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In this paper we consider questions which arise in the study of Markov proc-
esses with stationary transitions where the random variables assume values
in an abstract space. By (if, X) we denote the abstract space X together
with a Borel field of subsets ff which contain X and all one-point sets. We
discuss here some properties of nonnegative "transition" functions Pt(x, E),
defined for ->_ 0, x e X, and E 7 which describe the probability of a Markov
process being in state E at time W r conditioned by the process being in
state x at time r (stationarity implies that this conditional probability is
independent of r).
The transition functions may then be assumed to satisfy the following con-

ditions for any x e X, E e 7, and t, s -> 0"

I Pt(x, is a probability measure on 7,

II Pc(’, E) is measurable 7,

III P+8(x, E) j: Pc(’, E) dP,(x,

We shall also assume that for some x x*,

IV lim0 [1 P(x*, {x*})]/t < .
Probabilistic and analytic implications of IV have been discussed by Doob [3]
(assuming X to be a linear Borel set) and by Kendall [4], and by Chung,
Doob, L4vy, and others for the chain case, where it is assumed that X is count-
able. Doob’s arguments with X linear can be generalized to the abstract-space
case, and they essentially contain our Theorem 2 (see [3; p. 270]). The count-
ability of X is an essential restriction however, and it is the purpose of this
paper to rephrase certain of the known analytical results for that case and to
prove them for the abstract-space case.
Throughout this paper it will be necessary for us to assume IV for only one

x*. We shall, however, assume that the following condition, weaker than IV,
is satisfied"

IV’ lim0P(x, {x}) 1 Po(x, ix}).

Kendall [4] has shown that IV’ is sufficient to insure the continuity of P. (x, E)
for each x in X and E in 7. (I, II, and III are not sufficient; see Doob [2].)

Let us now state several known results for the case X countable in such a
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way that there is an abstract-space analogue. We assume X to be the space
of positive integers and adopt the conventional notation Pt(i, IJ} pij(t)
(i, j 1, 2, ); ff is the Borel field consisting of all collections of integers,
and if J is a collection of integers, then Pt(i, J) pij(t) p(t).
Then if I, II, III, and IV hold, and if IV holds for some x* i, we have that
the t-derivative p(t) exists for j 1, 2, >_- 0 (see Doob [2] and Aus-
tin [1]). It is easy to extend the results of [1] to show that pt(t) exists for
all J e ff if > 0; however, p(t) I=o does not in general exist. In fact the
existence of p’i(O) for each J e ff implies that pj(0) is, for fixed i, a signed
measure on if, so that p.(0) 0. Such processes are called conserva-
tive and are discussed in detail by Reuter in [5], where examples of noncon-
servative processes are given.
There are obvious abstract-case analogues to the results stated in the last

paragraph, and we shall establish those analogues. The countable-case
arguments are not applicable; in fact to carry out the generalizations we have
found it necessary to add an additional assumption, one which causes only
esthetic discomfort"

V Pt(x, {x} is for each an if-measurable function of x

This condition is discussed by Kendall in [4]; in particular Kendall shows
that V is satisfied if ff contains all the open sets of a Hausdorff topology satis-
fying the second axiom of countability. Kendall also found V necessary in
generalizing differentiation results proved by Kolmogorov for the chain case.
Kendall’s main result is the following"

If limt0Pt(x, {x}) 1 uniformly on a set Eeff, and if x*E, then
lim P (x*, E)/ exists and is finite.
Kendall also showed that, under IV’,

q(x*) limt0 [1 Pt(x*, {x*})]/t exists.

We first state a lemma without proof which is an extraction of that part
of the existence proof for derivatives, [1], in the countable-space case which
does generalize readily to the abstract-space case.

LEMMA. If I, II, III, and IV’ hold, and if IV holds for some x x*, then
Pt(x*, E) is, for each E if, a Lipschitzian function of with Lipschitz con-
stant q x*

We now proceed to our main result. Hereafter we assume I, II, III, IV’,
and V, and that IV holds for the fixed x x*.

THEOIEM 1. The derivative P’t(x*, E) exists for > 0 and E
P’t(x*, is a uniformly bounded signed measure on ff which satisfies

(1) P’t+8(x*, E) f Ps( E) dP’t(x*, .).
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Proof. Let us denote by Pt,h(x*, E) the difference quotient

[Pt+.(x*, E) Pt(x*, E)]/h

for h 0, -> 0, -[- h _-> 0. By I and the lemma, Pt,h(x*, is a uniformly
bounded signed measure on ft. By IV the Hahn decomposition of
Po,(x*,.) is effected by the sets [x*l and X {x*}. Using III and the
lemm we find that, for => 0, h > 0, E e if,

(2)
=Pt(x*,E)Po.(x*, {x*/) >- q(x*)Pt(x*,E).

Now consider the auxiliary function

Pt(x*, E) P(x*, E) + q(x*) fo Ps(x*, E) ds.()

We observe that for each set E , P’(x*, E) exists except on a set
of (Lebesgue) measure 0; this follows from the lemma and the fact that
_P’(x*, E) exists whenever Pt(x*, E) exists. In general there is ambiguity
in the definition of Pt (x*, E); however we shall use only Lebesgue integrals of
this function, and there the ambiguity disappears. In particular the function

Pt,(x*,E) P’t+t(x*,E) dt

on _>- 0, h > 0 is defined unambiguously and is nonnegative; that

P’t(x*, E) >- 0

wherever defined follows from (2). Furthermore, one readily observes that
P,(x*, is a bounded measure on ff and that

fx Ps( ., E) d[=’t,(x*,
h

Pt+,,h(x*,E) -[- q(x*)h f: P’(’’ E)d fo P,+,,(x*, dtl

P,+,,(x*,E) -b q(xh*) fo dr1 P(,,E)P,+,,(x*, .)

q(x* fP+,.h(x*, E) -b h Pt++I (x*, E) dtl l:’+,h(x*, E)

the interchange in order of integration is easily justified by first considering
characteristic functions of sets in ft.
We fix ] > 0 and > 0 and introduce a uniformizing measure as follows"

(4) P(x*, [/.(x*, - P,(x*, )] dt dh;
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clearly P(x*, is a bounded measure on ft.
T is any dense set on (0, and it > 0, then

Employing V we see that if

f(x) glb [P,(x, {x}); e T, < ]

is Y-measurable; and, in view of the continuity of Pt(x, {x} as a function of
t, lim 0 f(x) 1 uniformly on a set E in ff implies that

lim0 P(x, {x} 1

uniformly on E. This observation together with the lemma enables us to
apply the Egorov theorem repeatedly in order to obtain a monotone de-
creasing sequence of sets Gn e 5:, n 1, 2, so that

(a) P(x*, f’l G,) O,

(b) limt0P(x, {x}) 1 uniformlyfor x.G, (n 1,2, ).
In view of our definition of the uniformizing measure we have that

lim P’(x*, G) 0

in measure on 0 =< t,

_
; hence we may find a set T1 e [0, ] which contains

almost all points of [0, ] and a subsequence n (i 1, 2, such that for
teT

(i)

(ii)

SPt (X*, Gni exists for all n,
/SP (X*, Gn, exists, and

(iii) lim P’(x*, G,,) P’(x*, l G,).
Taking note again of the definition of P(x*, ), we apply Fubini’s theorem
to find a set T2 c T such that if e T2 we have for almost all h in [0, ]]
(5) P,(x*, G,,) o.
But for fixed t, P.(x*, l G.) is a continuous function of h, so that (5) holds
for all h on (0, ]]; and in view of (ii) the formula (5) is valid on the compact
set I =[h; 0 -<_ h -< ]] where, of course, i,o(x*, gl G,) P’(x*, Gni).
By (i) each of the functions P.(x*, Gnu) is continuous on I, and by (iii)

(6) lim Pt,(x*, G,,) Pt,(x*, f’l G,) for h e I

All of the conditions of Dini’s monotone convergence theorem are satisfied,
and we may apply that theorem to conclude that the convergence in (6) is
uniform on I.
We fix a point t* in T then by (b) and the uniform convergence of (6),

we may, for given v :> 0, find a positive integer N and a number > 0 such
that for > s, E ,

P,(x,E) > 1 v for xeE, xeG,
(7) P,(x,E) < for xEG,

P..(x*,G) < for heI, ni_ N.
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By (7) we have, for 0 < h < /, n >= N,

Pt,+8,h(x*, E) _f. {Pa(., E) dPt,,h(x*,
(s)

--< }+
-(uo

Pt,+,,(x*, E) f P,( ., E) dPt,,(x*,
(9) (1 e)Pt,,(x*,E- G) (1 e)Pt,,(x*,E)

(1 s)Pt,,(x*, Gn)

But Pt,,h(x*, E) is a difference quotient for the function Pt(x*, E) defined
in (3); hence by the theorem of Dini which states that the difference quotient
and the derivates of a continuous function have the same bounds, we con-
clude that Pt,h(x*, E) has right-hand derivative, P()(x*,t, E), at t*.
Furthermore, since the estimates (7) are independent of E, and Pt,h(X*,
has a uniform bound over sets E e , we conclude from (8) and (9) that

(10) lim0 Pt,,(x*, E) -,, (x*, E)

uniformly with respect to E e , and that, for any ti > 0, there exists an s
not dependent on E such that if 0 < s < s and the right-hand derivative
/)+8(x*, E) exists, then

(11) *, E) P(")t,+8(x*, E)[ < .
Now for any > t* it follows esily, by applying (10) to

Pt,(x*, E) lim fx Pt-t, ", E) dPt,,(x*, ),lim

that the right derivative of Pt(x*, E) exists for > t* and (11) remains
valid with t* replaced by t. Thus the right derivative -t()(x*, E) exists
nd is uniformly right continuous on _>- t*. Hence the right derivative is
continuous on > t*, and we may pply the Dini derivate theorem for the
second time to conclude that the derivative exists and is continuous on
t>0.

It is now immediate from (3) that Pt(x*, E) has a continuous derivative
for > 0, E $, and (1) follows on applying the Helly-Bray theorem to

E) lim 0 fx P( "’ E) dPt,(x*, ).Pt+,,h(X*,

The abstract version of the backward Kolmogorov equation now follows
immediately from the existence theorem.

THEOREM 2. If P’t(x*, E) exists at 0 for all E . , then

P’t(x*,E) f gt(.,E) dg’o(x*, .) for all >’- O.
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