GENERALIZED INCIDENCE MATRICES OVER GROUP ALGEBRAS

BY D. R. HuGHES

1. Introduction

In previous papers [3, 4] the author has investigated certain matrix equa-
tions which must hold if a (v, k, \) configuration is to possess collineations.
These equations involved matrices with rational entries, and the Hasse-
Minkowski theory of rational congruence was applied to give numerical con-
ditions restricting the possible collineations of a (v, k, \) configuration. The
author has found that these rational matrix equations are in fact derivable
from more “general” equations involving matrices over a group algebra, and
that these latter equations yield at least one result which is not deductible
by the rational congruence methods of the earlier papers; if = is a projective
plane of order n = 2 (mod 4), n = 2, then 7 possesses no collineations of
even order. However, the general problems presented by the group algebra
equations appear to be difficult of solution.

2. Group algebra matrices

We shall rely heavily on [4] for background material, but a brief review of
some basic topics will be given. Let v, k, A be integers satisfying v > &k >
A> 0andA(v — 1) = k(k — 1), and let = be a collection of v points and »
lines, together with an incidence relation satisfying: (i) each point (line) is on k
lines (contains & points), and (ii) each pair of distinet points (lines) is on A
common lines (contains A common points). Then = is a (v, k, \) configura-
tion, and we define the order n of # by n = k — X\;if X = 1, then = is a pro-
Jjective plane of order n. A collineation of m is a one-to-one mapping of points
onto points and lines onto lines which preserves incidence. A collineation
group ® of = is called standard if every non-identity element of & fixes the
same set of points and lines; any collineation group of prime order is stand-
ard.

Suppose = is a (v, k, \) configuration and @ is a collineation group of ,
where @ has order m. From Theorem 2.3 of [4] we know that the number
of transitive classes of points equals the number of transitive classes of lines
(X and Y are in the same transitive class if and only if X = Yb for some
b in @). We number the transitive classes of points (lines) 1, 2, ---, w,
and let P; (J;) be an arbitrary but fixed point (line) in the ¢t transitive class
of points (lines). Let B (3:) be the subgroup of & which fixes P; (J,), and
let B;: (I:) have order 7; (s;). Let D;; be the set of all z in @ such that P,z
ison J;.

Let F be a field whose characteristic does not divide any of the numbers
r; or 8; ; if & is a group, we denote by @(R) the group algebra of & over F.
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In particular, let @ = @(®). Define the following elements in Q:
vy =2 x,all 2 in ©; pi =2 z,allzin P;; o, = x,allzin
8 = x,all zin Dy;.

Now let @, be the set of all w X w matrices over @, and define the following
matrices, all in G, :

C, = diag(st’, sz, - -+, sa)), Cy = diag(ri, 12", -+ , 1a),
E, = diag(p1, p2, " , pw), E, = diag(o1, 02, *** , 0w),
D = (;5), S = (vsj), where each  v;; = v.
If Y fix; is in @, where each f; is in F and each z; in @, we define
(X fewd* = 2 fiai;

i.e., (*) is the operation of “conjugation.” If M = (a;;) is in @, , then the
conjugate transpose of M is M’ = ().

Tueorem 2.1. DC, D’ = nE; + \S, D'C; D = nE, + AS, DC1 S =
SC. D = EkS.

Proof. The proof of Theorem 2.1 of [4] essentially contains the desired
result. We will demonstrate that the diagonal terms are “correct”;i.e., for
a fixed 4, show that Y ;8 615/s; = np: + M.

Let 2 be in @,z not in B;. Consider the pair of (distinct) points P, P; x;
they are on A common lines J;¥, and for each such common line, there are
s; choices of y, for J;y = J;i(S,y). Foreachj and y, y* and xy™" are in
D;j; hencex = dyds", where dy, dp are in D,; , for \ choices of j (not all neces-
sarily distinct) and s; choices of di , dz for each j. Note that dy isnot in B; ds.
Thus in the sum Y ; 8;; 615/s; every element of & not in B; has coefficient \.
Now we note that PB; D;; §; = D;;. If zisin P, , then for each d; in D, , the
element dy = xd; is also in Dy;, so = dyd;* for a;; choices of dy , ds in D;;,
where a;; is the number of elements in D;;. Hence in the sum above, every
element of PB; has the coefficient Y_; a;;/s;. But it is quite straightforward
to verify that D ;a,;/s; counts the number of lines through the point P;,
hence is equal to k. S0 D_;8;;6%/8; = kpi + Ny — pi) = np; + M.

The off-diagonal elements of DC; D’ are computed similarly, considering
the pair of points P; and P;x, where 7  j and there are no restrictions on
2z in ®. The matrix D'C; D is computed by “dual” considerations, substi-
tuting lines for points in the above arguments. The final equations of
Theorem 2.1 are easily verified.

Now suppose that & is another algebra over the same field F, and § is a
(multiplicative) group of units in ®. If ¢ is a homomorphism of & onto 9,
then ¢ extends (linearly) to a homomorphism of @ into ®; the mapping
oM = (a;;) @ M¢p = (aij¢) is a homomorphism of @, into ®,. Hence
we have the following as an immediate corollary of Theorem 2.1.
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TaeorEM 2.2. D¢-Ci-(D¢) = n-E1¢p + N-S¢p, (D¢)'-Co-Dp = n-Ey¢p +
)\Sd), D¢0‘Cls¢ = Sd)Cde) = de)

Applications of Theorem 2.2 include the following:

(1) Let  be a group, ¢ a homomorphism of & onto §, and let ® be the
group algebra @(9) of H over F.

(2) Let F be the field of rationals, 8 = F, and $ the identity subgroup
of F. Then Theorem 2.2 of [4] is a corollary of Theorem 2.2 above.

(3) Suppose the order of G is a prime p and F is taken as a complex num-
ber field which contains the pt roots of unity. Let £ be the group of pt
roots of unity and ¢ an isomorphism of & onto $. This example is treated
in more detail in the next section.

3. Collineation groups of prime order

Let us first assume that & is standard; then (see Section 3 of [4]) C; = C,
contains ¢ = (v — N)/m elements +1 and N elements 1/m on its main
diagonal, where N is the number of points of = fixed by every element of ©.
Furthermore, E; = E, contains ¢ elements +1 and N elements vy on its main
diagonal. Let us write all the matrices defined in the last section so that the
first ¢ rows and columns correspond to the “non-fixed” points and lines, and
the last N rows and columns correspond to the fixed points and lines. Let
A be the submatrix of order ¢ in the upper left corner of D; it is evident that
all of the elements of D which lie outside of A; are either 0 or v.

Now we make the further assumption that & has prime order p. Let ¢
be an isomorphism of & onto the pt* roots of unity, where we are assuming
that F is some complex number field containing these roots. Define

4 =A4:¢.

All of the elements of D¢ , excepting the elements in A, are zero, since for
p # 1, the sum of the pt roots of unity is zero. Thus, “pulling out” the
nonzero part of the matrix equations, Theorem 2.2 implies:

TarEOREM 3.1. AA’ = nl, where I is the identity matrix of order t =
( — N)/p.

In Theorem 3.1, A is a matrix of order ¢ all of whose entries are sums (with
+1 or O as coefficients) of p* roots of unity, and A’ is the “ordinary’’ con-
jugate transpose of A. The author knows of no method of analyzing the
equation of Theorem 3.1 in general. But at least one fragmentary result
is possible, a result which indeed has a good deal of interest in its own right.

Now we assume that A = 1, p = 2, n = 2 (mod 4). Since » is even but
not a square, a theorem due to Baer [1] asserts that a collineation of order
two of a projective plane of order n must fix all of the points on a line K,
all of 2’ohe lines through a point @, where @ is on K, and nothing else; thus
t=mn/2.

Besides K, let the lines through @ be Ly, L,, - -+, L,, and besides @, let
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the points on K be By, R;, ---, R,. Each line L; (point R;) is incident with
n/2 of the transitive classes of points (lines), besides @ (K). For conven-
ience, let us redesignate the points on the lines L; as follows: the n/2 “base
points” that are on L; will be P;;,j = 1,2, --+, n/2. The row of the ma-
trix A which corresponds to the point P;; will be called V,;;. By properly
choosing the points P;; on L; and the lines through the various R;,' each
row Vi; can be assumed to contain n ones and ¢ — n zeros. Suppose 7 #= 1;
since the row V,; has inner product n with itself and zero with every row
Vis, Vi; must contain n/2 elements +1, n/2 elements —1, and ¢ — n ele-
ments zero. Suppose z is fixed, x = 1,2, --- , n, and let 7 #¢ j. Then there
is no column which contains a nonzero element in both rows V,; and V,;,
since the points P,; and P,; are on the line L,; on the other hand, in a
given column, some one of the positions in the set of rows V; is not zero,
since any line (except K) through a point R; meets L, in a point different
from Q.

Now we will construct a new matrix B as follows: the it row V,; of B will
be formed by superimposing all of the rows V,;,j = 1,2, --- , n/2, onto one
another. This never superimposes a nonzero element onto a nonzero ele-
ment, but on the other hand, no position in B contains a zero. So B is an
n X t matrix consisting entirely of == 1’s", whose first row contains nothing
but 4+1’s. The inner product of V; and V; is the sum of all the inner prod-
ucts Vi by Vi, 2,y = 1,2, -+, n/2. So BB’ = tI, where I is the identity
matrix of order n.

TaEOREM 3.2. If 7 is a projective plane of order n = 2 (mod 4), and if =
possesses a collineation of order two, then n = 2.

Proof. Assume that n ¢ 2. Then B has at least three rows, and by
rearranging the columns if necessary, the first three rows appear as follows:

+1 (t)
+1 (t/2) -1 (t/2)
+1 (@) |-1 @¢/2—a) +1 ) |-1 @/2-1)

where the numbers in parentheses denote the length of the block. Taking
the inner product of the first and third rows, we have:

a—(t/2—a)+b— (/2 —b) =0,

whence b = t/2 — a. Then taking the inner product of the second and
third rows,

a— (/2 —a)— (/2 —a) +a =0,

whence ¢ = 4a = 0 (mod 4). But since n = 2 (mod 4), it is easy to see
that ¢ = #’/2 = 2 (mod 4). This is a contradiction, so we must have n = 2.

t1.e., each line J; # K which contains a point R; will be chosen to contain some
point Py; , and never a point Py; z, for z # 1.
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CoroLLARY. If 7 is a projective plane of order n = 2 (mod 4), n = 2, then
™ Possesses no collineations of even order.

It will be observed that the proof of Theorem 3.2 is exactly the same as
the proof that a Hadamard matrix of order 1, 2, must have order divisible
by 4.

4, Some applications

In [6] Ostrom has proved that if 7 is a projective plane of order n, where
n is odd and not a square, possessing a doubly transitive collineation group,
then = is Desarguesian (see [7], say, for definition). Since a doubly transi-
tive permutation group has even order, we can use Theorem 3.2 to extend
this result.

TaroreM 4.1. If 7 is a projective plane of order n = 2 (mod 4) possessing
a collineation group & which is doubly transitive on the points of w, then n = 2
(whence 18 certainly Desarguesian).

Another result related to [6] is the following (in fact, the corresponding
theorem in [6] requires double transitivity):

TurOREM 4.2. If m is a projective plane of order n = 2 (mod 4) and if =
possesses a collineation group ®& which fizes a line K and is transitive on the
points off of K, then n = 2.

Proof. No nonidentity element of & fixes all of the points off of K. Hence
®, as a collineation group of =, is isomorphic to the permutation group which
results from restricting ® to the points off of K. There are n’ of these points,
and since the degree of a transitive permutation group divides its order, &
has even order, so the theorem is proved.

Further applications of Theorem 3.2 are found in the theory of partially
transitive projective planes; see [2] for definition and discussion. If = is a
partially transitive plane of type (1a) or (2), and if = has order n = 2 (mod 4),
then it is easy to see from the table in Section 3 of [2] that = has a col-
lineation of order two; so n = 2. Furthermore, if 7 is of type (1b), with
abelian ®, then from the theorems on multipliers, the mapping (x) — (z"),
[Dx] — [Dazx™), for some fixed a in @, is a collineation of order two; so if =
has order n = 2 (mod 4), thenn = 2.

Finally, specific consideration of the case n = 10, as the smallest order for
which the existence of the plane is undecided, is of interest. From the the-
orems of [4] and Theorem 3.2 above, the only possible collineations of a plane
« of order 10, whose order is prime, are:

(1) Order 3, fixed points @;, 2 = 1,2, on a line Ky, and a point @ not on
K, , together with the lines Koand K; = @, Q:,¢ = 1, 2.

(2) Same as (1), excepting that there are 8 points @, on K, , ete.

(38) Order 11, fixed point Qo , fixed line K, , Qo not on K, .

(4) Order 5, fixed point @, , fixed line Ky, @ on K, .
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(5) Order 5, where the fixed points are all the points on a line K, , and the
fixed lines are all the lines through a point @, @ on K, .

However, let us consider (5) in more detail. The techniques of [7] allow
one to prove rather directly that if the collineation exists, then = must pos-
sess a planar ternary ring (i.e., with Ky as L« , Qo as (= )) whose additive loop
contains a subgroup of order 5. Since the additive loop (strictly, its Cayley
table) is one of a set of nine mutually orthogonal latin squares, Mann’s re-
sult [5) assures us that this cannot occur. So we are left with only the first
four cases to consider. It does not seem unreasonable to hope that some
combination of theory and computing will allow these cases to be rejected,
thus proving the following:

Congecture. If there exists a projective plane of order 10, then it possesses
no nonidentity collineations.

Since every finite projective plane known at the present time possesses
collineations of order two, Theorem 3.2 offers new evidence that no plane
exists for n = 2 (mod 4), n # 2. Unfortunately, we appear to possess in-
sufficient machinery with which to attack this problem yet.

5. Remarks

(1) With respect to double transitivity, Marshall Hall and the author
have proved the following more general extension of [6].

TuaeorEM 5.1. If 7w is a projective plane of order m, where n is even and not
a square, and if 7 possesses a collineation group ®© doubly transitive on points,
then w is Desarguesian.

Proof. Let L be any line of = and P any point on L; define &(L, P) to be
the collineation group of 7 which fixes every point on L and every
line through P. In a recent paper’ on finite Fano planes, A. M. Gleason has
proved that if &(L, P) ## 1 for every line L of » and every point P on L,
then 7 is Desarguesian.

Since © is doubly transitive, there is a collineation z in & of order two.
As remarked above, x must fix every point on some line L and every line
through some point P on L. Since @ is certainly transitive on lines, this
implies that for every line L of =, there is some point P on L for which

&L, P) = 1.

But because of double transitivity on points, P can be mapped onto any
point @ on L by a collineation fixing L; so every &(L, P) # 1, and = is De-
sarguesian.

Note that this proof, as well as the proof in [6] is actually valid for those
square values of n for which there is no plane of order n'* e.g., n = 36.

(2) In a project currently underway at The Ohio State University, E. T.

2 Finite Fano planes, Amer. J. Math., vol. 78 (1956), pp. 797-807.
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Parker has shown the collineation of order 11 of a plane of order 10 cannot

occur. So only three types are left to investigate; these, however, appear to
be a good deal more difficult to handle.
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