
SINGULAR HYPERSURFACES IN GENERAL RELATIVITY

BY A. H. TAUB

1. Introduction

The general theory of relativity is concerned with a four-dimensional
Riemannian space, space-time, with a metric

(1.1) ds g.. dx" d".

The components of the metric tensor g,, represent the gravitational fields in
the coordinate system x". They are related to the matter present by means
of the field equations
(1.2) R 1/2g"R -lc ’",
where R,. is the Ricci tensor of the Riemannian space whose metric is given
by equations (1.1), R is the scalar curvature of this space,

(1.3) k 8G/c

with G being Newton’s constant of gravitation, c the special theory of rela-
tivity velocity of light, and T" the stress energy tensor of the matter present.
In writing equations (1.2) we have chosen the dimensions of ds to be those
of time.

It is a consequence of equations (1.2) that

(1.4) T";, O,

where the semicolon represents the covariant derivative with respect to the
tensor g,, and the summation convention has been used. Equations (1.4)
are the equations of motion of the matter present and restrict the specifica-
tion of the tensor T" in equations (1.2).
These equations have been discussed in great detail [1], [2] for the case

where the space-time has plane symmetry and the matter present is a perfect
fluid with stress energy tensor

where u" is the four-dimensional velocity vector of the fluid and satisfies

(1.6) g,, u"u" u’u, 1,
p is the pressure, and

(1.7)

where p is the density as measured by an observer at rest with respect to the
fluid, and is the specific internal energy of the fluid measured similarly.
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It has been shown that solutions of equations (1.2) for g,, p, p, and u" may
be found which reduce to solutions of problems in fluid flow in the special
theory of relativity when lc 0. If we further take the limit of these solu-
tions when c -- , we obtain solutions to problems in classical hydrody-
namics. Further, the approximation method which was used is such that
any special relativistic solution of a plane-symmetric problem in hydrody-
namics could be obtained by such a reduction process.

In particular those solutions of the special relativistic equations describ-
ing the motion of perfect fluids which are physically unacceptable in certain
regions of Minkowski (flat) space-time have their counterpart among the
solutions of equations (1.2). Such solutions are associated with the forma-
tion of shock waves in special relativity and in classical theory [3]. For
this reason it was suggested that the theory of a perfect fluid in general
relativity must allow for the existence of shock waves. That is, we must
contemplate the existence of three-dimensional hypersurfaces in space-time
across which there may be discontinuities in the stress energy tensor, the
g, and their derivatives.

If such hypersurfaces are to be considered, then we must consider equa-
tions (1.2) as holding on each side of such a hypersurface, and we must sup-
plement these equations by conditions which relate the values of the g, the
derivatives of these quantities, and the stress energy tensor on both sides of
such a hypersurface. The relations that must hold between the components
of the stress energy tensor across a hypersurface of discontinuities must be
the generalization of the Rnkine-Hugoniot equations of classical and special
relativistic hydrodynamics [3].

It is the purpose of this paper to derive and discuss a set of conditions of
the type described above for a space-time in which the matter present is a
perfect fluid. The method used is based on the existence of a variational
principle from which the field equations and the equations of motion may be
derived and may be applied to any space-time for which this is the case.
The existence of such a variational principle for the case of a space-time in
which there is a perfect fluid was shown in a previous publication [4].

If the field equations and the equations of motion, the conservation equa-
tions, can be derived from a variational principle, then we may generalize
the variational principle by allowing the region of integration involved to
include regions of space-time which contain hypersurfaces across which the
matter distribution and the metric tensor and its derivatives are discon-
tinuous. We may even vary these singular hypersurfaces. In the classical
theory such a generalization is known to give the classical Rankine-Hugoniot
equations [5].

It will be shown below that such a generalization of the variational prin-
ciple leading to the field equations and the equations of motion for a space-
time containing a perfect fluid leads to a general relativistic generalization of
the Rankine-Hugoniot equations which reduces to the appropriate equations
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in the special relativistic and classical limits. We shall also obtain condi-
tions that must be satisified by the g, and their derivatives across hyper-
surfaces of discontinuities. Such conditions have been discussed by S.
O’Brien and J. L. Synge [6] and by A. Lichnerowitz [7]. The results given
below are obtained in a general coordinate system. When the coordinate
system is chosen to be that used by O’Brien and Synge, the equations ob-
tained reduce to those given by them.
A transformation of coordinates with a discontinuous second derivative

is then shown to reduce these conditions to the requirement of Lichnerowicz,
namely that g, and the derivatives of the g, be continuous in the new co-
ordinate system.

2. The variational principle
It has been shown [4] that if

(2.1) I (, + H +
where/z is a Lagrange multiplier and

(2.2) H-- v- TS,

with T the rest temperature and S the rest specific entropy, and where the
region of integration is over a volume of space-time swept out by the world
lines of an arbitrary number of fluid elements, then equations (1.2) and
(1.4) are consequences of

I 0.

In this variation the field variables p, T, g, and the particle paths are varied
so that the conservation of mass
(2.3) (pu’); 0

is always satisfied and the Lagrange multiplier , is chosen so that equation
(1.6) is satisfied.
We now wish to study the integral I and the variations produced in it by

varying the same field variables in the case where there exists a three-dimen-
sional hypersurface 2 which divides the region of integration V into two
four-dimensional regions V1 and V= in each of which the integrand exists and
is integrable. We do not require that the integrand exist on the three-
dimensional hypersurface 2. We define I to be the sum of the result of in-
tegrating the integrand over the volumes V1 and V.. Thus

I f / f,, f =- f,, f dx.

Because of this definition of I and because ariations of the field quantities
which vanish on the boundaries of the volume V need not vanish on
the boundaries of the subvolumes V and V., attention must be paid to those
terms in f which involve divergences of expressions containing the field quan-
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tities and their variations, in the calculation of I. Such terms will lead to
expressions involving integrals over the hypersurface 2. The integrands
in these integrals will contain functions evaluated on both sides of the hyper-
surface 2. Thus the admission of the dividing hypersurface 2 brings into
the expression for I terms of the type entering into the Rankine-Hugoniot
equations and the looked for conditions involving the g and their deriva-
tives.
Such terms will also arise when only the hypersurface 2 is varied. If the

hypersurface 2 is described by the equation

(2.4) x x"(a, , 7)

and a nearby hypersurface is defined by the equation

(2.5)
then

(2.6)

x" x"(, , ) + e Z’(, t, ),

where , is the normal to the hypersurface 2, that is

(2.7)

and
(2.8) [f] lim f(x E) f(x -f- ’)} f

3. The particle path

eld wh ae qaio 1.6). The ordiar

(3.) d
ds

where s is the proper time, have as solutions

(3.2) x x(u, v, w, s),

where the parameters u, v, and w may be defined by the conditions

u z(u, v, w, 0),

(3.3) v x(u, v, w, 0),

w x(u, v, w, 0).

For fixed values of u, v, w, equations (3.2) define a curve in space-time.
This curve will be called the world line of the fluid particle u, v, w or a par-
ticle path. Equations (3.2) describe a three-parameter family of curves
space-time or equivalently a transformation of coordinates from the system
x to the coordinate system x* where

(3.4) x.I= u, x*= v, x*= w, x.4= s.
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We shall use the x*" coordinate system in much of the subsequent discus-
sion, and therefore we derive various relations between quantities in the two
coordinate systems.

Varied particle paths will be given by the equations

(3.5) x’ x’(u, v, w, s) + eti’(u, v, w, s),

and these equations define a transformation of coordinates from the x*’
system to the x" one, different from that given by equations (3.2).

If the equation of a varied hypersurface Z in the x* coordinate system is

and if equations (3.6) are substituted into equations (3.5), we then obtain
equations (2.5) for the varied hypersurface Z in the x coordinate system.
Thus it follows from this fact that

(3.7) \-e-/=0 \ox,p]=o * + ’
where the partial derivative occurring on the left of this equation is taken
for fixed a, , and 7, and the partial derivatives occurring on the right-hand
side of this equation are evaluated from equations (3.5) with e constant and
equal to zero.

It follows from equation (3.5) that for fixed x

If in the x* cordinate system we consider a family of metric tensors

(3.9)

then this defines a family of tensors in the x coordinate system through the
equations (3.5) and the transformation law

(3.10)

We define

g(x, e) g* Ox*
Ox, .Ox

tig
\ Oe

where x" is fixed in this differentiation.
It then follows from equations (3.9) and (3.10) that

(3.11) g
where

(3.12) v, v*
k Ox, /=0 k Ox /=0"
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We shall find it convenient to compute the variation of I given by equation
(2.1) by evaluating the integrand in the x* coordinate system and varying
the particle paths in accordance with equation (3.5) and the g* in accord-
ance with equation (3.8). We note that the variation of the particle paths
given by equation (3.5) induces a variation of the velocity field u given by
the equation

\=0 a--- Ox

In this equation the values of x* are fixed in the differentiation occurring on
the left-hand side of the equation. At fixed values of the x coordinates

( au ax* a(3.14) u" oe + os/=o
=-u’; + u";’

where we have used the notation

0x(3.5) u"

and the functions entering into the right-hand side of this equation are those
in equation (3.2).
We shall need the result of evaluating

o (*" )=o .((,))( of
eO

t fixed vlues of x*. It follows from equation (3.13) that

=0 kax ae ae
(3.16) +ax ax/=o

2g, u ;, 2g* u

The varied proper density in the x coordinate system will be written as

These proper densities may be considered as functions of the variables x*
defined by the equations

Then

where the erentiafion on the left takes place for constant values of the
X*.
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It has been shown [4] that the equation of conservation of mass, equation
(2.3), is equivalent to the condition that

(3.18) M p"-g ex
Oxx ax’ Ox Ox
au Ov Ow Os

be independent of s. We restrict the variations of p, g,,, and the particle
paths so that

0,

where the differentiation is taken at a fixed value of x*". Since

it is consequence of equations (3.18), (3.17), (3.10), nd (3.5) that

y 71p

p*

*+ g*%*, + =0.. The variation of the scalar curvotur

(4.1)

where

(4.2)

and

It is convenient to write equation (2.1) as

I I + G,

q-V2

(4.3) I2 2k [ p(c + H + _gg,,l u,u) d4x.
l+g2

In ,his section we shM1 discuss he variation of I, due o wriaions of he
e in n rbirry coordinate system.
From he definition of he seMar curvature, we hve

, , P P

where { are the Christoffel symbols of the second kind computed from the

g, and the comma denotes the ordinary derivative. It is well known that
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where the semicolon denotes the covriant derivative with respect to the
metric tensor g.

Since

,.,,,j 1/2g’,’(,,,,.,, + ,,,,.,, #,,,,.,,),

Hence

Therefore

(v/:e ) v/:- (_R’ + ,, + ((e"/ e’%")a,;,);o.
Hence under variations of the g. alone, we have

v
1

The second integral being divergence my be written in terms of n integral
over the boundaries of the subvolumes V nd V. We shll assume that
g. vanishes on all boundaries except the hypersuffce . In that cse we

it follows that

may write

fr, [’V/-- (g""g"--g"’g)g"";] X, dY,,+
where the notation defined by equations (2.7) nd (2.8) has been used.

If in addition to varying the g., we vary the hypersurface of discontinuity,
we obtain

fl 1I1 "V"-L---g (-R’ 4- u Jg, dx
+ir2

(.s)

:

Nquaion (.8) holds in an arbitrary coordinate system, and in particular
ig may be applied in he *" one in which ease we have

(4.9)

as follows from equation (3.9), and Z*" defines the equation of the varied
hypersurface in accordance with equation (3.6). It may be verified thut if
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in equation (4.8) applied in the x" coordinate system we substitute for
from equation (3.11) and for from equation (3.7), we obtain equation (4.8)
applied in the x*" coordinate system, that is we obtain

I1 f /-- (-R*’" + 1/2g*"R*)% du dv dw ds

(4.10)

f [v- (** **)* + R**Gx* d*.+

5. The variation of I
We now discuss the variation of I2 as was done previously [4] but now in-

clude a variation of the hypersurface 2. We obtain

2k l+V - p* S*T* + 1/2 t*u*"u*n*

*g*,u*u*P*;p) X/Z-g* du dv dw ds(5.1) +

+ p* "X,"-* c + H* + - g*,,u*u*" ,*"h*, dY,*.

The hypersurface integral on the right of this expression arises from the
variation of the surface 2:, the volume integral is derived by evaluating I2 in
the x* coordinate system and varying the functions p*(x*), T*(x*), and
x’(x*) in ccordance with equation (3.9); equation (3.6) has been used in
deriving equation (5.1) as well as the equation

dH dp SdT,

which follows from (2.2) and the definitions of temperature and entropy.
If we now substitute from equation (3.19) into (5.1), we may write the

latter equation as

where

(5.3)

and we have written

(0*’(v% + 2*,;) 2p*S*u*P(a*),p) %/-g*du dv dwds

+ f [p*(c + H* + 1/2-t*g*,,u*’u) V/-g*] X h*, d2*,

(5.4)
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After integration by parts we may write equation (5.2) as

(5.5)

We then have by combining equations (5.5) and (4.10)

(5.6)

t+V2

"V"-Z-] X*, dZ*.

6. The equations of motion and boundary conditions

The requirement that

(6.1) iI 0

for arbitrary n*,, (*", and a* which vanish on the hypersurface 2: leads to
the results obtained previously"

(6.2) R"v 1/2g"’R + kO" O,

(6.3) 0"’; 0,
and
(6.4) t c -t- e + p/p.

Since our equations are tensor equations, we may write them in an arbitrary
coordinate system. This will be done henceforth. Equation (6.4) must be
satisfied in order that equation (1.6) hold. It then follows from equations
(6.4) and (5.3) that

0"= c2T’,

where T" is given by equation (1.5).
We further require that (6.1) hold for more general /*, and (*", namely

those which may take on arbitrary values in the regions V1 and V. and which
may take on arbitrary values on the hypersurfaee 2;. Then we must have
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(6.5)

(6.6)
and

in addition to equations (6.2) through (6.4) the conditions

x.] 0,

h,g g gp,g-8) , + =0.
p

Equations (6.6) and (6.7) arise from setting the coefficients of the derivatives
of , nd the coefficients of , in the second term of the integmnd of the
hypersufface integral in equation (5.6) separately equal to zero. This must
be done if the hypersuffce integral is to wnish under the conditions stated
bove.

Equations (6.5), (6.6), nd (6.7) re the generalized Rnkine-Hugoniot
equations nd the looked for conditions involving the jump in the g,, nd
their derivations. They will be discussed in Section 8.

In the remainder of this section we discuss the remaining ter in the hy-
persuffac integral in equation (5.6). That is, we consider the equation

wUch must be satisfied if I is to equM zero. Ts equation my be regarded
as relUon between the vritions of T and the wfitions of the suffce.
It is the general relativistic analogue of relation previously found in the
classical theory [5].

It follows from equations (1.6) nd (6.2) to (6.4) that this equUon my
be written s

(6.9) [, p ( + TS + ) "X,]= -[p. u"X,S].

Our result is then" the variational principle

I 0

under arbitrary variations of the g,, the particle paths, the rest density, the
rest temperature, and the hypersurface 2, subiect to conditions (3.19), (1.6),
and (6.9), implies equations (6.2) and (6.3) in the regions where the depend-
ent variables have the required number of derivatives and equations (6.5),
(6.6), and (6.7) hold across hypersurfaces of discontinuity.

7. The generalization of the conservation of mass equation
The equation describing the conservation of mass in regions where p and

u" have derivatives is equation (2.3) which may be written as

1 O (V/.--pu,) O.(7.1)
%,/_g Ox
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If this equation is integrated over a region, it may be written as

(7.2) f V/-pu, dr O,

where dr is the invariant three-dimensional volume element of the boundary
of the region of integration and is the normal vector to the boundary. If
we suppose that the region of integration is a shell of thickness e enclosing
the hypersurface 2, we obtain from equation (7.2) in the limit as e goes to
zero the condition

(7.3) [/-g pu%] 0,

where now h is the normal to the hypersurface 2.
This equation will be taken as the generalization of the equation of con-

servation of mass and must be considered on a par with equation (6.5).
Properly speaking the five equations (7.3) and (6.5) are the generalizations
of the Rankine-Hugoniot equations. They reduce to the equations found
earlier [3] in case the space-time is flat.

8. The conditions (6.6) and (6.7’)
In order to simplify the discussion of these equations, we assume that we

have chosen the coordinate systems in the regions V1 and V2 of space-time
in such a way that the hypersurface 2: is given by the equation

(8.1) x 0.

That is, we have chosen the coordinate system so that equations (2.4) are

XX c X --’".

Then it follows from equation (2.7) that

Ox Ox Ox

If the hypersurface 2 is to be free of singularities, and if we choose our
coordinate system so that equation (8.1) holds, then the line element on 2
is given by

(8.3) do? gij dx dx (i, j 2, 3, 4),

Xwhere g.(0, x"i x3, x4) are continuous functions of the variables x, x3, and
have at least second derivatives with respect to these variables. We may
suppose that the choice of coordinate systems in the regions V and V. is
such that the same line element for 2; is obtained by taking equation (8.1)
in V1 and the same equation in V. to define 2. That is, we may suppose
that as a result of our choice of coordinate systems we have

(8.) [g,] o.
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XSince equations (8.3) are to hold identically in x x3, at an arbitrary
point of 2, we must also have

(8.5)
L Oxl

o.

The terms
%/’-g , dx dx dx %/- dx dx dx

in the hypersurface integrals considered in sections 4 and 5 which gave rise
to the appearance of %/-g in equations (6.4), (6.5), and (6.7) represent the
invariant volume measure on the hypersurface 2 and have to do only with
the geometry of 2. Hence if 2; is to be without singularities, we must have

(8.6) [v/- ] [v/ ] 0.

It follows from the identity

and equation (8.6) that equation (6.6) becomes

[ u,,",, g,-] O.

From the properties of the e’s it follows that

[e[g. g] 0.

These equations are equivalent to the equations

[g. gun g g.u] O.

If in these equations we set a 1, they become identically satisfied.
It is therefore sufficient to treat the case a 1, n. Then we have

[g gu g g,] O.

We may now assume that at an arbitrary point of 2 the coordinate system
is chosen so that gun Ounlessm n. Then choosingm nandl n
in the above equation, we obtain the condition

[gun gll] O.

That is, gl is continuous across 2;. Since g is also continuous across 2; (cf.
(8.6)), we see that equations (6.6) and the requirements on our coordinate
system and on the hypersurface 2 imply that

(8.7) [g] 0,

that is, the g,, are continuous across 2.
Since equation (8.7) is an identity in x, x3, x, we must have

Lax j
0

in the coordinate system in which equation (8.2) holds.
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In view of the symmetry of the Christoffel symbols and equations (6.7),
we may write equations (6.7) as

We may write these equations as

where

g Lax o-
Thus in the coordinate system in which (8.2) holds, equations (6.7) may be
written as

r Fo ,. + o o. o ool= o
Lax Ox Ox. J

g" x Ox" J
If in this equation we set p 1, we obtain

LOx J
g" axe

In view of equation (8.8) this may be written as

(8.10) g"
Lax, j

Next, set p 1, n in equation (8.9) and obtain

(8.11) gin1 FOgm.l
L ax J

0

as a consequence of (8.8).
Finally set p r, n in equation (8.9) and obtain

(8.12) g
L ax’ J

O.

Equations (8.10), (8.11), and (8.12) are the conditions found by O’Brien
and Synge [6]. If the hypersurface 2; is such that X is not a null vector (if
2; is nowhere tangent to the light cone), gll 0, and these three equations
become

Lax j
O.

That is, the derivatives of gr in the above coordinate system are continuous
across 2;. The four quantities, Ogi/OX, may be discontinuous across 2].

However, it has been pointed out by A. Lichnerowicz [7] that if these four
quantities are discontinuous across 2; in the coordinate system chosen, we
may make a nonanalytic transformation of coordinates which preserves the
coordinates of each point of 2; and the region V and which changes the co-
ordinates of points in the region V2 in such a way that the discontinuities in
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cOgl/OX are removed. If the original coordinate system is such that the hy-
persurface is defined by equation (8.1) and the region V1 is characterized by
x < 0 and the region V. by x > 0, the transformation which removes the
discontinuity in Og,/Ox is

(8.14)
1 X

12=x"+( )( xl>O

’ x" x =< 0.
(u 1, 2, 3, 4;i- 2, 3, 4)

It follows from these equations that for x > 0

0z" (x) 0
Ox- ’’4 2 Ox

OxOx 2.0xOx

02"2" 02"2’‘
X

OxtOx OxOx Ox

whereas for x =< 0 we have

and all second derivatives vanish. Hence the transformation and its first
derivatives are continuous across 2.
We shall use the subscript -t- to denote the limit of a function of x as x

tends to zero through positive values. Thus

f+ lim
xI>0
xl0

With this notation it follows from the above equations that

and

+ g
Ox Ox/+

g+

Oy) ]+ [\ Ox Ox" t- g
OxOx

\ Ox ]+

-t" g Ox Ox"Ox"] 02 +
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Hence

0 /+ \ o]+ 0+.+ kOxV+ "
We may thus determine " so that the left-hand side of this equation is

any prescribed function of the x, in particular, so that the left-hand side is

lim (00 (00
xl0

Thus we may remove the discontinuity in the derivatives of the g by suit-
ably modifying our coordinate system.
However, in a general coordinate system, the conditions that the g, must

satisfy across are equations (6.6) and (6.7). In order to remove the dis-
continuities which may appear in the derivatives of the g,, a transformation
of coordinates which has discontinuous second derivatives is required. Thus
the introduction of singular hypersugaces in a space-time in which the varia-
tional principle discussed above is to hold implies that we must formulate
the general theory of relativity in terms of a Riemannian space in which the
transformations between admissible coordinate systems are at most required
to be continuous and hae continuous first derivatives across the singular
hypersurfaces. The formulation given by Lichnerocz has more restricted
admissible coordinate systems. He requires the transformations between
them to have continuous second derivatives.

It is known that the interior and exterior Schwarzschild solution for a
spherically symmetric distribution of an incompressible fluid have a dis-
continuity in the derivatives of the g, with respect to the spatial coordinate
r in the usuMly used coordinate system. In this coordinate system the
boundary is given by r r0. This discontinuity is in accordance with
equations (6.6) and (6.7). A similar situation arises in the plane-symmetric
case [2].

9. The Rankine-Hugoniot equations

These equations are equations (6.5) and (7.3). In view of the fact that
we have the g, continuous across 2, they may be written as

(9.1)

and

(9.2) [pu%,] ,,(p+ u+" p_ u_") O.

The last of these equations may be written as

(9.3) p+ an u+" p- X u-" m.
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The quantity m represents the rate at which matter is approaching the
hypersurface 2, and this is equal to the rate at which it is leaving this hyper-
surface.
There are two types of discontinuities: (1) those for which

(9.4) m 0,

and (2) those for which

(9.5) m 0.

In case m 0 the discontinuity is either a slip-stream, a density discon-
tinuity, or both when T’ is the stress energy tensor for a perfect fluid. For
in that case equations (9.1) may be written as

(9.6) m X, m u_ X,
+ G-

which reduces to

(9.7) p+-- p_

when m 0.
In a case where m 0, p+ 0, and p_ 0 (a density discontinuity), we

obtain from equation (9.3)

(9.8) X u_ O.

Thus, the hypersurface 2: is made up of the world lines of particles of the
fluid. Equations (9.7) with p+ 0 and (9.8) are the conditions usually
assumed at the boundary between a distribution of matter and empty space-
time.
We may have m 0, o+ # 0, and o- # 0. In this case it follows that

(9.9) X,(u+ u_) 0,

that is, the component of flow normal to the hypersurface is continuous. In
this case a discontinuity in tangential velocity occurs (a slip-stream is said
to exist), or there is a discontinuity in density, or both possibilities may
occur.

In case m 0 the hypersurface 2 will be said to be a shock front when
the vector normal to 2 is a space-like vector. In that case equations (9.1)
and (9.2) evaluated at an arbitrary point of in a coordinate system, chosen
so that tim g have the values g, 0, t , g g. g g -1,
become the Rankine-Hugoniot equations in special relativity. These equa-
tions have been shown [3] to reduce to the classical Rankine-Hugoniot equa-
tions in the limit c -- .It should be noted that in such a case the normal component of the ve-
locity vector u" is discontinuous across the hypersurface 21. This means
that the transformation of coordinates given by equations (3.2) is such that
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it is continuous but has discontinuous first derivatives across 2]. Thus the
mathematical formulation of general relativity must be broadened even
further than indicated above. It must allow for transformations of admis-
sible coordinate systems which are continuous across 2 but may have dis-
continuous first derivatives across this hypersurface.

10. Generalizations

It should be pointed out that equations (6.5), (6.6), and (6.7) will arise
from any variational principle of the form

[ 0,

where the variations may include the variations of the hypersurface 2 and

I I1 + f f(g, 4(), x) ax,
avl+V2

where I is given by equation (4.2) and the integrand f depends on the g,
and not the derivatives of this tensor. It may also depend on other field
variables >(x). In such a ease the tensor entering in equation (6.5) is
given by

o_ of.
Og,

Additional equations holding across 2; which involve conditions on the
discontinuities of the variables () and their derivatives will also arise in
such a case. They did not in the case of the perfect fluid because the Euler
equations of the variational principle which led to the hydrodynamical
equations of motion were a consequence of the field equations for the g,.
The hypersurfaces 2; may be considered as a mathematical abstraction

corresponding to a small region of space-time in which abrupt changes in
various field variables take place. This is the interpretation placed on such
hypersurfaces in classical theory. The relations (6.5), (6.6), and (6.7) are
then to be interpreted as the relations that must hold between the field
variables before and after such transitions.

This remark enables us to see under what conditions we may apply these
equations even when X, is a time-like vector. Suppose that in a region of
space-time bounded by two nearby space-like hypersurfaces 2+ and 2_ the
stress energy tensor is of one form but that outside this region it is of another
form, say that of a perfect fluid given by equation (1.5) in the region bounded
by 2_ and that,, of a perfect fluid and a rdiation field in the region bounded
by 2+. In the limit as 2+ --* 2_-- 2 the theory given above should hold.
Thus if for short interval of time there are some processes taking place
which would affect the gravitational field present, we may take account of
such processes to the extent that the limiting configuration is an approxima-
tion to the one described. That is, we consider the singular hypersurface
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2: as providing an abrupt transition from a space-time with a perfect fluid
to a space-time with a perfect fluid and radiation present. A more detailed
theory would consider the transition in the form of a stress energy tensor as
taking place over a zone of space-time limited by the space-like hypersurfaces
2_ and 2:+.
In classical theory the approximation of a hydrodynamics shock wave by

a mathematical discontinuity has been shown to be a fruitful simplifying
approximation. The generalization of these waves to singular hypersur-
faces in space-time is a natural one, and a range of phenomena may
be studied in terms of them.
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