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LIPSCHITZ CELL DECOMPOSITION IN O-MINIMAL
STRUCTURES I

WIES�LAW PAW�LUCKI

Abstract. A main tool in studying topological properties of sets
definable in o-minimal structures is the Cell Decomposition The-
orem. The present paper proposes its metric counterpart based

on the idea of a Lipschitz cell. In contrast to earlier results, we

give an algorithm of a Lipschitz cell decomposition involving only
permutations of variables as changes of coordinates.

1. Introduction

A main tool in studying topological properties of sets definable in o-minimal
structures is the Cell Decomposition Theorem (cf. [vdD]). The present paper
proposes its metric counterpart based on the idea of a Lipschitz cell, called
here an M -cell. Of course, in general, a decomposition into such cells re-
quires linear changes of coordinate systems (cf. [K], [P]). We will give an
algorithm showing that in fact permutations of coordinates suffice as changes
of coordinate systems.

The present article deals only with Lipschitz cell decomposition of open
sets. The case of general o-minimal sets, easily reducible to the previous one,
with some additional properties and applications will be treated in a separate
paper.

Fix any o-minimal structure on a real closed field R (for the definition
and fundamental properties of o-minimal structures the reader is referred to
[vdD]). Let n be a positive integer.
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Definition 1. A subset S of Rn will be called an (open) cell in Rn if

(1.1) S = {(x′, xn) ∈ Rn : x′ ∈ Δ, ϕ1(x′) < xn < ϕ2(x′)},

where x′ = (x1, . . . , xn−1), the set Δ is an open definable subset of Rn−1,
every ϕi (i ∈ {1,2}) is either a definable continuous function ϕi : Δ −→ R or
ϕi ≡ −∞ or ϕi ≡ +∞ and, for each x′ ∈ Δ, ϕ1(x′) < ϕ2(x′).

Definition 2. For any positive constant M ∈ R, a definable continuous
function ϕ : Δ −→ R defined on an open subset Δ of Rn−1 will be called an
M -function if

(1.2)
∣∣∣∣ ∂ϕ

∂xj
(a)

∣∣∣∣ ≤ M (j ∈ {1, . . . , n − 1}),

at each point a ∈ Δ in a neighborhood of which ϕ is of class C1.

Definition 3. A cell S in Rn will be called an M -cell (a semi-M -cell) if,
for each i ∈ {1,2} (for at least one i ∈ {1,2}), if ϕi is finite, it is an M -function.

Definition 4. A cell S in Rn will be called a regular M -cell if it is any
open interval in the case n = 1 and, in the case n > 1, for each i ∈ {1,2}, if ϕi

is finite it is an M -function of class C1 on Δ and the projection Δ of S into
Rn−1 is a regular M -cell in Rn−1.

Definition 5. An M -cell will be called an M -disc if it is any open interval
in the case n = 1 and, in the case n > 1, both ϕi (i ∈ {1,2}) are finite and
admit continuous extensions

(1.3) ϕi : Δ −→ R

onto the closure of Δ in Rn−1, and

(1.4) ϕ1 = ϕ2 on ∂Δ.

For a, b ∈ Rn, let |a − b| =
√∑n

j=1(aj − bj)2.

Proposition 1. Let S be a regular M -cell in Rn and let ϕ : S −→ R be
an L-function (L > 0) of class C1.

Then:
(1) for any two different points a, b ∈ S, there is a definable continuous map-

ping
λ = (λ1, . . . , λn) : [0, |a − b|] −→ S

such that λ(0) = a, λ(|a − b|) = b and |λ′
j(t)| ≤ (j − 1)!M j−1, for any

j ∈ {1, . . . , n} and any t such that λ′
j(t) exists;

(2) for any two points a, b ∈ S,

|ϕ(a) − ϕ(b)| ≤ n!Mn−1L|a − b|.
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Proof. (1) Let S be as in (1.1). Arguing by induction and assuming that
a′ �= b′, one can find a mapping

ω = (ω1, . . . , ωn−1) : [0, |a′ − b′ |] −→ Δ

such that ω(0) = a′, ω(|a′ − b′ |) = b′ and |ω′
j(τ)| ≤ (j − 1)!M j−1, for any j ∈

{1, . . . , n − 1} and any τ such that ω′
j(τ) exists. Let ε > 0 be such that

ϕ1(ω(τ)) + ε < ϕ2(ω(τ)) − ε for any τ ∈ [0, |a′ − b′ |],

and

ϕ1(a′) + ε < an < ϕ2(a′) − ε and ϕ1(b′) + ε < bn < ϕ2(b′) − ε.

Now, it suffices to put

λj(t) = ωj

(
t

|a′ − b′ |
|a − b|

)
for j ∈ {1, . . . , n − 1},

and

λn(t) = max
{

ϕ1

(
ω

(
t

|a′ − b′ |
|a − b|

))
+ ε,

min
{

ϕ2

(
ω

(
t

|a′ − b′ |
|a − b|

))
− ε, an + t

bn − an

|a − b|

}}
.

(2) follows from (1), by the Mean Value Theorem (see [vdD; Chapter 7, (2.3)]).
�

Kurdyka–Parusiński theorem ([K], [P]). Any open definable subset G
of R

n has a finite decomposition

G = S1 ∪ · · · ∪ Sk ∪ Σ,

where every Sν is a regular Mn-cell in some linear coordinate system in R
n,

the subset Σ is nowhere dense and Mn is a constant depending only on n.

The aim of the present article is to give an algorithm showing that in fact
permutations of coordinates are sufficient in the above theorem. We will prove
simultaneously, by induction on n, the following three theorems.

Theorem 1n (2n,3n). Any open definable subset G of Rn has a finite
decomposition

(1.5) G = S1 ∪ · · · ∪ Sk ∪ Σ,

where every Sν is an M1n-cell (M2n-disc, a regular M3n-cell) in Rn after a
permutation of coordinates, Σ is nowhere dense and M1n (M2n, M3n) is a
constant ≥ 1 depending only on n.
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For simplicity, we will often skip the adjective definable, when considering
subsets of spaces Rn and mappings between such subsets. Also, we adopt
the following conventions. A local property (w) of a mapping f : A −→ Rm,
where A ⊂ Rn, is said to be satisfied almost everywhere if there is a closed
subset E of A such that dimE < dimA and (w) is satisfied at each point of
A \ E. A finite sequence B1, . . . ,Bk of subsets of a set A ⊂ Rn is said to be
an almost decomposition of A if Bν (ν = 1, . . . , k) are pairwise disjoint and
dim(A \ (B1 ∪ · · · ∪ Bk)) < dimA. This will be denoted by writing

A � B1 ∪ · · · ∪ Bk.

Since Theorem 2n together with 3n − 1 easily imply both Theorems 1n and
3n , it suffices to derive first Theorem 1n from Theorem 2n − 1, and then The-
orem 2n from Theorems 1n , 2n − 1 and 3n − 1. From now on, we will assume
that n ≥ 2 is fixed.

2. A preparation

Lemma 1. If G ⊂ Rn−1 is open and E ⊂ ∂G is closed of dimension < n − 2
and Theorem 2n − 1 is true, then G has an almost decomposition

G � Δ1 ∪ · · · ∪ Δp,

where every Δν , after a permutation of coordinates in Rn−1, is an M2n−1-
disc:

Δν = {(x′ ′, xn−1) : x′ ′ ∈ Ων , σν(x′ ′) < xn−1 < ρν(x′ ′)},

where x′ ′ = (x1, . . . , xn−2), such that both (graphs of)1 σν and ρν are disjoint
from E.

Proof. Take the projections

πj : Rn−1 � (x1, . . . , xn−1) 
→ (x1, . . . , xj−1, xj+1, . . . , xn−1) ∈ Rn−2,

for j ∈ {1, . . . , n − 1}, and set

Z = the closure of
⋃
j

π−1
j (πj(E)).

Then dimZ ≤ n − 2, and it suffices to use Theorem 2n − 1 to G \ Z. �
As a corollary, one easily gets (see [vdD; Chapter 4, (1.8) and (1.5)]) the

following lemma.

Lemma 2. If G ⊂ Rn−1 is open and ϕ : G −→ R is continuous, then G has
an almost decomposition

G � Δ1 ∪ · · · ∪ Δp,

where every Δν , after a permutation of coordinates in Rn−1, is an M2n−1-disc

Δν = {(x′ ′, xn−1) : x′ ′ ∈ Ων , σν(x′ ′) < xn−1 < ρν(x′ ′)}

1 We will identify functions with their graphs.
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such that ϕ|Δν has a continuous extension

ϕν : Δν ∪ σν ∪ ρν −→ R = R ∪ { −∞,+∞}
such that ϕν(σν) ⊂ R or ϕν(σν) = {−∞}, or ϕν(σν) = {+∞} and the same
for ρν .

Proposition 2. Let f : S −→ R be a definable C1-function defined on a
cell

S = {(x′, xn) ∈ Rn : x′ ∈ Δ, ϕ(x′) < xn < ψ(x′)}
in Rn such that ϕ : Δ −→ R is of class C1.

Assume that ∂f
∂xn

has a finite limit value2 at (almost) each point of ϕ (for
example, when ∂f

∂xn
is bounded).

Then there is a closed nowhere dense subset Z of ϕ such that f extends to
a C1-function

f : S ∪ (ϕ \ Z) −→ R

to S ∪ (ϕ \ Z) as a C1-submanifold of Rn with boundary ϕ \ Z.

Proof. It is left to the reader as an exercise (cf. [vdD; Chapter 4, (1.8) and
(1.5)]). �

Lemma 3. Let L,M,N,P ∈ R be positive and let

G = {(x′, xn) : x′ ∈ Δ, ϕ1(x′) < xn < ϕ2(x′)}
be a semi-M -cell in Rn such that Δ is an N -cell in Rn−1, ϕi : Δ −→ R, for
each i ∈ {1,2},and the following conditions are satisfied almost everywhere in
Δ: ∣∣∣∣∂ϕ1

∂xj

∣∣∣∣ ≤ M for each j ∈ {1, . . . , n − 1};(2.1) ∣∣∣∣ ∂ϕ1

∂xn−1

∣∣∣∣ < L <

∣∣∣∣ ∂ϕ2

∂xn−1

∣∣∣∣;(2.2)

| ∂ϕ2
∂xj

|
| ∂ϕ2
∂xn−1

|
≤ P for each j ∈ {1, . . . , n − 1};(2.3)

sgn
∂ϕ2

∂xn−1
= const .(2.4)

Then G admits an almost decomposition

G � S1 ∪ · · · ∪ Sk,

where every Sν is an M̃ -cell, possibly after transposition (xn−1, xn), where
M̃ is a positive constant depending only on L,M,N and P .

2 An element α ∈ R is a limit value of a function g : S −→ R at a ∈ S if and only if there

is an arc γ : (0,1) −→ S such that limt→0 γ(t) = a and limt→0 g(γ(t)) = α.
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Proof. Put

Δ = {(x′ ′, xn−1) : x′ ′ ∈ Ω, σ(x′ ′) < xn−1 < ρ(x′ ′)}.

One can assume that

(2.5)
∂ϕ2

∂xn−1
> 0;

the other case will follow by a modification. Because of (2.2) and (2.5), it
is clear that σ : Ω −→ R. By a subdivision of Ω, one can assume that σ is
of class C1 and that (2.2) is satisfied almost everywhere on every segment
{(x′ ′, xn−1) : σ(x′ ′) < xn−1 < ρ(x′ ′)}, where x′ ′ ∈ Ω and that ϕi admit contin-
uous extensions

ϕi : Δ ∪ σ −→ R (i = 1,2)
and

ϕ2 : Δ ∪ ρ −→ R ∪ {+∞}
such that ϕ2(ρ) ⊂ R or ϕ2(ρ) = {+∞}.

By Proposition 2, ϕ1 is of class C1 almost everywhere on σ. Put

ψ(x′ ′, xn−1) = ϕ1(x′ ′, σ(x′ ′)) + L
(
xn−1 − σ(x′ ′)

)
for (x′ ′, xn−1) ∈ Δ.

Then ψ is an max(M + MN + LN,L)-function and ϕ1 < ψ < ϕ2.
Now G � S1 ∪ S2, where S1 = {(x′, xn) : ϕ1(x′) < xn < ψ(x′)} and S2 =

{(x′ ′, xn−1, xn) : x′ ′ ∈ Ω,Φ1(x′ ′, xn) < xn−1 < Φ2(x′ ′, xn)}, where

Φ2(x′ ′, xn) =

⎧⎪⎨
⎪⎩

ψ−1(x′ ′, xn) = L−1
(
xn − ϕ1(x′ ′, σ(x′ ′))

)
+ σ(x′ ′),

if ϕ1(x′ ′, σ(x′ ′)) < xn < ψ(x′ ′, ρ(x′ ′)),
ρ(x′ ′), if ψ(x′ ′, ρ(x′ ′)) ≤ xn < ϕ2(x′ ′, ρ(x′ ′)),

and

Φ1(x′ ′, xn) =

{
σ(x′ ′), if ϕ1(x′ ′, σ(x′ ′)) < xn ≤ ϕ2(x′ ′, σ(x′ ′)),
ϕ−1

2 (x′ ′, xn), if ϕ2(x′ ′, σ(x′ ′)) < xn < ϕ2(x′ ′, ρ(x′ ′)),

where ψ−1 and ϕ−1
2 stand for inversions with respect to xn−1. �

Lemma 4. Let a subset A ⊂ Rn−1 be open and let M be a positive constant.
Let fα : A −→ R (α ∈ {1, . . . , k + l}) be M -functions on A each of which has
a continuous extension to A:

fα : A −→ R.

Assume that for each a ∈ ∂A there are α ≤ k and β > k such that fβ(a) ≤
fα(a).

Then the set

S =
{

(x′, xn) ∈ A × R : max
1≤α≤k

fα(x′) < xn < min
k<β≤k+l

fβ(x′)
}

is an M -disc in Rn.



LIPSCHITZ CELL DECOMPOSITION 1051

Proof. Indeed,

S =
{

(x′, xn) ∈ B × R : max
1≤α≤k

fα(x′) < xn < min
k<β≤k+l

fβ(x′)
}

,

where B is the natural projection of S to A. It is clear that max1≤α≤k fα =
mink<β≤k+l fβ on ∂B and the lemma follows. �

Lemma 5. Let α1, α2 ∈ R, α1 < α2 and let f, g, h : (α1, α2) −→ R be three
continuous definable functions such that

(2.6) g ≤ f on (α1, α2);

(2.7) for each i ∈ {1,2}, if αi ∈ R, then lim
t→αi

g(t) = lim
t→αi

h(t) ∈ R;

(2.8) sgnf ′(t) = const almost everywhere in (α1, α2),

and there is ε > 0 such that

|f ′(t)| ≥ |g′(t)| + ε and |f ′(t)| > |h′(t)|(2.9)
almost everywhere in (α1, α2).

Then h < f on (α1, α2).

Proof. One can assume that f ′(t) > 0. Then α1 ∈ R, since otherwise by
(2.9), limt→ − ∞(f(t) − g(t)) = −∞, a contradiction with (2.6). By (2.9), f − h
is strictly increasing and, by (2.6) and (2.7),

lim
t→α1

(
f(t) − h(t)

)
≥ lim

t→α1

(
g(t) − h(t)

)
= 0.

Hence, f − h > 0 on (α1, α2). �

3. Reduction of Theorem 1n to a special case of semi-M -cells

By the standard cell decomposition theorem (see [vdD; Chapter 3, (2.11)])
and since

Rn =
n⋃

j=1

{(x1, . . . , xn) ∈ Rn : |xk | ≤ |xj |, for any k �= j},

it suffices to derive Theorem 1n for any cell G in Rn such that

(3.1) G = {(x′, xn) : x′ ∈ Δ, ϕ1(x′) < xn < ϕ2(x′)},

where ϕi : Δ −→ R (i = 1,2) are continuous.

Definition 6. For given positive L,P ∈ R, a cell G of the form (3.1) will be
called an (L,P )-cell (with respect to the variable xr), where r ∈ {1, . . . , n − 1},
if

(3.2)
∣∣∣∣∂ϕi

∂xr

∣∣∣∣ ≥ L and
| ∂ϕi

∂xj
|

| ∂ϕi

∂xr
|

≤ P,

almost everywhere on Δ, for i ∈ {1,2}, j ∈ {1, . . . , n − 1}.
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Proposition 3.
(1) Any open cell G ⊂ Rn has an almost decomposition

(3.3) G � S1 ∪ · · · ∪ Sk,

where every Sν is either a semi-Mn-cell or an (Ln, Pn)-cell after a permu-
tation of coordinates, where the positive constants Mn,Ln and Pn depend
only on n.

(2) If a cell G is an (L,P )-cell, then G has an almost decomposition (3.3) with
only semi-M -cells, where the constant M depends only on n,L and P .

To prove Proposition 3, we first have the following lemma.

Lemma 6. Let H be an open subset of Rn and let E be a closed subset of
∂H such that dimE < n − 1. Let ri ∈ {1, . . . , n − 1} (i ∈ {1,2}). Assume that
L,P ∈ R are positive, and such that for each a ∈ ∂H \ E:

(3.4-i) there exists a neighborhood U of a in Rn such that ∂H ∩
U is (the graph of) a C1-function ψ : V −→ R defined on
an open V ⊂ Rn−1 and such that∣∣∣∣ ∂ψ

∂xri

∣∣∣∣ ≥ L and
| ∂ψ
∂xj

|
| ∂ψ
∂xri

|
≤ P on V for j ∈ {1, . . . , n − 1},

for i = 1 or i = 2.
Then:

(1) H admits an almost decomposition

(3.5) H � S1 ∪ · · · ∪ Sk,

where every Sν after transposition (xr1 , xn) is either a semi-max(L−1, P )-
cell or a (P −1,max(L−1, P ))-cell in Rn with respect to xr2 .

(2) If r1 = r2 = r, H has such an almost decomposition of the form (3.5),
where every Sν is a max(L−1, P )-cell after transposition (xr, xn).

Proof. After transposition (xr1 , xn), take a C1-cell decomposition compat-
ible with each of the sets

Λi = {a ∈ ∂H \ E : a satisfies (3.4-i)}
(i = 1,2) and with E. This gives an almost decomposition

H � S1 ∪ · · · ∪ Sk,

where every cell Sν is of the following form

Sν = {ϕ1ν(x1, . . . , x̂r1 , . . . , xn) < xr1 < ϕ2ν(x1, . . . , x̂r1 , . . . , xn)},

such that, for i ∈ {1,2}, either ϕiν ⊂ Λ1 or ϕiν ⊂ Λ2, or ϕiν ≡ −∞, or ϕiν ≡
+∞.

One can assume that for each i either ϕiν ⊂ Λ1 or ϕiν ⊂ Λ2, since otherwise
Sν is trivially a semi-max(L−1, P )-cell.
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If ϕiν ⊂ Λ1, for at least one i, then Sν is a semi-max(L−1, P )-cell.
If ϕiν ⊂ Λ2, for each i ∈ {1,2}, and r1 �= r2, then it is easy to check that Sν

is an (P,max(L−1, P ))-cell with respect to xr2 . �

Proof of Proposition 3. One can assume that G is as in (3.1). The proof
will be by descending induction on the number

〈G〉 =
2∑

i=1

�

{
j :

∣∣∣∣∂ϕi

∂xj

∣∣∣∣ < 1 + 2M2n−1 almost everywhere on Δ
}

.

If 〈G〉 = 2(n − 1), then G is a (1+2M2n−1)-cell, so assume that 〈G〉 < 2(n − 1).
Observe that if Δ̃ ⊂ Δ is open, then for G̃ = G ∩ (Δ̃ × R), 〈G̃〉 ≥ 〈G〉. Hence,
one can assume that every ϕi is C1 and

for each j ∈ {1, . . . , n − 1}, sgn
∂ϕi

∂xj
= const on Δ;(3.6)

for each j ∈ {1, . . . , n − 1}, either
∣∣∣∣∂ϕi

∂xj

∣∣∣∣ < 1 + 2M2n−1 or(3.7) ∣∣∣∣∂ϕi

∂xj

∣∣∣∣ > 1 + 2M2n−1, or
∣∣∣∣∂ϕi

∂xj

∣∣∣∣ = 1 + 2M2n−1 on Δ

and there is an ri ∈ {1, . . . , n − 1} such that

(3.8) for each j ∈ {1, . . . , n − 1},

∣∣∣∣∂ϕi

∂xj

∣∣∣∣ ≤
∣∣∣∣ ∂ϕi

∂xri

∣∣∣∣ on Δ.

Moreover, one can assume that for i ∈ {1,2}

(3.9)
∣∣∣∣ ∂ϕi

∂xri

∣∣∣∣ ≥ 4M2n−1(1 + 2M2n−1) on Δ,

since otherwise G is a semi-4M2n−1(1 + 2M2n−1)-cell. Besides, by Lemma 2,
one can assume that

Δ = {(x′ ′, xn−1) : x′ ′ ∈ Ω, σ(x′ ′) < xn−1 < ρ(x′ ′)}
is an M2n−1-disc and every ϕi has a continuous extension

ϕi : Δ ∪ σ ∪ ρ −→ R

such that

ϕi(σ) ⊂ R or ϕi(σ) = {−∞} or ϕi(σ) = {+∞},and the same for ρ.

Observe that if
∂ϕ1

∂xn−1
· ∂ϕ2

∂xn−1
≤ 0,

then clearly G is a semi-M2n−1-cell after transposition (xn−1, xn), so without
any loss of generality, one can assume that

∂ϕi

∂xn−1
> 0 on Δ, for i ∈ {1,2}.
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We will first show how to reduce our proposition to the case of any (L,P )-
cell with respect to any variable xr, so assume that Proposition 3 is true for
any (L,P )-cell.

By (3.7), one can distinguish the following three cases:∣∣∣∣ ∂ϕi

∂xn−1

∣∣∣∣ ≤ 1 + 2M2n−1, for i ∈ {1,2};(3.10) ∣∣∣∣ ∂ϕi

∂xn−1

∣∣∣∣ ≥ 1 + 2M2n−1, for i ∈ {1,2};(3.11) ∣∣∣∣ ∂ϕ1

∂xn−1

∣∣∣∣ < 1 + 2M2n−1 and(3.12) ∣∣∣∣ ∂ϕ2

∂xn−1

∣∣∣∣ > 1 + 2M2n−1 (or vice-versa).

Case (3.10). In fact, we will be using only that every ϕi : Δ ∪ σ ∪ ρ −→ R
is continuous and there is a closed nowhere dense Z ⊂ Δ such that ϕi is C1

on Δ \ Z and ∣∣∣∣ ∂ϕi

∂xn−1

∣∣∣∣ ≤ 1 + 2M2n−1, on Δ \ Z;(3.13) ∣∣∣∣∂ϕi

∂xj

∣∣∣∣ ≤ 3
∣∣∣∣ ∂ϕi

∂xri

∣∣∣∣ on Δ \ Z (j = 1, . . . , n − 1)(3.14)

and

(3.15)
∣∣∣∣ ∂ϕi

∂xri

∣∣∣∣ ≥ 2M2n−1(1 + 2M2n−1) on Δ \ Z.

Put

H = {(x′ ′, xn−1, xn) ∈ G : ϕ2(x′ ′, σ(x′ ′)) < xn < ϕ1(x′ ′, ρ(x′ ′))}
= {(x′, xn) ∈ Rn : x′ ∈ D,Φ1(x′) < xn < Φ2(x′)},

where

D = {(x′ ′, xn−1) ∈ Δ : ϕ2(x′ ′, σ(x′ ′)) < ϕ1(x′ ′, ρ(x′ ′))},

Φ1(x′ ′, xn−1) = max(ϕ2(x′ ′, σ(x′ ′)), ϕ1(x′ ′, xn−1))

and

Φ2(x′ ′, xn−1) = min(ϕ2(x′ ′, xn−1), ϕ1(x′ ′, ρ(x′ ′))).

Observe that Φ1 = Φ2 on (∂D) ∩ (Δ ∪ σ ∪ ρ), so Φ1 = Φ2 almost everywhere
on ∂D. Besides, by Proposition 2, ϕ2(x′ ′, σ(x′ ′)) �≡ −∞ and

∂

∂xj
ϕ2(x′ ′, σ(x′ ′)) =

∂ϕ2

∂xj
(x′ ′, σ(x′ ′)) +

∂ϕ2

∂xn−1
(x′ ′, σ(x′ ′))

∂σ

∂xj
(x′ ′)
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almost everywhere on Ω, for j ∈ {1, . . . , n − 2}. Hence, by (3.13) and (3.15)∣∣∣∣ ∂

∂xj
ϕ2(x′ ′, σ(x′ ′))

∣∣∣∣ ≤ 7
2

∣∣∣∣ ∂ϕ2

∂xr2

(x′ ′, σ(x′ ′))
∣∣∣∣

and ∣∣∣∣ ∂

∂xr2

ϕ2(x′ ′, σ(x′ ′))
∣∣∣∣ ≥ 1

2

∣∣∣∣ ∂ϕ2

∂xr2

(x′ ′, σ(x′ ′))
∣∣∣∣ ≥ M2n−1(1 + 2M2n−1).

Consequently,

| ∂
∂xj

ϕ2(x′ ′, σ(x′ ′))|
| ∂
∂xr2

ϕ2(x′ ′, σ(x′ ′))|
≤ 7, for any j ∈ {1, . . . , n − 1}.

In the same way, ϕ1(x′ ′, ρ(x′ ′)) �≡ +∞ and almost everywhere on D∣∣∣∣ ∂

∂xr1

ϕ1(x′ ′, ρ(x′ ′))
∣∣∣∣ ≥ M2n−1(1 + 2M2n−1)

and
| ∂
∂xj

ϕ1(x′ ′, ρ(x′ ′))|
| ∂
∂xr1

ϕ1(x′ ′, ρ(x′ ′))|
≤ 7, for any j ∈ {1, . . . , n − 1}.

By Lemma 6(1), H admits an almost decomposition

(3.16) H � S1 ∪ · · · ∪ Sk,

where every Sν is either a semi-7-cell or a ( 1
7 ,7)-cell in Rn after transposition

(xr1 , xn).
Since G \ H easily almost decomposes into a finite union of semi-M2n−1-

cells after transposition (xn−1, xn), (3.16) extends to a similar decomposition
of G.

Case (3.11). Let ϕ−1
i denote the inversion of ϕi with respect to xn−1

(i ∈ {1,2}).
Observe that if | ∂ϕi

∂xj
| < 1 + 2M2n−1, then

∣∣∣∣∂ϕ−1
i

∂xj

∣∣∣∣ =
| ∂ϕi

∂xj
|

| ∂ϕi

∂xn−1
|
< 1 < 1 + 2M2n−1

and, moreover, ∣∣∣∣∂ϕ−1
i

∂xn

∣∣∣∣ =
1

| ∂ϕi

∂xn−1
|
< 1 < 1 + 2M2n−1.

Hence,

�

{
j :

∣∣∣∣∂ϕi

∂xj

∣∣∣∣ < 1 + 2M2n−1

}
< �

{
ν :

∣∣∣∣∂ϕ−1
i

∂xν

∣∣∣∣ < 1 + 2M2n−1

}
for i ∈ {1,2}.
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Again it suffices to decompose the cell H defined as in case (3.10). Observe
that after transposition (xn−1, xn), the set H is the following cell

H = {(x′ ′, xn, xn−1) : x′ ′ ∈ Ω, ϕ1(x′ ′, σ(x′ ′)) < xn < ϕ2(x′ ′, ρ(x′ ′)),

ϕ−1
2 (x′ ′, xn) < xn−1 < ϕ−1

1 (x′ ′, xn)}.

Since 〈H〉 > 〈G〉, the induction hypothesis implies the desired decomposition.
Case (3.12). Then ϕ1(σ) ⊂ R and define

ψ(x′ ′, xn−1) = ϕ1(x′ ′, σ(x′ ′)) + (1 + 2M2n−1)
(
xn−1 − σ(x′ ′)

)
,

for (x′ ′, xn−1) ∈ Δ. Now G splits into two cells:

S1 = {(x′, xn) : x′ ∈ Δ, ϕ1(x′) < xn < ψ(x′)}
and

S2 = {(x′, xn) : x′ ∈ Δ, ψ(x′) < xn < ϕ2(x′)}.

Observe that
∂ψ

∂xj
=

∂ϕ1

∂xj
+

[
∂ϕ1

∂xn−1
− (1 + 2M2n−1)

]
∂σ

∂xj
,

for j ∈ {1, . . . , n − 2}, almost everywhere on Δ.
Hence, by (3.8), (3.12), and (3.9),∣∣∣∣ ∂ψ

∂xj

∣∣∣∣ ≤
∣∣∣∣ ∂ϕ1

∂xr1

∣∣∣∣ + 2M2n−1(1 + 2M2n−1) ≤ 3
2

∣∣∣∣ ∂ϕ1

∂xr1

∣∣∣∣
and∣∣∣∣ ∂ψ

∂xr1

∣∣∣∣ ≥
∣∣∣∣ ∂ϕ1

∂xr1

∣∣∣∣ − 2M2n−1(1 + 2M2n−1) ≥ 1
2

∣∣∣∣ ∂ϕ1

∂xr1

∣∣∣∣ ≥ 2M2n−1(1 + 2M2n−1).

Therefore,
| ∂ψ
∂xj

|
| ∂ψ
∂xr1

|
≤ 3,

for any j ∈ {1, . . . , n − 2}. Thus, S1 satisfies the conditions (3.13)–(3.15) and
the case (3.10) applies.

On the other hand, if j ∈ {1, . . . , n − 2} and∣∣∣∣∂ϕ1

∂xj

∣∣∣∣ < 1 + 2M2n−1,

then ∣∣∣∣∂ψ−1

∂xj

∣∣∣∣ =
| ∂ψ
∂xj

|
| ∂ψ
∂xn−1

|
≤

| ∂ϕ1
∂xj

| + 2M2n−1(1 + 2M2n−1)

1 + 2M2n−1
< 1 + 2M2n−1;

hence,

�

{
j :

∣∣∣∣∂ϕ1

∂xj

∣∣∣∣ < 1 + 2M2n−1

}
≤ �

{
ν :

∣∣∣∣∂ψ−1

∂xν

∣∣∣∣ < 1 + 2M2n−1

}
,
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while

�

{
j :

∣∣∣∣∂ϕ2

∂xj

∣∣∣∣ < 1 + 2M2n−1

}
< �

{
ν :

∣∣∣∣∂ϕ−1
2

∂xν

∣∣∣∣ < 1 + 2M2n−1

}
and we finish by the induction hypothesis as in case (3.11).

In the case of any (L,P )-cell with respect to xr, it is enough to repeat all
the argument with suitable changes; in particular, one should put r1 = r2 = r
and a coefficient P instead of 3 in (3.15). Moreover, one can assume that∣∣∣∣∂ϕi

∂xr

∣∣∣∣ ≥ 2M2n−1

∣∣∣∣ ∂ϕi

∂xn−1

∣∣∣∣,
for each i ∈ {1,2}, since otherwise we could assume the opposite inequality,
which easily gives a representation of G as a semi-2M2n−1 max(L−1, P )-cell.

�

4. Theorem 1n for a semi-M -cell

Proposition 4. Any semi-M -cell G in Rn (where M > 0) admits an al-
most decomposition

(4.1) G � S1 ∪ · · · ∪ Sk,

where every Sν is an M ′-cell after a permutation of coordinates and M ′ ≥ 1
is a constant depending only on M and n.

Proof. One can assume that G is in the form (3.1), where ϕi : Δ −→ R
(i = 1,2) are continuous and

(4.2)
∣∣∣∣∂ϕ1

∂xj

∣∣∣∣ < M almost everywhere on Δ, for j ∈ {1, . . . , n − 1}.

Indeed, the cases ϕ1 ≡ −∞ or ϕ1 ≡ +∞ reduce to the above by assuming first
that Δ is an M2n−1-disc and applying next transposition (xn−1, xn).

The proof will be by descending induction on the number

[G] = �

{
j :

∣∣∣∣∂ϕ2

∂xj

∣∣∣∣ ≤ M2n−1 almost everywhere on Δ
}

.

If [G] = n − 1, then G is a max(M,M2n−1)-cell, so assume that [G] < n − 1.
Notice that if Δ̃ ⊂ Δ, then for G̃ = G ∩ (Δ̃ × R), we have [G̃] ≥ [G].

Fix any L > max(M,M2n−1) and any M ∗ > M +(L+M)M2n−1. Dividing
Δ, one can assume that every ϕi is C1 on Δ and

for each j ∈ {1, . . . , n − 1}, sgn
∂ϕi

∂xj
= const ;(4.3)

for each j ∈ {1, . . . , n − 1},

∣∣∣∣∂ϕ2

∂xj

∣∣∣∣ > L on Δ or(4.4) ∣∣∣∣∂ϕ2

∂xj

∣∣∣∣ ≤ L on Δ
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and

(4.5) there exists r ∈ {1, . . . , n − 1} such that | ∂ϕ2
∂xr

| ≥ | ∂ϕ2
∂xj

| for each

j ∈ {1, . . . , n − 1}, and either | ∂ϕ2
∂xr

| ≥ M ∗ or | ∂ϕ2
∂xr

| ≤ M ∗ on Δ.

Clearly, one can assume that

(4.6)
∣∣∣∣∂ϕ2

∂xr

∣∣∣∣ ≥ M ∗ on Δ.

Finally, by Theorem 2n − 1 and Lemma 2, one can assume that

Δ = {(x′ ′, xn−1) : x′ ′ ∈ Ω, σ(x′ ′) < xn−1 < ρ(x′ ′)}
is an M2n−1-disc in Rn−1 and every ϕi admits a continuous extension

ϕi : Δ ∪ σ ∪ ρ −→ R

such that ϕi(σ) ⊂ R or ϕi(σ) = {−∞}, or ϕi(σ) = {+∞}, and the same for
ρ. Because of (4.2), ϕ1 : Δ ∪ σ ∪ ρ −→ R.

Case I: ∣∣∣∣ ∂ϕ2

∂xn−1

∣∣∣∣ > L on Δ.

Assume that ∂ϕ2
∂xn−1

> L; the case ∂ϕ2
∂xn−1

< −L will follow by a modification.
Consider the following function

(4.7) ψ(x′ ′, xn−1) = ϕ1(x′ ′, σ(x′ ′)) + L
(
xn−1 − σ(x′ ′)

)
,

for (x′ ′, xn−1) ∈ Δ.
Then ϕ1 < ψ < ϕ2 and G � S1 ∪ S2, where

S1 = {(x′, xn) : x′ ∈ Δ, ϕ1(x′) < xn < ψ(x′)}
is an M ∗-cell and

S2 = {(x′, xn) : x′ ∈ Δ, ψ(x′) < xn < ϕ2(x′)}
can be interpreted after transposition (xn−1, xn) as

S2 = {(x′ ′, xn−1, xn) : x′ ′ ∈ Ω, ϕ1(x′ ′, σ(x′ ′)) < xn < ϕ2(x′ ′, ρ(x′ ′)),
θ2(x′ ′, xn) < xn−1 < θ1(x′ ′, xn)},

where

θ2(x′ ′, xn) =

{
σ(x′ ′), if ϕ1(x′ ′, σ(x′ ′)) < xn ≤ ϕ2(x′ ′, σ(x′ ′)),
ϕ−1

2 (x′ ′, xn), if ϕ2(x′ ′, σ(x′ ′)) < xn < ϕ2(x′ ′, ρ(x′ ′)),

and

θ1(x′ ′, xn) =

{
ψ−1(x′ ′, xn), if ϕ1(x′ ′, σ(x′ ′)) < xn ≤ ψ(x′ ′, ρ(x′ ′)),
ρ(x′ ′), if ψ(x′ ′, ρ(x′ ′)) < xn < ϕ2(x′ ′, ρ(x′ ′)),
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and where ϕ−1
2 (and ψ−1) denotes the inversion of ϕ2 (and ψ) with respect

to xn−1. Now, if j ∈ {1, . . . , n − 2} and∣∣∣∣∂ϕ2

∂xj

∣∣∣∣ ≤ M2n−1,

then ∣∣∣∣∂ϕ−1
2

∂xj

∣∣∣∣ =
| ∂ϕ2
∂xj

|
| ∂ϕ2
∂xn−1

|
<

∣∣∣∣∂ϕ2

∂xj

∣∣∣∣ ≤ M2n−1

and, moreover, ∣∣∣∣∂ϕ−1
2

∂xn

∣∣∣∣ =
1

| ∂ϕ2
∂xn−1

|
<

1
L

< M2n−1.

Hence, [S2] > [G] and the induction hypothesis ends the proof in this case.
Case II: ∣∣∣∣ ∂ϕ2

∂xn−1

∣∣∣∣ ≤ L on Δ.

By (4.6) and (4.3), one can assume without any loss of generality that

∂ϕ2

∂xr
≥ M ∗,

∂ϕ2

∂xn−1
> 0 and

∂ϕ1

∂xn−1
> 0;

other possibilities will follow by simple modifications.
Since M ∗ > L, r ∈ {1, . . . , n − 2}. By Proposition 2, we have almost every-

where on Δ:
∂

∂xr
ϕ2(x′ ′, σ(x′ ′)) =

∣∣∣∣∂ϕ2

∂xr
(x′ ′, σ(x′ ′)) +

∂ϕ2

∂xn−1
(x′ ′, σ(x′ ′))

∂σ

∂xr
(x′ ′)

∣∣∣∣
≥ M ∗ − LM2n−1,

while ∣∣∣∣ ∂

∂xr
ϕ1(x′ ′, σ(x′ ′))

∣∣∣∣ ≤ M + MM2n−1 and∣∣∣∣ ∂

∂xr
ϕ1(x′ ′, ρ(x′ ′))

∣∣∣∣ ≤ M + MM2n−1.

Thus, by Lemma 5,

ϕ2(x′ ′, σ(x′ ′)) > ϕ1(x′ ′, ρ(x′ ′)) on Ω.

Hence,
G � S1 ∪ S2 ∪ S3,

where

S1 = {(x′ ′, xn−1, xn) : (x′ ′, xn−1) ∈ Δ, ϕ1(x′ ′, xn−1) < xn < ϕ1(x′ ′, ρ(x′ ′))},

S2 = {(x′ ′, xn−1, xn) : x′ ′ ∈ Ω, ϕ1(x′ ′, ρ(x′ ′)) < xn < ϕ2(x′ ′, σ(x′ ′)),
σ(x′ ′) < xn−1 < ρ(x′ ′)}
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and

S3 = {(x′ ′, xn−1, xn) : (x′ ′, xn−1) ∈ Δ, ϕ2(x′ ′, ρ(x′ ′)) < xn < ϕ2(x′ ′, xn−1)}.

The set S1 is an M ∗-cell, while S2 is an M2n−1-cell after transposition (xn−1,
xn). We will investigate S3. Put

Δ̃ = {(x′ ′, xn) : x′ ′ ∈ Ω, ϕ2(x′ ′, σ(x′ ′)) < xn < ϕ2(x′ ′, ρ(x′ ′))}.

Now,

S3 = {(x′ ′, xn−1, xn) : (x′ ′, xn) ∈ Δ̃, ϕ−1
2 (x′ ′, xn) < xn−1 < ρ(x′ ′)},

where ϕ−1
2 denotes the inversion of ϕ2 with respect to xn−1.

We will use Lemma 3 to get a desired decomposition of S3. Observe first
that

∂ϕ−1
2

∂xr
=

∂ϕ2
∂xr

∂ϕ2
∂xn−1

≥
∂ϕ2
∂xr

L
≥ M ∗

L
>

M + (L + M)M2n−1

L
> M2n−1 ≥

∣∣∣∣ ∂ρ

∂xr

∣∣∣∣
and

| ∂ϕ−1
2

∂xj
|

| ∂ϕ−1
2

∂xr
|
=

| ∂ϕ2
∂xj

|
| ∂ϕ2
∂xr

|
≤ 1, for j ∈ {1, . . . , n − 2},

and
| ∂ϕ−1

2
∂xn

|

| ∂ϕ−1
2

∂xr
|
=

1

| ∂ϕ−1
2

∂xr
|

≤ 1
M ∗ < 1.

Now, it suffices to check that Δ has an almost decomposition into N -cells with
respect to the variable xr, where the constant N depends only on M,L,M ∗

and M2n−1. We will check this using Lemma 6(2).
We have almost everywhere on Ω:

∂

∂xr
ϕ2(x′ ′, σ(x′ ′)) ≥ ∂ϕ2

∂xr
(x′ ′, σ(x′ ′))

(
1 − LM2n−1

M ∗

)
≥ M ∗ − LM2n−1

and

| ∂
∂xj

ϕ2(x′ ′, σ(x′ ′))|
| ∂
∂xr

ϕ2(x′ ′, σ(x′ ′))|
≤

| ∂ϕ2
∂xj

(x′ ′, σ(x′ ′)) + ∂ϕ2
∂xn−1

(x′ ′, σ(x′ ′)) ∂σ
∂xj

(x′ ′)|

| ∂ϕ2
∂xr

(x′ ′, σ(x′ ′))| M(1+M2n−1)
M ∗

≤ M ∗

M
.

The same is true for ρ in place of σ. Moreover, by the assumption of case II,

|ϕ2(x′ ′, σ(x′ ′)) − ϕ2(x′ ′, ρ(x′ ′))| ≤ |σ(x′ ′) − ρ(x′ ′)| on Ω.

Hence,
lim

x′ ′ →a′ ′
[ϕ2(x′ ′, σ(x′ ′)) − ϕ2(x′ ′, ρ(x′ ′))] = 0,

for any a′ ′ ∈ ∂Ω, so the assumptions of Lemma 6(2) are satisfied. �
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5. Proof of Theorem 2n for any M -cell

Let
G = {(x′, xn) : x′ ∈ Δ, ϕ1(x′) < xn < ϕ2(x′)}

be any M -cell, where M ∈ R,M ≥ 1. Observe that all possible cases re-
duce to the case ϕi : Δ −→ R (i ∈ {1,2}). Indeed, suppose for example that
ϕ1 : Δ −→ R and ϕ2 ≡ +∞. Then one can assume first that ϕ1 is C1 on Δ
and, for each j ∈ {1, . . . , n − 1},

sgn
∂ϕ1

∂xj
= const on Δ,

and next that

Δ = {(x′ ′, xn−1) : x′ ′ ∈ Ω, σ(x′ ′) < xn−1 < ρ(x′ ′)}
is an M2n−1-disc in Rn−1 such that ϕ1 has a continuous extension

ϕ1 : Δ ∪ σ ∪ ρ −→ R.

Then, assuming that ∂ϕ1
∂xn−1

> 0,

G � S1 ∪ S2,

where

S1 = {(x′ ′, xn−1, xn) : (x′ ′, xn−1) ∈ Δ, ϕ1(x′, xn−1) < xn < ϕ1(x′ ′, ρ(x′ ′))}
is an M(1 + M2n−1)-cell, while

S2 = {(x′ ′, xn−1, xn) : x′ ′ ∈ Ω, ϕ1(x′ ′, ρ(x′ ′)) < xn, σ(x′ ′) < xn−1 < ρ(x′ ′)}
is an M2n−1-cell after transposition (xn−1, xn).

Consequently, assume that ϕi : Δ −→ R (i ∈ {1,2}) and that they are C1.
By Theorem 3n − 1, one can assume that Δ is a regular M3n−1-cell and then,
by Proposition 1, that every ϕi has a continuous extension

ϕi : Δ −→ R (i ∈ {1,2}).

Now, still keeping the last property, one can assume that

Δ = {(x′ ′, xn−1) : x′ ′ ∈ Ω, σ(x′ ′) < xn−1 < ρ(x′ ′)}
is an M2n−1-disc. Put

λ1(x′ ′, xn−1) = ϕ1(x′ ′, σ(x′ ′)) + 2M
(
xn−1 − σ(x′ ′)

)
,

λ2(x′ ′, xn−1) = ϕ1(x′ ′, ρ(x′ ′)) − 2M
(
xn−1 − ρ(x′ ′)

)
,

λ3(x′ ′, xn−1) = ϕ2(x′ ′, ρ(x′ ′)) + 2M
(
xn−1 − ρ(x′ ′)

)
,

and
λ4(x′ ′, xn−1) = ϕ2(x′ ′, σ(x′ ′)) − 2M

(
xn−1 − σ(x′ ′)

)
,

for any (x′ ′, xn−1) ∈ Ω × R. Every λi has a continuous extension to Ω × R and
is an M(1 + 3M2n−1)-function. Its inversion λ−1

i with respect to xn−1 has a
continuous extension to Ω × R as well and is a 1

2 (1 + 3M2n−1)-function.
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For any subset I ⊂ {1,2,3,4}, set

SI = {(x′, xn) ∈ G : xn < λi(x′), if i ∈ I and λi(x′) < xn, if i /∈ I}.

Then

G �
⋃
I

SI .

It suffices to show that every SI is an M(1 + 3M2n−1)-disc after perhaps
transposition (xn−1, xn).

Fix any I ⊂ {1,2,3,4}.
If {1,2} ⊂ I , then

SI = {(x′, xn) ∈ Δ × R : ϕ1(x′) < xn < ϕ2(x′), xn < λi(x′), if i ∈ I,

λi(x′) < xn, if i /∈ I},

and λ1 = ϕ1 on σ, while λ2 = ϕ1 on ρ and Lemma 4 applies.
Similarly, when {3,4} ∩ I = ∅.
If {1,2} �⊂ I and {3,4} ∩ I �= ∅, we have 1 /∈ I and 3 ∈ I or 1 /∈ I and 4 ∈ I

(or, similarly, 2 /∈ I and 3 ∈ I or 2 /∈ I and 4 ∈ I).
Suppose first that 1 /∈ I and 3 ∈ I . Then

SI = {(x′ ′, xn−1, xn) : x′ ′ ∈ Ω, ϕ1(x′ ′, σ(x′ ′)) < xn < ϕ2(x′ ′, ρ(x′ ′)),(5.1)

σ(x′ ′) < xn−1 < ρ(x′ ′), xn−1 < λ−1
i (x′ ′, xn) if i ∈ Ĩ ,

λ−1
i (x′ ′, xn) < xn−1 if i /∈ Ĩ},

where Ĩ ⊂ {1,2,3,4} is defined by the formula: i ∈ Ĩ if and only if i ∈ I and i
is even or i /∈ I and i is odd. Since

λ−1
1 (x′ ′, ϕ1(x′ ′, σ(x′ ′)) = σ(x′ ′)

and

λ−1
3 (x′ ′, ϕ2(x′ ′, ρ(x′ ′)) = ρ(x′ ′),

for each x′ ′ ∈ Ω and
σ(x′ ′) = ρ(x′ ′),

for each x′ ′ ∈ ∂Ω, we are done by Lemma 4.
Let now 1 /∈ I and 4 ∈ I . Then (5.1) holds, and since

λ−1
1 (x′ ′, ϕ1(x′ ′, σ(x′ ′)) = σ(x′ ′), λ−1

4 (x′ ′, ϕ2(x′ ′, σ(x′ ′)) = σ(x′ ′),

for each x′ ′ ∈ Ω and σ(x′ ′) = ρ(x′ ′), for each x′ ′ ∈ ∂Ω, we are again done due
to Lemma 4.

Acknowledgment. The author thanks the anonymous referee whose com-
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