the abstract-space
case, and they essentially contain our Theorem 2 (see [3; p. 270]). The count-
ability of X is an essential restriction however, and it is the purpose of this
paper to rephrase certain of the known analytical results for that case and to
prove them for the abstract-space case.

Throughout this paper it will be necessary for us to assume IV for only one
x2*.  We shall, however, assume that the following condition, weaker than IV,
is satisfied:

IV! lim;) o Pz, {2}) = 1 = Po(z, {z}).

Kendall [4] has shown that IV’ is sufficient to insure the continuity of P.(z, E)
foreach  in X and E in &. (I, II, and III are not sufficient; see Doob [2].)
Let us now state several known results for the case X countable in such a
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way that there is an abstract-space analogue. We assume X to be the space
of positive integers and adopt the conventional notation P.(%, {j}) = p.;(¢)
(¢, =1,2,---);F is the Borel field consisting of all collections of integers,
and if J is a collection of integers, then P,(7, J) = pu(t) = D er Pis(t).
Then if I, II, ITI, and IV’ hold, and if IV holds for some z* = 7, we have that
the ¢-derivative p;;(¢) existsforj = 1,2, -+, ¢ = 0 (see Doob [2] and Aus-
tin [1]). It is easy to extend the results of [1] to show that p/“(t) exists for
all J eF if ¢ > 0; however, pﬁ,(t) | =0 does not in general exist. In fact the
existence of p;;(0) for each J ¢ implies that pi,(0) is, for fixed 4, a signed
measure on &, so that Y_; pi;(0) = 0. Such processes are called conserva-
tive and are discussed in detail by Reuter in [5], where examples of noncon-
servative processes are given.

There are obvious abstract-case analogues to the results stated in the last
paragraph, and we shall establish those analogues. The countable-case
arguments are not applicable; in fact to carry out the generalizations we have
found it necessary to add an additional assumption, one which causes only
esthetic discomfort:

V Py(x, {x}) is for each ¢ an F-measurable function of z e X.

This condition is discussed by Kendall in [4]; in particular Kendall shows
that V is satisfied if & contains all the open sets of a Hausdorff topology satis-
fying the second axiom of countability. Kendall also found V necessary in
generalizing differentiation results proved by Kolmogorov for the chain case.
Kendall’s main result is the following:

If lim, o Pe(z, {2}) = 1 uniformly on a set E e F, and if x* ¢ E, then
lim, ;o P.(z*, E)/t exists and ¢s finite.

Kendall also showed that, under IV’,
g(x*) = lim, o [1 — P(a*, {*})]/t exists.

We first state a lemma without proof which is an extraction of that part
of the existence proof for derivatives, [1], in the countable-space case which
does generalize readily to the abstract-space case.

Lemma. If I, II, 111, and IV’ hold, and if IV holds for some x = z*, then
P.(z*, E) s, for each E ¢ ¥, a Lipschitzian function of t with Lipschitz con-
stant q(x*).

We now proceed to our main result. Hereafter we assume I, II, III, IV,
and V, and that IV holds for the fixed x = z*.

THEOREM 1. The derivative P;(x*, E) exists for t > 0 and E ¢ G;
Pi(z*, -) is a uniformly bounded signed measure on § which satisfies

(1) Piiat, 1) = [ P, B) dPl(a*, ).
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Proof. Let us denote by P, .(z* E) the difference quotient
[Pen(a*, B) — Pu(a*, E)l/h

forh = 0,t = 0,¢t+ h = 0. ByIand the lemma, P,;(z* -) is a uniformly
bounded signed measure on ¥ By IV’ the Hahn decomposition of
Pou(a*, ) is effected by the sets {z*} and X — {a*}. Using III and the
lemma we find that, fort = 0, h > 0, E ¢,

gy Pl = [ P, B) aPuser, ) 2 /{m P+, E) dPos(z*, -)

=Pi(a*, E)Pos(z*, {a*}) = — q(a*)P(a* E).

Now consider the auxiliary function
t
3) Pu(a*, B) = Pu(a* B) + () [ Pu(e*, B) s
0

We observe that for each set E ¢F, Pi(az* E) exists except on a set
of (Lebesgue) measure 0; this follows from the lemma and the fact that
Pi(a*, E) exists whenever Pi(a*, E) exists. In general there is ambiguity
in the definition of P;(a*, E); however we shall use only Lebesgue integrals of
this function, and there the ambiguity disappears. In particular the function

1"
P y(a*E) = E-{ Piyo (2% E) dty
ont = 0, h > 0 is defined unambiguously and is nonnegative; that

Pi(z*,E) = 0

wherever defined follows from (2). Furthermore, one readily observes that
P, ,(x*, +) is a bounded measure on ¥ and that

[ P, By aPuatar, )

* h
= PH,s,;,(x*, E) + q(:;,; ) f Ps(', E) df Pt+t1(x*7 ') dtl
X 0

* h
= Pusn(a* E) + fl_(_%_) f dtlf Py(+, E)Pye,(z*, +)
o x

q(z*)
h

the interchange in order of integration is easily justified by first considering
characteristic functions of sets in &.
We fix A > 0 and > 0 and introduce a uniformizing measure as follows:

T [h
(4) P(a* ) = fo fo [Boa(a*, -) + Py(x*, -)] dt dh;

h
= Pt+s,h(x*7 E) + l Pt+8+t1($*7 E) dtl = PH-s,h(x*, E)r
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clearly P(z*, -) is a bounded measure on §. Employing V we see that if
T is any dense set on (0, «) and § > 0, then

fi(z) = glb [Pu(z, {z}); teT, t <9
is F-measurable; and, in view of the continuity of P.(z, {x}) as a function of
t, lim;s o fs(z) = 1 uniformly on a set £ in § implies that
limg o Pe(z, {2}) = 1

uniformly on E. This observation together with the lemma enables us to
apply the Egorov theorem repeatedly in order to obtain a monotone de-
creasing sequence of sets G, eF, n = 1,2, -- -, so that

(a) P(z*NG,) =0,
(b) limgjoPe(z, {2}) = 1 uniformly for z¢G, (n =1,2,---).
In view of our definition of the uniformizing measure we have that
lim, P;(a*, G,) = 0
in measure on 0 < ¢ < {; hence we may find a set T ¢ [0, f] which contains

almost all points of [0, {] and a subsequence n; (¢ = 1, 2, - -+ ) such that for
t € T]

(i) Pi(z*, G.,) exists for all n;
(i) Pi(z* N G,,) exists, and
(i) lim; Pi(a*, Ga,) = Pi(a*, N G.,).
Taking note again of the definition of P(z*, -), we apply Fubini’s th(_aorem
to find a set T» < T, such that if ¢ e > we have for almost all 4 in [0, h]
(5) Pia(z*, N G,,) = 0.

But for fixed ¢, P, x(z* N G,,) is a continuous function of A, so that (5) holds
for all & on (0, A]; and in view of (ii) the formula (5) is valid on the compact
set I =[h; 0 < h < K] where, of course, P,o(a* N G,,) = Pi(z* N G,,).
By (i) each of the functions P,x(z*, G,,) is continuous on I, and by (iii)

(6) lim; Poa(a*, Gu,) = Boa(z* N Ga,) forh el

All of the conditions of Dini’s monotone convergence theorem are satisfied,
and we may apply that theorem to conclude that the convergence in (6) is
uniform on 1.

We fix a point ¢* in T ; then by (b) and the uniform convergence of (6),

we may, for given £ > 0, find a positive integer N and a number § > 0 such
that for§ > s, F ¢,

P (z,E) >1 —¢ for zeE, z¢Gy,
) Pz, E) < ¢ for z¢EuGy,
Pin(z* G,) <& for hel, n;= N.
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By (7) we have, for0 < h < h,n = N,

Prayon(z*, E) = [ (Po(+, B) dPu (2", -)}

(8) .
s+ 1+ [0S+ Puenn,
and ’ ’
Pusus(@B) 2 [ P, B) aPua(e®, )
9) '

g (1 el S)Pt* h(:l}* E — G ) = (1 - s)Pg*;,,(x* E)
— (1 = &)Pixp(2*,Gy) = (1 — &)Pias(z*, E) — e

But P« u(z*, E) is a difference quotient for the function P,(x*, E) defined
in (3); hence by the theorem of Dini which states that the difference quotient
and the derivates of a continuous function have the same bounds, we con-
clude that P,.(z* E) has a right-hand derivative, Pi% (z*, E), at ¢t = t*
Furthermore, since the estimates (7) are independent of E, and P;;(z*, -)
has a uniform bound over sets E ¢ F, we conclude from (8) and (9) that

(10) lims o Pixn(2*, E) = P (2% E)

uniformly with respect to E ¢ ¥, and that, for any 8 > 0, there exists an s;
not dependent on E such that if 0 < s < s; and the right-hand derivative
PR, .(z* E) exists, then

(11) | PR (2% B) — PRu(a* B)| <.

Now for any ¢ > t* it follows easily, by applying (10) to
limy o Poa(a*, E) = limy, o fx Pin(-, E) dPu(a*, ),

that the right derivative of P,(2* E) exists for ¢ > #* and (11) remains
valid with ¢* replaced by ¢ Thus the right derivative P{’(z* E) exists
and is uniformly right continuous on ¢ = ¢*. Hence the right derivative is
continuous on ¢ > t¥*, and we may apply the Dini derivate theorem for the
second time to conclude that the derivative exists and is continuous on
t>0.

It is now immediate from (3) that P:(x*, E) has a continuous derivative
fort > 0, E €5, and (1) follows on applying the Helly-Bray theorem to

Puvon(a* E) = limy o L P.(-, E) dP.a(a*, ).

The abstract version of the backward Kolmogorov equation now follows
immediately from the existence theorem.

THEOREM 2. If Pi(a* E) exists at ¢ = O for all E €5, then

Pi(z* E) = [XP,(.,E) dPy(*, -) forall t= 0.
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