A VARIATIONAL METHOD FOR TRIGONOMETRIC POLYNOMIALS'

BY
R. P. Boas, Jr.

1. Introduction

Let f(z) be a trigonometric polynomial. We consider a linear functional
£ defined by

r=1 j=

"B(f) = i nzyo al(‘j)f(j)(xv):

where z, , o, are given real numbers, 0 < z, < 27, with the z, all different.
We suppose that o{™ 5 0 and that n, > 0 for at least one ». We call

=m+ o+ N+ m

the order of £; thus f'(a) — f'(—a) is a functional of order 4. We are in-
terested in the maximum of | £(f) | when f runs through the class of trigono-
metric polynomials of type n which satisfy | f(x) | = 1 for real x. (It is
convenient to say that a trigonometric polynomial is of type n if it is of degree
at most n; a trigonometric polynomial of type n is an entire function of ex-
ponential type n.) In looking for this maximum it is enough to consider
the subclass 3, whose members are in addition real for real x. For, if 0 is
real, we have ¢”f(2) = fi(z) + f(2), where f; and f; are elements of 5, . Since
&) = €“2(f), we can choose 0 so that £(e”f) = |&()]|, and so
£(f) = | £(f)|. Hence the maximum of | £(f) | is attained, if at all, for an f
in 3, , and indeed for one for which £(f) > 0.

When £(f) = f'(a), we have S. Bernstein’s theorem that | f’(a) | £ n when
| f/(x) | < 1forallz. Here the bound for | £(f) | is the same no matter which
point a is selected ; this is no longer true in the general case.

Bernstein’s theorem on trigonometric polynomials is a special case of his
theorem on entire functions of exponential type: if f(2) is an entire function
of exponential type = (which we may suppose is real for real z), and | f(z) | £ 1
for all real x, then | f/(x) | < 7 for all real z. This does not happen for more
general functionals £. In fact, Schaeffer and I [1] found that the maximum
of | £(f) | in this class F, of entire functions is not, in general, attained for a
trigonometric polynomial f. However, methods similar to those used in
[1] still work for the class 3,. The general result is stated in §3 below; in
§4 it is applied to the special functional An’f(0) + f”(0). As corollaries, we
obtain two theorems for ordinary polynomials. Further applications will be
given elsewhere.

The problem of maximizing the functional f’(a) — f'(—a) is equivalent
to the problem of maximizing p,(x) for a given x on (—1, 1) when the poly-
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nomial p,(z), of degree n, satisfies | p.(z) | = 1 throughout (—1, 1). (Bern-
stein’s well-known inequality | p.(z) | = n(1 — %)™ is not sharp except at
the points z = cos(k + 3)r/n.) This problem was solved by A. Markov [2]
by other methods; this is the paper in which he also showed that | p.(z) | < #°
throughout (—1, 1). The latter result is well known, but the former seems
to have been completely forgotten.

2. Lemmas

We require a series of lemmas on the element of 3, which maximizes | £(f) |.

Lemma 1. For a gwen functional £, of n = [I/2], the maximum

M = sup | £(f) |, f € 3a , is finite, positive, and attained.

By Bernstein’s theorem M is finite; it is attained because 3., a collection
of trigonometric polynomials of bounded type, is sequentially compact. To
show that M is positive we have to exhibit an element f of 3,such that £(f) £ 0.
(This is impossible without some restriction on n since, for example,
f"(a) + f'(a) = 0 for all @ and all elements of 3,.) To do this we appeal to
the following simple lemma which will be used several times.

Lemma 2. If x; and x, are real points, not congruent mod 2w, there is an ele-
ment g of 31, not identically zero, such that g(x:) = g(x:) = 0. There is also an
element g of 3, with a double zero at x; .

For the first part put

29(x) = 2sink(z — ) sind(x — x2) = cost(x1 — x2) — cos(x — 3(x1 + 22));

for the second part put 2g(x) = 1 — cos(z — x1).

We now complete the proof of Lemma 1. We have some n, > 0; for
definiteness suppose that n; > 0. Then by taking products of functions ¢
from Lemma 2 we can obtain a real trigonometric polynomial g such that
¢®@) = 0 for v = 2,---, m and k¥ = 0, 1,---, m,, and for
v=1 k=0,1,---,n — 1; while g"”(z;) = 0. Since this g has | — 1
zeros in a period, we require (I — 1) functions from Lemma 2 if [ — 1 is even,
11if I — 1is odd, so that ¢ is at worst of degree [I/2]; and £(g) 5 0.

LemMmA 3. Let f be an element of 3, , not a constant, mazximizing L(f), with
n 2 [I/2). Then |f(x) | = 1 for some real x; and if F ¢3, and F has a zero
at each of the different points in a period where f(x) = =1, then £(F) = 0.

The first statement is immediate since if | f(z) | < 1 we can choose b > 1
so that bf(x) takes one of the values =1 and still belongs to 3, , while £(f)
is increased.

We begin the proof of the second statement by showing that if F(z) is any
element of 3, and

(2.1) sup| f(x) + eF(x) | = 1 + o(e), e—0,
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where ¢ is real, then £(F) = 0. Let 0 < p < 1. According to (2.1), if
| ] < eo(p), the function
f@) + eF(2)

\bE(z) 1+|8|p

belongs to 3,. If £(F) # 0, then
W) = 1+ | e| o) HeW) + ()}

Choose p so that pL(f) < | £(F) |, then € so that | ¢| < &(p) and so that
eL(F) > 0. We then have £(¥.) > £(f), contradicting the maximizing
property assumed for f. Hence £(F) = 0.

Now suppose that F has a zero at each of the distinet points in [0, 27) where
f(x) = 1. Let \ be one of these points. Then there is an interval I with
center at N such that

|f@)| =1 — bz = W*

in I, where h > 0 and u is a positive integer. Since F(A) = 0, Bernstein’s
theorem shows that

\Fz)| = If:F’(t)dt'é nlz =2,

and so
|f@) + eFx)| £ 1 — e — N* + en|z — A|

in I. The maximum of the right-hand side does not exceed 1 4+ Be' /@™,
where B depends only on k, » and u. Thus |f(z) + eF(z) | £ 1 4+ o(¢) in
the intervals I, while | f(z) + ¢F(z) | < 1 for small ¢ when z is in the rest
of [0, 2x). This establishes (2.1) and so £(F) =

LemMma 4. Given a set of 2r < 2n — 2[1/2] distinct real points X in [0, 2x),
there is an element g of 3, such that g(\) = 0 for each X and £(g) # 0.

Let ¢, be a real trigonometric polynomial of degree at most r with zeros
precisely at the A which are not in {z,}; if the number of such A is odd, let
¢1 have also a zero at some point which is neither a N\ nor an z,. As in the
proof of Lemma 1, let g, be a real trigonometric polynomial of degree [I/2]

w1thg(k)(x,) 0forv-2 -,mandk =0,1,---,m,and for v = 1,
k=0,1,.---,n — 1, while g5 "‘)(xl) # 0. Then g; = ¢ig» is of degree at
most r + [I/2] £ » and gs()\) 0 for every A; also gs”(z,) = 0 for
v=2---,mk=01 smyv=1k=201+,m — 1;and

gém)(xl) = g5 (@)ga(x1) # 0.
Finally, g = e&gs belongs to 3, if ¢ is a sufficiently small positive number,

LemMA 5. If f 1s not a constant and is an extremal function for £ in 3, ,
where n = [1/2), then f is of degree greater than n — [1/2].
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Suppose that f is of degree m = n — [I/2]. Let \; be the points in [0, 27)
where f(x) = =1 (each counted once), and suppose for definiteness that
n1 > 0. Then f'(x) vanishes at each \;. By Lemma 4 there is an element
g of 3, vanishing at each A\; and with £(g) £ 0; but this contradicts Lemma 3.

3. The main theorem

We are now in a position to establish the following theorem.

TueoreEM 1. Let n = [I/2]. An extremal element f of 3, for £ is either
constant, or a trigonometric polynomial whose degree ism > n — [1/2]. If f is
not a constant, 1 — f* has at most 2k imaginary zeros in a period strip, where
k/2 < m — n + [I/2], and f satisfies a differential equation

f@* _
3.1 T=fG)e R(2)/8(2),
where R(z) and S(2) are real trigonometric polynomials of degree ¢ = k; S(z) has
the form

(32) S(Z) = fIl P(bJ ’ 2),

where P(b, 2) = cosh J(b) — cos(z — R()) = 2 sini(z — b) sink(z — b),
and the b; are not real; R(2) has zeros of even multiplicities not occurring at any b; .
If n = 2[1/2] 4+ 1, the extremal function, if not constant, is unique.

That m > n — [I/2] is the content of Lemma 5. The imaginary zeros of
1 — f* (if any) occur in conjugate pairs. Let them be b;, b;, with
0= ROb) <2m, j=1,2,---,k Defining S(z) as in (3.2), we see that

QR = {1 — f()’}/8@)

is entire, and hence is a real trigonometric polynomial of degree 2m — k.
Now Q(z) has only real zeros, at the same points and with the same multiplici-
ties as the real zeros of 1 — f*; and f’(2)” has at least these real zeros. Hence
f'(2)’/Q(2) = R(z) is a real trigonometric polynomial of degree %, and its zeros
are those zeros of f’(z)* which are not real zeros of 1 — f*; these (if there are
any) are of even multiplicity and (if imaginary) occur in conjugate pairs.
We thus have \

'@
(3.3) T e = R(z)/8(z).

Now since 1 — f* has 2k imaginary zeros in a period strip, it has 4m — 2k
real zeros in a period. These are of even multiplicity, and so occur at at most
2m — k distinct points. If k is even, Lemma 4 contradicts Lemma 3 unless
m—k/2>n—[I/2],ie. k/2 <m — n+ [l/2]. If kis odd, the same thing
happens unless m — k/2 + 3 > n — [I/2], which leads to the same conclusion.

If R and S in (3.3) have zeros (necessarily imaginary) in common, we can
divide them out and obtain (3.1) with a new R and S of degree ¢ < k.
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The remaining assertion of Theorem 1 is that there is only one extremal func-
tion f, other than a constant, if n is large enough. Suppose that there are two
nonconstant extremal functions f; and fo. Then f; = 3(fi + f2) is also an
extremal function, and at any real point where f; takes one of the values
+1, f, and f, take the same value (since neither exceeds 1 in absolute value).
Consider ¢ = %(fi — f»), an element of 3, , which has double zeros at the real
points where f; = =1. Let f; have degree m, which we know exceeds
n — [I/2]; then 1 — f3 has 4m — 2k real zeros in a period, and hence g has
at least this many. On the other hand, g is at most of degree n and so has at
most 2n real zeros in a period. Hence 4m — 2k < 2n, or k/2 = m — n/2.
However, we know that £/2 < m — n + [I/2]. Combining these inequalities,
we obtain n < 2[I/2] + 1. Hence a nonconstant extremal function must be
unique if n = 2[I/2] + 1.

4. A functional of order 3

When the order of the functional £ is 2, an extremal function, even in the
larger class ¥, , is of the form sin(nz + ¢), and the problem of identifying it is
trivial.

The next case to consider is I = 3. In this case, if n = 1, a nonconstant
extremal function is of degree n, and it is unique if » = 3. Since
[k/2] < [3/2] = 1, we have k = 0 or 1.

We now consider the functional

£(f) = mf(0) + 17(0),

which was studied in [1] for f eF,. It was shown in [1] that when N < }
the maximum of £(f) for f e &, is furnished by ==cos nz, and so this function
also maximizes £(f) in 3, . If A > %, the maximum of £(f) cannot be provided
by =cos nz, since £(1) > £(z=cos nz). If I <\ < §, £(—cos nz) > £(1).
Hence we have to consider solutions of (3.1) with ¢ = 1 and decide whether
the maximum of £(f) for these exceeds M’ = £(1) if A = %, and whether it
exceeds (1 — N’ = £(—cos nz) if 3 < N < 1.

TueoREM 2. Let £(f) = Mf(0) + f7(0). If n > 1, the largest value of
| £(f) | for f €3, is furnished by ==cos nz if A < 3 + 1/(6n”) and by a function
of the form

(4.1) 4cos{n cos (wcosz + w — 1)}, 0<w<l,

N> L4 1/(6n0°). In the second case, the maximum of | £(f) | is the maximum
for0 < 6 < wof | An® cos n6 — in cot 10 sin nf |. For n = 1, the maxi-
mum s furnished by cosnz ff A < L and by =14 X = 1.

(Thus when A = % there are two distinct extremal functions in 3J; .)

If f(2) is an extremal function for £, so is f(—z); for n = 3 the extremal
function is unique if not constant, and so it must be even. Again,
if f(z) # f(—z) and f is an extremal function, 3[f(z) + f(—2)] is an even ex-
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tremal function in any case. Hence to determine the maximum of £(f) we
need consider only even extremal functions f.
We require the following lemma.

Lemma 6. Under the hypotheses of Theorem 1, +f f is a nonconstant extremal
function and is either even or odd, and k = 1, then f'(0) = f'(x) = 0,and 1 — f*
vanishes at one of the points 0, w and not at the other.

Let f be a nonconstant extremal function, either even or odd. If & = 1,
the function 1 — f* has, in a period strip, a single pair of conjugate imaginary
zeros, and f’(z)’ has a single pair of zeros which are not real zeros of 1 — f°
Since these zeros are also zeros of f/(z), there must in fact be a single zero of
f'(2)? of multiplicity 2. Since f”* is even, this zero can only be at 0 or = (other-
wise its symmetric point with respect to 0 would be another zero of f”* which
is not a real zero of 1 — f°). On the other hand, the zeros of f’ (since it is
even or odd) occur in symmetric pairs except perhaps for zeros at 0 or .
Since one of these points is a simple zero of f/ and f* has an even number of
zeros in a period, there must be an odd number of zeros besides the one at
0 or , hence one at the other of these points. Since there is only one zero of
f’ which is not at a real zero of 1 — f”*, we must have 1 — f* = Qat O orat =
but not at both of these points.

We now return to extremal functions for £(f). If k¥ = 1 and f is an even
extremal function, 1 — f* has (in a period strip) a single pair of conjugate
imaginary zeros. Since 1 — f*is even, these zeros must have real part either
0 or . Hence we may take S(z) in (3.1) as ¢ & cos z, where ¢ > 1. By
Lemma 6, f'(2) must have a zero at 0 or = (but not both) which is not a zero
of 1 — .. Nowif f(0) = 1, f7(0) < 0 and so £(f) < M’. If A = 3, then,
£(f) = £(1), so either f is not an extremal function, or f makes £(f) no larger
than £(1), in which case we do not need to consider f any further.
IfFx < i &) < m < (1 — AP = £(—cos n2), so f is not an extremal
function. If f(0) = —1, £(f) = —M’ + f7(0), and since | f”(0) | < »’ by
Bernstein’s theorem (since |f”(0)]| = 1 only for =cos nz), we have
£(f) < n’(1 — \), and again f is not an extremal function. Hence f(0) » =1,
while f/(0) = 0. Hence we may take R(z) = A*(1 — cos z), where A4 is real.
Thus we have

ffw) (1 — cosw)”
{1 = fw)?} = (c = cos w)'?’

Integrating this, we find

(4.2) ) = cos{A j; (1 = cosw

(¢ & cos w)l2

1/2

dw+B}.

Consideration of the behavior of the two sides as 2z — « through pure imagi-
nary values shows that the -+ sign can be excluded and that A = £n. The
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integral can be evaluated in terms of elementary functions:

— 1/2 —
RPN, ¢
Thus we have
_ -12c08z —c+ 1 1
flz) = cos{'n cos T 1 + Blf
= cos {n cos* 2 coscz_;- lc + 1} cos B;

. 12co8z—c¢c+ 1| .

sin {n cos —_?T-_l—} sin B;.
Now cos n6 is a polynomial in cos 6, so the first term on the right is a poly-
nomial in cos z.  On the other hand, sin 78 is of the form sin 8 P(cos 8), where
P is a polynomial. Since sin(cos™ ) = £=(1 — )%, we have

sin{cos_l -2—0—05%_—‘_———————16“} = £2(c + 1) {(c — cos 2)(1 + cos 2)}'*,

and this has branch points at the zeros of ¢ — cos z. Hence f(2) cannot be
an entire function, and so not a trigonometric polynomial, unless sin B; = 0.
Thus we finally obtain

(4.3) fiz) = +cos{ncos(weosz +w — 1)}, = 2/(c + 1),

as the form of an extremal function which is neither =4-cos 7z nor a constant.
Calculating £(f) for (4.3), we find

+£(f) = M’ cos n6 — in cot 16 sin n,

where cos § = 20 — 1,0 < 8 < . Since every 6 in this range corresponds
to some w, our problem is reduced to the question of whether

f)\n2, A s

=M, F<a<i
for some 6in 0 < 6 < : for a given A, if (4.4) holds for some 6, the extremal
function for this value of A is given by (4.3), and the maximum of £(f) is ob-

tainable by calculating the maximum of the left-hand side of (4.4).
For A = %, (4.4) holds if there is a 6 for which either

v
.

(4.4) | An® cos @ — in cot 16 sin nf | >

(4.5) —cot 20 sin n6 > 2(1 — cos nd)\n
or
(4.6) cot 360 sin n6 > 2(1 + cos nd)An.

Both (4.5) and (4.6) fail when n = 1; hence an extremal function for n = 1 is
never of the form (4.3), and the last statement of Theorem 2 follows.
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We now suppose that n = 2. Inequality (4.6) is equivalent to
cot 30 tan 3n0 > 2An, which is certainly satisfied when 8 is slightly less than
m/n. Hence for A = % and n > 1 the maximum of £(f) is attained for a funec-
tion (4.3), and its value is the maximum of the left-hand side of (4.4).

When 3 < A < %, (4.4) states that

4.7) | A cosnb — § cot 360sinnd| > (1 — Mn.
As 6 — 0 we have

M cos nf — % cot 16 sin nf = n(A — 1) + {2 — INn® + Hn) + 06,

so that (4.7) holds if A > ¥ + 1/(6n°).
To complete the proof of Theorem 2 we now show that —cos nz is an ex-

tremal function when 3 < A\ = 3 + 1/(6n°). We have to show that, when
A is in this interval, and 0 < 6 <

(4.8) | A cosnf — 3 cot 36sinnd | < (1 — Mn.

We shall consider separately the intervals (i) 8 = 37/(2n), (ii) =/n < 6 <
3r/(2n), (i) 0 < 0 < =/n.
In (i), the left-hand side of (4.8) is at most

} cot(dm/n) + M = 20/(Bm) + M = n(3r7 + ),

and this is less than (1 — N)nsinceA £ 1 4+ 1/(6n) = 3 (n = 2).

In (ii), cos n6 and sin n# are both negative, so the absolute value on the
left of (4.8) is at most the larger of 1 cot in/n, M. Now a < (1 — Mn
since A < %; and 1 cot ir/n < (1 — N)n follows from 1 cot in/n < n/m <
n/3 < n(l — A), which in turn follows from A < % + 1/(6n°) < &.

In (iii), we have to show that

4.9) M ocosnd — % cot $0sinnf < (1 — A)n
and that
(4.10) tcot 30sinnd — M cosnd < (1 — Mn.

Since sin nd > 0, we can rewrite (4.9) and (4.10) in the form

M cot 4n6 — % cot 16 < n csc nb,
(4.11)

M tan $n8 + % cot 160 < n csc né.
Now the second of these implies the first. In fact, is enough to show that
An cot 3n8 — % cot 260 < An tan ind + % cot 36,
ie.
AM(cot $nf — tan inf) < cot 16,
or
A cot nf < 1 cot 14.
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This holds for § < =/n since A < 1 and z cot x decreasesin0 < z < 7#. Hence
it is enough to establish (4.11), or equivalently that

A tan in6 < n esc nd — % cot 36.
Since A < 3 + 1/(6n°), it is enough to show that
(4.12) (3 + 1/(6n%)) n tan in6 < n csc no.

Now the Laurent expansions of all the functions in (4.12) (about § = 0) are
valid in 0 < 8 < w/n, and we have (for n = 2)

(& 4+ 1/(6nD)n tan Inb = 0’0 + &0 + 3 + 1/(6n))n ”ZzA,, n et

é %n20 + 1;?0 + %E An n2n02n—1’ An —
n=2

(the B’s are Bernoulli numbers, the significant thing for our purposes being
that they are positive). We also have

ncsenf — L cot 20 = In’ 4+ &6 + Ez nC, 6" + ¢(6),

where
Cn = 2(22”—1 — 1)Byn1/(2n)!

(the coefficients in the expansion of csc ), and ¢(8) > 0 (¢ is the “tail” of
the expansion of —% cot 36). Hence (4.12) is implied by
_3_ Z An n2n02n—1 < Z n2”01¢ 021;—1’
8 n=2 n=2
and hence by 34, < C,,ie. (2" — 1) < 22" — 1, which is true for n = 2.
The point 0 plays no special role in Theorem 2 since f(z + a) €3, when
f(2) €3, . Hence we can replace 0 by any other point in Theorem 2. Apply-

ing the more general result to p.(cos 6) and to p.(e), we obtain the following
corollaries.

CoROLLARY 1. If p.(z) is a polynomial of degree n > 1 and | pa(2) | = 1
for =1 < z < 1, then

| M’pa(e) — 2pa(@) + (1 — F)po(@) |
does not exceed (1 — Nn’ if A < L + 1/(6n%), and does not exceed the maximum
of | M® cos mb — in cot 30sinnb|,0 < 6 < m if X > 3 + 1/(6n%).

The particular cases ¢ = 0, x = 1 are of interest.

COROLLARY 2. If p.(2) is a polynomial of degreen > 1 and | p.(2) | = 1
for | 2| < 1, then | Mi®po(2) — 2pn(2) — 2°pn(2) | does not exceed the bounds given
in Corollary 1 when |2z| < 1.
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